Files
Mofox-Core/src/plugins/PFC/action_planner.py
墨梓柒 12b03ecb8d 重构跨多个模块的日志配置
- 将“get_module_logger”替换为新模块“logger_manager”中的“get_logger”,以实现一致的日志设置。
- 移除了单独的日志配置设置,转而采用集中式日志管理。
- 更新了多个文件中的日志初始化方法,包括“config.py”、“change_mood.py”、“change_relationship.py”等,以简化日志记录实践。
- 引入“logger_manager.py”,用于根据模块特定的样式处理日志配置。
2025-04-28 00:22:05 +08:00

305 lines
16 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import time
from typing import Tuple
from src.common.logger_manager import get_logger
from ..models.utils_model import LLMRequest
from ...config.config import global_config
from .chat_observer import ChatObserver
from .pfc_utils import get_items_from_json
from src.individuality.individuality import Individuality
from .observation_info import ObservationInfo
from .conversation_info import ConversationInfo
from src.plugins.utils.chat_message_builder import build_readable_messages
logger = get_logger("pfc_action_planner")
# 注意:这个 ActionPlannerInfo 类似乎没有在 ActionPlanner 中使用,
# 如果确实没用,可以考虑移除,但暂时保留以防万一。
class ActionPlannerInfo:
def __init__(self):
self.done_action = []
self.goal_list = []
self.knowledge_list = []
self.memory_list = []
# ActionPlanner 类定义,顶格
class ActionPlanner:
"""行动规划器"""
def __init__(self, stream_id: str):
self.llm = LLMRequest(
model=global_config.llm_PFC_action_planner,
temperature=global_config.llm_PFC_action_planner["temp"],
max_tokens=1500,
request_type="action_planning",
)
self.personality_info = Individuality.get_instance().get_prompt(type="personality", x_person=2, level=3)
self.identity_detail_info = Individuality.get_instance().get_prompt(type="identity", x_person=2, level=2)
self.name = global_config.BOT_NICKNAME
self.chat_observer = ChatObserver.get_instance(stream_id)
async def plan(self, observation_info: ObservationInfo, conversation_info: ConversationInfo) -> Tuple[str, str]:
"""规划下一步行动
Args:
observation_info: 决策信息
conversation_info: 对话信息
Returns:
Tuple[str, str]: (行动类型, 行动原因)
"""
# --- 获取 Bot 上次发言时间信息 ---
time_since_last_bot_message_info = ""
try:
bot_id = str(global_config.BOT_QQ)
if hasattr(observation_info, "chat_history") and observation_info.chat_history:
for i in range(len(observation_info.chat_history) - 1, -1, -1):
msg = observation_info.chat_history[i]
if not isinstance(msg, dict):
continue
sender_info = msg.get("user_info", {})
sender_id = str(sender_info.get("user_id")) if isinstance(sender_info, dict) else None
msg_time = msg.get("time")
if sender_id == bot_id and msg_time:
time_diff = time.time() - msg_time
if time_diff < 60.0:
time_since_last_bot_message_info = (
f"提示:你上一条成功发送的消息是在 {time_diff:.1f} 秒前。\n"
)
break
else:
logger.debug("Observation info chat history is empty or not available for bot time check.")
except AttributeError:
logger.warning("ObservationInfo object might not have chat_history attribute yet for bot time check.")
except Exception as e:
logger.warning(f"获取 Bot 上次发言时间时出错: {e}")
# --- 获取 Bot 上次发言时间信息结束 ---
timeout_context = ""
try: # 添加 try-except 以增加健壮性
if hasattr(conversation_info, "goal_list") and conversation_info.goal_list:
last_goal_tuple = conversation_info.goal_list[-1]
if isinstance(last_goal_tuple, tuple) and len(last_goal_tuple) > 0:
last_goal_text = last_goal_tuple[0]
if isinstance(last_goal_text, str) and "分钟,思考接下来要做什么" in last_goal_text:
try:
timeout_minutes_text = last_goal_text.split("")[0].replace("你等待了", "")
timeout_context = f"重要提示:你刚刚因为对方长时间({timeout_minutes_text})没有回复而结束了等待,这可能代表在对方看来本次聊天已结束,请基于此情况规划下一步,不要重复等待前的发言。\n"
except Exception:
timeout_context = "重要提示:你刚刚因为对方长时间没有回复而结束了等待,这可能代表在对方看来本次聊天已结束,请基于此情况规划下一步,不要重复等待前的发言。\n"
else:
logger.debug("Conversation info goal_list is empty or not available for timeout check.")
