447 lines
15 KiB
Python
447 lines
15 KiB
Python
import math
|
||
import random
|
||
import time
|
||
from collections import Counter
|
||
from typing import Dict, List
|
||
|
||
import jieba
|
||
import numpy as np
|
||
from nonebot import get_driver
|
||
from loguru import logger
|
||
|
||
from ..models.utils_model import LLM_request
|
||
from ..utils.typo_generator import ChineseTypoGenerator
|
||
from .config import global_config
|
||
from .message import MessageRecv,Message
|
||
from .message_base import UserInfo
|
||
from .chat_stream import ChatStream
|
||
from ..moods.moods import MoodManager
|
||
from ...common.database import db
|
||
|
||
driver = get_driver()
|
||
config = driver.config
|
||
|
||
|
||
|
||
def db_message_to_str(message_dict: Dict) -> str:
|
||
logger.debug(f"message_dict: {message_dict}")
|
||
time_str = time.strftime("%m-%d %H:%M:%S", time.localtime(message_dict["time"]))
|
||
try:
|
||
name = "[(%s)%s]%s" % (
|
||
message_dict['user_id'], message_dict.get("user_nickname", ""), message_dict.get("user_cardname", ""))
|
||
except:
|
||
name = message_dict.get("user_nickname", "") or f"用户{message_dict['user_id']}"
|
||
content = message_dict.get("processed_plain_text", "")
|
||
result = f"[{time_str}] {name}: {content}\n"
|
||
logger.debug(f"result: {result}")
|
||
return result
|
||
|
||
|
||
def is_mentioned_bot_in_message(message: MessageRecv) -> bool:
|
||
"""检查消息是否提到了机器人"""
|
||
keywords = [global_config.BOT_NICKNAME]
|
||
nicknames = global_config.BOT_ALIAS_NAMES
|
||
for keyword in keywords:
|
||
if keyword in message.processed_plain_text:
|
||
return True
|
||
for nickname in nicknames:
|
||
if nickname in message.processed_plain_text:
|
||
return True
|
||
return False
|
||
|
||
|
||
async def get_embedding(text):
|
||
"""获取文本的embedding向量"""
|
||
llm = LLM_request(model=global_config.embedding)
|
||
# return llm.get_embedding_sync(text)
|
||
return await llm.get_embedding(text)
|
||
|
||
|
||
def cosine_similarity(v1, v2):
|
||
dot_product = np.dot(v1, v2)
|
||
norm1 = np.linalg.norm(v1)
|
||
norm2 = np.linalg.norm(v2)
|
||
return dot_product / (norm1 * norm2)
|
||
|
||
|
||
def calculate_information_content(text):
|
||
"""计算文本的信息量(熵)"""
|
||
char_count = Counter(text)
|
||
total_chars = len(text)
|
||
|
||
entropy = 0
|
||
for count in char_count.values():
|
||
probability = count / total_chars
|
||
entropy -= probability * math.log2(probability)
|
||
|
||
return entropy
|
||
|
||
|
||
def get_closest_chat_from_db(length: int, timestamp: str):
|
||
"""从数据库中获取最接近指定时间戳的聊天记录
|
||
|
||
Args:
|
||
length: 要获取的消息数量
|
||
timestamp: 时间戳
|
||
|
||
Returns:
|
||
list: 消息记录列表,每个记录包含时间和文本信息
|
||
"""
|
||
chat_records = []
|
||
closest_record = db.messages.find_one({"time": {"$lte": timestamp}}, sort=[('time', -1)])
|
||
|
||
if closest_record:
|
||
closest_time = closest_record['time']
|
||
chat_id = closest_record['chat_id'] # 获取chat_id
|
||
# 获取该时间戳之后的length条消息,保持相同的chat_id
|
||
chat_records = list(db.messages.find(
|
||
{
|
||
"time": {"$gt": closest_time},
|
||
"chat_id": chat_id # 添加chat_id过滤
|
||
}
|
||
).sort('time', 1).limit(length))
|
||
|
||
# 转换记录格式
|
||
formatted_records = []
|
||
for record in chat_records:
|
||
# 兼容行为,前向兼容老数据
|
||
formatted_records.append({
|
||
'_id': record["_id"],
|
||
'time': record["time"],
|
||
'chat_id': record["chat_id"],
