197 lines
6.2 KiB
Python
197 lines
6.2 KiB
Python
import json
|
|
from pathlib import Path
|
|
import numpy as np
|
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
from sklearn.metrics.pairwise import cosine_similarity
|
|
import matplotlib.pyplot as plt
|
|
import seaborn as sns
|
|
import sqlite3
|
|
|
|
# 设置中文字体
|
|
plt.rcParams["font.sans-serif"] = ["Microsoft YaHei"] # 使用微软雅黑
|
|
plt.rcParams["axes.unicode_minus"] = False # 用来正常显示负号
|
|
plt.rcParams["font.family"] = "sans-serif"
|
|
|
|
# 获取脚本所在目录
|
|
SCRIPT_DIR = Path(__file__).parent
|
|
|
|
|
|
def get_group_name(stream_id):
|
|
"""从数据库中获取群组名称"""
|
|
conn = sqlite3.connect("data/maibot.db")
|
|
cursor = conn.cursor()
|
|
|
|
cursor.execute(
|
|
"""
|
|
SELECT group_name, user_nickname, platform
|
|
FROM chat_streams
|
|
WHERE stream_id = ?
|
|
""",
|
|
(stream_id,),
|
|
)
|
|
|
|
result = cursor.fetchone()
|
|
conn.close()
|
|
|
|
if result:
|
|
group_name, user_nickname, platform = result
|
|
if group_name:
|
|
return group_name
|
|
if user_nickname:
|
|
return user_nickname
|
|
if platform:
|
|
return f"{platform}-{stream_id[:8]}"
|
|
return stream_id
|
|
|
|
|
|
def load_group_data(group_dir):
|
|
"""加载单个群组的数据"""
|
|
json_path = Path(group_dir) / "expressions.json"
|
|
if not json_path.exists():
|
|
return [], [], [], 0
|
|
|
|
with open(json_path, "r", encoding="utf-8") as f:
|
|
data = json.load(f)
|
|
|
|
situations = []
|
|
styles = []
|
|
combined = []
|
|
total_count = sum(item["count"] for item in data)
|
|
|
|
for item in data:
|
|
count = item["count"]
|
|
situations.extend([item["situation"]] * int(count))
|
|
styles.extend([item["style"]] * int(count))
|
|
combined.extend([f"{item['situation']} {item['style']}"] * int(count))
|
|
|
|
return situations, styles, combined, total_count
|
|
|
|
|
|
def analyze_group_similarity():
|
|
# 获取所有群组目录
|
|
base_dir = Path("data/expression/learnt_style")
|
|
group_dirs = [d for d in base_dir.iterdir() if d.is_dir()]
|
|
|
|
# 加载所有群组的数据并过滤
|
|
valid_groups = []
|
|
valid_names = []
|
|
valid_situations = []
|
|
valid_styles = []
|
|
valid_combined = []
|
|
|
|
for d in group_dirs:
|
|
situations, styles, combined, total_count = load_group_data(d)
|
|
if total_count >= 50: # 只保留数据量大于等于50的群组
|
|
valid_groups.append(d)
|
|
valid_names.append(get_group_name(d.name))
|
|
valid_situations.append(" ".join(situations))
|
|
valid_styles.append(" ".join(styles))
|
|
valid_combined.append(" ".join(combined))
|
|
|
|
if not valid_groups:
|
|
print("没有找到数据量大于等于50的群组")
|
|
return
|
|
|
|
# 创建TF-IDF向量化器
|
|
vectorizer = TfidfVectorizer()
|
|
|
|
# 计算三种相似度矩阵
|
|
situation_matrix = cosine_similarity(vectorizer.fit_transform(valid_situations))
|
|