except AttributeError:
logger.warning("ConversationInfo object might not have goal_list attribute yet for timeout check.")
except Exception as e:
logger.warning(f"检查超时目标时出错: {e}")
# 构建提示词
logger.debug(f"开始规划行动:当前目标: {getattr(conversation_info, 'goal_list', '不可用')}") # 使用 getattr
# 构建对话目标 (goals_str)
goals_str = ""
try: # 添加 try-except
if hasattr(conversation_info, "goal_list") and conversation_info.goal_list:
for goal_reason in conversation_info.goal_list:
if isinstance(goal_reason, tuple) and len(goal_reason) > 0:
goal = goal_reason[0]
reasoning = goal_reason[1] if len(goal_reason) > 1 else "没有明确原因"
elif isinstance(goal_reason, dict):
goal = goal_reason.get("goal", "目标内容缺失")
reasoning = goal_reason.get("reasoning", "没有明确原因")
else:
goal = str(goal_reason)
reasoning = "没有明确原因"
goal = str(goal) if goal is not None else "目标内容缺失"
reasoning = str(reasoning) if reasoning is not None else "没有明确原因"
goals_str += f"- 目标:{goal}\n 原因:{reasoning}\n"
if not goals_str: # 如果循环后 goals_str 仍为空
goals_str = "- 目前没有明确对话目标,请考虑设定一个。\n"
except AttributeError:
logger.warning("ConversationInfo object might not have goal_list attribute yet.")
goals_str = "- 获取对话目标时出错。\n"
except Exception as e:
logger.error(f"构建对话目标字符串时出错: {e}")
goals_str = "- 构建对话目标时出错。\n"
# 获取聊天历史记录 (chat_history_text)
chat_history_text = ""
try:
if hasattr(observation_info, "chat_history") and observation_info.chat_history:
chat_history_text = observation_info.chat_history_str
if not chat_history_text: # 如果历史记录是空列表
chat_history_text = "还没有聊天记录。\n"
else:
chat_history_text = "还没有聊天记录。\n"
if hasattr(observation_info, "new_messages_count") and observation_info.new_messages_count > 0:
if hasattr(observation_info, "unprocessed_messages") and observation_info.unprocessed_messages:
new_messages_list = observation_info.unprocessed_messages
new_messages_str = await build_readable_messages(
new_messages_list,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="relative",
read_mark=0.0,
)
chat_history_text += (
f"\n--- 以下是 {observation_info.new_messages_count} 条新消息 ---\n{new_messages_str}"
)
# 清理消息应该由调用者或 observation_info 内部逻辑处理,这里不再调用 clear
# if hasattr(observation_info, 'clear_unprocessed_messages'):
# observation_info.clear_unprocessed_messages()
else:
logger.warning(
"ObservationInfo has new_messages_count > 0 but unprocessed_messages is empty or missing."
)
except AttributeError:
logger.warning("ObservationInfo object might be missing expected attributes for chat history.")
chat_history_text = "获取聊天记录时出错。\n"
except Exception as e:
logger.error(f"处理聊天记录时发生未知错误: {e}")
chat_history_text = "处理聊天记录时出错。\n"
# 构建 Persona 文本 (persona_text)
identity_details_only = self.identity_detail_info
identity_addon = ""
if isinstance(identity_details_only, str):
pronouns = ["", "", ""]
# original_details = identity_details_only
for p in pronouns:
if identity_details_only.startswith(p):
identity_details_only = identity_details_only[len(p) :]
break
if identity_details_only.endswith(""):
identity_details_only = identity_details_only[:-1]
cleaned_details = identity_details_only.strip(", ")
if cleaned_details:
identity_addon = f"并且{cleaned_details}"
persona_text = f"你的名字是{self.name}{self.personality_info}{identity_addon}"
# --- 构建更清晰的行动历史和上一次行动结果 ---
action_history_summary = "你最近执行的行动历史:\n"
last_action_context = "关于你【上一次尝试】的行动:\n"
action_history_list = []
try: # 添加 try-except
if hasattr(conversation_info, "done_action") and conversation_info.done_action:
action_history_list = conversation_info.done_action[-5:]
else:
logger.debug("Conversation info done_action is empty or not available.")
except AttributeError:
logger.warning("ConversationInfo object might not have done_action attribute yet.")