|
||
'detailed_plain_text': record.get("detailed_plain_text", ""), # 添加文本内容
|
||
'memorized_times': record.get("memorized_times", 0) # 添加记忆次数
|
||
})
|
||
|
||
return formatted_records
|
||
|
||
return []
|
||
|
||
|
||
async def get_recent_group_messages(chat_id:str, limit: int = 12) -> list:
|
||
"""从数据库获取群组最近的消息记录
|
||
|
||
Args:
|
||
group_id: 群组ID
|
||
limit: 获取消息数量,默认12条
|
||
|
||
Returns:
|
||
list: Message对象列表,按时间正序排列
|
||
"""
|
||
|
||
# 从数据库获取最近消息
|
||
recent_messages = list(db.messages.find(
|
||
{"chat_id": chat_id},
|
||
).sort("time", -1).limit(limit))
|
||
|
||
if not recent_messages:
|
||
return []
|
||
|
||
# 转换为 Message对象列表
|
||
message_objects = []
|
||
for msg_data in recent_messages:
|
||
try:
|
||
chat_info=msg_data.get("chat_info",{})
|
||
chat_stream=ChatStream.from_dict(chat_info)
|
||
user_info=msg_data.get("user_info",{})
|
||
user_info=UserInfo.from_dict(user_info)
|
||
msg = Message(
|
||
message_id=msg_data["message_id"],
|
||
chat_stream=chat_stream,
|
||
time=msg_data["time"],
|
||
user_info=user_info,
|
||
processed_plain_text=msg_data.get("processed_text", ""),
|
||
detailed_plain_text=msg_data.get("detailed_plain_text", "")
|
||
)
|
||
message_objects.append(msg)
|
||
except KeyError:
|
||
logger.warning("数据库中存在无效的消息")
|
||
continue
|
||
|
||
# 按时间正序排列
|
||
message_objects.reverse()
|
||
return message_objects
|
||
|
||
|
||
def get_recent_group_detailed_plain_text(chat_stream_id: int, limit: int = 12, combine=False):
|
||
recent_messages = list(db.messages.find(
|
||
{"chat_id": chat_stream_id},
|
||
{
|
||
"time": 1, # 返回时间字段
|
||
"chat_id":1,
|
||
"chat_info":1,
|
||
"user_info": 1,
|
||
"message_id": 1, # 返回消息ID字段
|
||
"detailed_plain_text": 1 # 返回处理后的文本字段
|
||
}
|
||
).sort("time", -1).limit(limit))
|
||
|
||
if not recent_messages:
|
||
return []
|
||
|
||
message_detailed_plain_text = ''
|
||
message_detailed_plain_text_list = []
|
||
|
||
# 反转消息列表,使最新的消息在最后
|
||
recent_messages.reverse()
|
||
|
||
if combine:
|
||
for msg_db_data in recent_messages:
|
||
message_detailed_plain_text += str(msg_db_data["detailed_plain_text"])
|
||
return message_detailed_plain_text
|
||
else:
|
||
for msg_db_data in recent_messages:
|
||
message_detailed_plain_text_list.append(msg_db_data["detailed_plain_text"])
|
||
return message_detailed_plain_text_list
|
||
|
||
|
||
def get_recent_group_speaker(chat_stream_id: int, sender, limit: int = 12) -> list:
|
||
# 获取当前群聊记录内发言的人
|
||
recent_messages = list(db.messages.find(
|
||
{"chat_id": chat_stream_id},
|
||
{
|
||
"chat_info": 1,
|
||
"user_info": 1,
|
||
}
|
||
).sort("time", -1).limit(limit))
|
||
|
||
if not recent_messages:
|
||
return []
|
||
|
||
who_chat_in_group = [] # ChatStream列表
|
||
|
||
duplicate_removal = []
|
||
for msg_db_data in recent_messages:
|
||
user_info = UserInfo.from_dict(msg_db_data["user_info"])
|
||
if (user_info.user_id, user_info.platform) != sender \
|
||
and (user_info.user_id, user_info.platform) != (global_config.BOT_QQ, "qq") \
|
||
and (user_info.user_id, user_info.platform) not in duplicate_removal \
|
||
and len(duplicate_removal) < 5: # 排除重复,排除消息发送者,排除bot(此处bot的平台强制为了qq,可能需要更改),限制加载的关系数目
|
||
|
||
duplicate_removal.append((user_info.user_id, user_info.platform))
|
||
chat_info = msg_db_data.get("chat_info", {})
|
||
who_chat_in_group.append(ChatStream.from_dict(chat_info))