style_matrix = cosine_similarity(vectorizer.fit_transform(valid_styles))
|
|
combined_matrix = cosine_similarity(vectorizer.fit_transform(valid_combined))
|
|
|
|
# 对相似度矩阵进行对数变换
|
|
log_situation_matrix = np.log10(situation_matrix * 100 + 1) * 10 / np.log10(4)
|
|
log_style_matrix = np.log10(style_matrix * 100 + 1) * 10 / np.log10(4)
|
|
log_combined_matrix = np.log10(combined_matrix * 100 + 1) * 10 / np.log10(4)
|
|
|
|
# 创建一个大图,包含三个子图
|
|
plt.figure(figsize=(45, 12))
|
|
|
|
# 场景相似度热力图
|
|
plt.subplot(1, 3, 1)
|
|
sns.heatmap(
|
|
log_situation_matrix,
|
|
xticklabels=valid_names,
|
|
yticklabels=valid_names,
|
|
cmap="YlOrRd",
|
|
annot=True,
|
|
fmt=".1f",
|
|
vmin=0,
|
|
vmax=30,
|
|
)
|
|
plt.title("群组场景相似度热力图 (对数百分比)")
|
|
plt.xticks(rotation=45, ha="right")
|
|
|
|
# 表达方式相似度热力图
|
|
plt.subplot(1, 3, 2)
|
|
sns.heatmap(
|
|
log_style_matrix,
|
|
xticklabels=valid_names,
|
|
yticklabels=valid_names,
|
|
cmap="YlOrRd",
|
|
annot=True,
|
|
fmt=".1f",
|
|
vmin=0,
|
|
vmax=30,
|
|
)
|
|
plt.title("群组表达方式相似度热力图 (对数百分比)")
|
|
plt.xticks(rotation=45, ha="right")
|
|
|
|
# 组合相似度热力图
|
|
plt.subplot(1, 3, 3)
|
|
sns.heatmap(
|
|
log_combined_matrix,
|
|
xticklabels=valid_names,
|
|
yticklabels=valid_names,
|
|
cmap="YlOrRd",
|
|
annot=True,
|
|
fmt=".1f",
|
|
vmin=0,
|
|
vmax=30,
|
|
)
|
|
plt.title("群组场景+表达方式相似度热力图 (对数百分比)")
|
|
plt.xticks(rotation=45, ha="right")
|
|
|
|
plt.tight_layout()
|
|
plt.savefig(SCRIPT_DIR / "group_similarity_heatmaps.png", dpi=300, bbox_inches="tight")
|
|
plt.close()
|
|
|
|
# 保存匹配详情到文本文件
|
|
with open(SCRIPT_DIR / "group_similarity_details.txt", "w", encoding="utf-8") as f:
|
|
f.write("群组相似度详情\n")
|
|
f.write("=" * 50 + "\n\n")
|
|
|
|
for i in range(len(valid_names)):
|
|
for j in range(i + 1, len(valid_names)):
|
|
if log_combined_matrix[i][j] > 50:
|
|
f.write(f"群组1: {valid_names[i]}\n")
|
|
f.write(f"群组2: {valid_names[j]}\n")
|
|
f.write(f"场景相似度: {situation_matrix[i][j]:.4f}\n")
|
|
f.write(f"表达方式相似度: {style_matrix[i][j]:.4f}\n")
|
|
f.write(f"组合相似度: {combined_matrix[i][j]:.4f}\n")
|
|
|
|
# 获取两个群组的数据
|
|
situations1, styles1, _ = load_group_data(valid_groups[i])
|
|
situations2, styles2, _ = load_group_data(valid_groups[j])
|
|
|
|
# 找出共同的场景
|
|
common_situations = set(situations1) & set(situations2)
|
|
if common_situations:
|
|
f.write("\n共同场景:\n")
|
|
for situation in common_situations:
|
|
f.write(f"- {situation}\n")
|
|
|
|
# 找出共同的表达方式
|
|
common_styles = set(styles1) & set(styles2)
|
|
if common_styles:
|
|
f.write("\n共同表达方式:\n")
|
|
for style in common_styles:
|
|
f.write(f"- {style}\n")
|
|
|
|
f.write("\n" + "-" * 50 + "\n\n")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
analyze_group_similarity()
|