except Exception as e:
logger.error(f"访问行动历史时出错: {e}")
if not action_history_list:
action_history_summary += "- 还没有执行过行动。\n"
last_action_context += "- 这是你规划的第一个行动。\n"
else:
for i, action_data in enumerate(action_history_list):
action_type = "未知"
plan_reason = "未知"
status = "未知"
final_reason = ""
action_time = ""
if isinstance(action_data, dict):
action_type = action_data.get("action", "未知")
plan_reason = action_data.get("plan_reason", "未知规划原因")
status = action_data.get("status", "未知")
final_reason = action_data.get("final_reason", "")
action_time = action_data.get("time", "")
elif isinstance(action_data, tuple):
if len(action_data) > 0:
action_type = action_data[0]
if len(action_data) > 1:
plan_reason = action_data[1]
if len(action_data) > 2:
status = action_data[2]
if status == "recall" and len(action_data) > 3:
final_reason = action_data[3]
reason_text = f", 失败/取消原因: {final_reason}" if final_reason else ""
summary_line = f"- 时间:{action_time}, 尝试行动:'{action_type}', 状态:{status}{reason_text}"
action_history_summary += summary_line + "\n"
if i == len(action_history_list) - 1:
last_action_context += f"- 上次【规划】的行动是: '{action_type}'\n"
last_action_context += f"- 当时规划的【原因】是: {plan_reason}\n"
if status == "done":
last_action_context += "- 该行动已【成功执行】。\n"
elif status == "recall":
last_action_context += "- 但该行动最终【未能执行/被取消】。\n"
if final_reason:
last_action_context += f"- 【重要】失败/取消的具体原因是: “{final_reason}\n"
else:
last_action_context += "- 【重要】失败/取消原因未明确记录。\n"
else:
last_action_context += f"- 该行动当前状态: {status}\n"
# --- 构建最终的 Prompt ---
prompt = f"""{persona_text}。现在你在参与一场QQ私聊请根据以下【所有信息】审慎且灵活的决策下一步行动可以发言可以等待可以倾听可以调取知识
【当前对话目标】
{goals_str if goals_str.strip() else "- 目前没有明确对话目标,请考虑设定一个。"}
【最近行动历史概要】
{action_history_summary}
【上一次行动的详细情况和结果】
{last_action_context}
【时间和超时提示】
{time_since_last_bot_message_info}{timeout_context}
【最近的对话记录】(包括你已成功发送的消息 和 新收到的消息)
{chat_history_text if chat_history_text.strip() else "还没有聊天记录。"}
------
可选行动类型以及解释:
etch_knowledge: 需要调取知识,当需要专业知识或特定信息时选择,对方若提到你太认识的人名或实体也可以尝试
wait: 暂时不说话,等待对方回复(尤其是在你刚发言后、或上次发言因重复、发言过多被拒时、或不确定做什么时,这是较安全的选择)
listening: 倾听对方发言,当你认为对方话才说到一半,发言明显未结束时采用
direct_reply: 直接回复或发送新消息,允许适当的追问和深入话题,**但是避免在因重复被拒后立即使用,也不要在对方没有回复的情况下过多的“消息轰炸”或重复发言**
rethink_goal: 重新思考对话目标,当发现对话目标不再适用或对话卡住时选择,注意私聊的环境是灵活的,有可能需要经常选择
end_conversation: 结束对话,对方长时间没回复或者当你觉得对话告一段落时可以选择
请以JSON格式输出你的决策
{{
"action": "选择的行动类型 (必须是上面列表中的一个)",
"reason": "选择该行动的详细原因 (必须有解释你是如何根据“上一次行动结果”、“对话记录”和自身设定人设做出合理判断的,如果你连续发言,必须记录已经发言了几次)"
}}
注意请严格按照JSON格式输出不要包含任何其他内容。"""
logger.debug(f"发送到LLM的提示词 (已更新): {prompt}")
try:
content, _ = await self.llm.generate_response_async(prompt)
logger.debug(f"LLM原始返回内容: {content}")
success, result = get_items_from_json(
content,
"action",
"reason",
default_values={"action": "wait", "reason": "LLM返回格式错误或未提供原因默认等待"},
)
action = result.get("action", "wait")
reason = result.get("reason", "LLM未提供原因默认等待")
# 验证action类型
valid_actions = ["direct_reply", "fetch_knowledge", "wait", "listening", "rethink_goal", "end_conversation"]
if action not in valid_actions:
logger.warning(f"LLM返回了未知的行动类型: '{action}',强制改为 wait")
reason = f"(原始行动'{action}'无效已强制改为wait) {reason}"
action = "wait"
logger.info(f"规划的行动: {action}")
logger.info(f"行动原因: {reason}")
return action, reason
except Exception as e:
logger.error(f"规划行动时调用 LLM 或处理结果出错: {str(e)}")
return "wait", f"行动规划处理中发生错误,暂时等待: {str(e)}"