|
||
return who_chat_in_group
|
||
|
||
|
||
def split_into_sentences_w_remove_punctuation(text: str) -> List[str]:
|
||
"""将文本分割成句子,但保持书名号中的内容完整
|
||
Args:
|
||
text: 要分割的文本字符串
|
||
Returns:
|
||
List[str]: 分割后的句子列表
|
||
"""
|
||
len_text = len(text)
|
||
if len_text < 5:
|
||
if random.random() < 0.01:
|
||
return list(text) # 如果文本很短且触发随机条件,直接按字符分割
|
||
else:
|
||
return [text]
|
||
if len_text < 12:
|
||
split_strength = 0.3
|
||
elif len_text < 32:
|
||
split_strength = 0.7
|
||
else:
|
||
split_strength = 0.9
|
||
# 先移除换行符
|
||
# print(f"split_strength: {split_strength}")
|
||
|
||
# print(f"处理前的文本: {text}")
|
||
|
||
# 统一将英文逗号转换为中文逗号
|
||
text = text.replace(',', ',')
|
||
text = text.replace('\n', ' ')
|
||
|
||
# print(f"处理前的文本: {text}")
|
||
|
||
text_no_1 = ''
|
||
for letter in text:
|
||
# print(f"当前字符: {letter}")
|
||
if letter in ['!', '!', '?', '?']:
|
||
# print(f"当前字符: {letter}, 随机数: {random.random()}")
|
||
if random.random() < split_strength:
|
||
letter = ''
|
||
if letter in ['。', '…']:
|
||
# print(f"当前字符: {letter}, 随机数: {random.random()}")
|
||
if random.random() < 1 - split_strength:
|
||
letter = ''
|
||
text_no_1 += letter
|
||
|
||
# 对每个逗号单独判断是否分割
|
||
sentences = [text_no_1]
|
||
new_sentences = []
|
||
for sentence in sentences:
|
||
parts = sentence.split(',')
|
||
current_sentence = parts[0]
|
||
for part in parts[1:]:
|
||
if random.random() < split_strength:
|
||
new_sentences.append(current_sentence.strip())
|
||
current_sentence = part
|
||
else:
|
||
current_sentence += ',' + part
|
||
# 处理空格分割
|
||
space_parts = current_sentence.split(' ')
|
||
current_sentence = space_parts[0]
|
||
for part in space_parts[1:]:
|
||
if random.random() < split_strength:
|
||
new_sentences.append(current_sentence.strip())
|
||
current_sentence = part
|
||
else:
|
||
current_sentence += ' ' + part
|
||
new_sentences.append(current_sentence.strip())
|
||
sentences = [s for s in new_sentences if s] # 移除空字符串
|
||
|
||
# print(f"分割后的句子: {sentences}")
|
||
sentences_done = []
|
||
for sentence in sentences:
|
||
sentence = sentence.rstrip(',,')
|
||
if random.random() < split_strength * 0.5:
|
||
sentence = sentence.replace(',', '').replace(',', '')
|
||
elif random.random() < split_strength:
|
||
sentence = sentence.replace(',', ' ').replace(',', ' ')
|
||
sentences_done.append(sentence)
|
||
|
||
logger.info(f"处理后的句子: {sentences_done}")
|
||
return sentences_done
|
||
|
||
|
||
def random_remove_punctuation(text: str) -> str:
|
||
"""随机处理标点符号,模拟人类打字习惯
|
||
|
||
Args:
|
||
text: 要处理的文本
|
||
|
||
Returns:
|
||
str: 处理后的文本
|
||
"""
|
||
result = ''
|
||
text_len = len(text)
|
||
|
||
for i, char in enumerate(text):
|
||
if char == '。' and i == text_len - 1: # 结尾的句号
|
||
if random.random() > 0.4: # 80%概率删除结尾句号
|
||
continue
|
||
elif char == ',':
|
||
rand = random.random()
|
||
if rand < 0.25: # 5%概率删除逗号
|
||
continue
|
||
elif rand < 0.25: # 20%概率把逗号变成空格
|
||
result += ' '
|
||
continue
|
||
result += char
|
||
return result
|
||
|
||
|
||
def process_llm_response(text: str) -> List[str]:
|
||
# processed_response = process_text_with_typos(content)
|
||
if len(text) > 200:
|
||
logger.warning(f"回复过长 ({len(text)} 字符),返回默认回复")
|
||
return ['懒得说']
|
||
# 处理长消息
|
||
typo_generator = ChineseTypoGenerator(
|
||
error_rate=global_config.chinese_typo_error_rate,
|
||
min_freq=global_config.chinese_typo_min_freq,
|
||
tone_error_rate=global_config.chinese_typo_tone_error_rate,
|
||
word_replace_rate=global_config.chinese_typo_word_replace_rate
|
||
)
|
||
split_sentences = split_into_sentences_w_remove_punctuation(text)
|
||
sentences = []
|
||
for sentence in split_sentences:
|
||
if global_config.chinese_typo_enable:
|
||
typoed_text, typo_corrections = typo_generator.create_typo_sentence(sentence)
|
||
sentences.append(typoed_text)
|
||
if typo_corrections:
|
||
sentences.append(typo_corrections)
|
||
else:
|
||
sentences.append(sentence)
|
||
# 检查分割后的消息数量是否过多(超过3条)
|
||
|
||
if len(sentences) > 5:
|
||
logger.warning(f"分割后消息数量过多 ({len(sentences)} 条),返回默认回复")
|
||
return [f'{global_config.BOT_NICKNAME}不知道哦']
|
||
|
||
return sentences
|
||
|
||
|
||
def calculate_typing_time(input_string: str, chinese_time: float = 0.4, english_time: float = 0.2) -> float:
|
||
"""
|
||
计算输入字符串所需的时间,中文和英文字符有不同的输入时间
|
||
input_string (str): 输入的字符串
|
||
chinese_time (float): 中文字符的输入时间,默认为0.2秒
|
||
english_time (float): 英文字符的输入时间,默认为0.1秒
|
||
|
||
特殊情况:
|
||
- 如果只有一个中文字符,将使用3倍的中文输入时间
|
||
- 在所有输入结束后,额外加上回车时间0.3秒
|
||
"""
|
||
mood_manager = MoodManager.get_instance()
|
||
# 将0-1的唤醒度映射到-1到1
|
||
mood_arousal = mood_manager.current_mood.arousal
|
||
# 映射到0.5到2倍的速度系数
|
||
typing_speed_multiplier = 1.5 ** mood_arousal # 唤醒度为1时速度翻倍,为-1时速度减半
|
||
chinese_time *= 1 / typing_speed_multiplier
|
||
english_time *= 1 / typing_speed_multiplier
|
||
# 计算中文字符数
|
||
chinese_chars = sum(1 for char in input_string if '\u4e00' <= char <= '\u9fff')
|
||
|
||
# 如果只有一个中文字符,使用3倍时间
|
||
if chinese_chars == 1 and len(input_string.strip()) == 1:
|
||
return chinese_time * 3 + 0.3 # 加上回车时间
|
||
|
||
# 正常计算所有字符的输入时间
|
||
total_time = 0.0
|
||
for char in input_string:
|
||
if '\u4e00' <= char <= '\u9fff': # 判断是否为中文字符
|
||
total_time += chinese_time
|
||
else: # 其他字符(如英文)
|
||
total_time += english_time
|
||
return total_time + 0.3 # 加上回车时间
|
||
|
||
|
||
def cosine_similarity(v1, v2):
|
||
"""计算余弦相似度"""
|
||
dot_product = np.dot(v1, v2)
|
||
norm1 = np.linalg.norm(v1)
|
||
norm2 = np.linalg.norm(v2)
|
||
if norm1 == 0 or norm2 == 0:
|
||
return 0
|
||
return dot_product / (norm1 * norm2)
|
||
|
||
|
||
def text_to_vector(text):
|
||
"""将文本转换为词频向量"""
|
||
# 分词
|
||
words = jieba.lcut(text)
|
||
# 统计词频
|
||
word_freq = Counter(words)
|
||
return word_freq
|
||
|
||
|
||
def find_similar_topics_simple(text: str, topics: list, top_k: int = 5) -> list:
|
||
"""使用简单的余弦相似度计算文本相似度"""
|
||
# 将输入文本转换为词频向量
|
||
text_vector = text_to_vector(text)
|
||
|
||
# 计算每个主题的相似度
|
||
similarities = []
|
||
for topic in topics:
|
||
topic_vector = text_to_vector(topic)
|
||
# 获取所有唯一词
|
||
all_words = set(text_vector.keys()) | set(topic_vector.keys())
|
||
# 构建向量
|
||
v1 = [text_vector.get(word, 0) for word in all_words]
|
||
v2 = [topic_vector.get(word, 0) for word in all_words]
|
||
# 计算相似度
|
||
similarity = cosine_similarity(v1, v2)
|
||
similarities.append((topic, similarity))
|
||
|
||
# 按相似度降序排序并返回前k个
|
||
return sorted(similarities, key=lambda x: x[1], reverse=True)[:top_k]
|
||
|
||
|
||
def truncate_message(message: str, max_length=20) -> str:
|
||
"""截断消息,使其不超过指定长度"""
|
||
if len(message) > max_length:
|
||
return message[:max_length] + "..."
|
||
return message
|