import random import time from typing import Optional from loguru import logger from ...common.database import db from ..memory_system.memory import hippocampus, memory_graph from ..moods.moods import MoodManager from ..schedule.schedule_generator import bot_schedule from .config import global_config from .utils import get_embedding, get_recent_group_detailed_plain_text, get_recent_group_speaker from .chat_stream import chat_manager from .relationship_manager import relationship_manager class PromptBuilder: def __init__(self): self.prompt_built = "" self.activate_messages = "" async def _build_prompt(self, chat_stream, message_txt: str, sender_name: str = "某人", stream_id: Optional[int] = None) -> tuple[str, str]: """构建prompt Args: message_txt: 消息文本 sender_name: 发送者昵称 # relationship_value: 关系值 group_id: 群组ID Returns: str: 构建好的prompt """ # 关系(载入当前聊天记录里所以人的关系) relationship_level = ["厌恶", "冷漠", "一般", "友好", "喜欢", "爱慕"] relation_prompt2 = "" relation_prompt2_list = ["极度厌恶,冷漠回应或直接辱骂", "关系较差,冷淡回复,保持距离", "关系一般,保持理性", \ "关系较好,友善回复,积极互动", "关系很好,积极回复,关心对方", "关系暧昧,热情回复,无条件支持", ] relation_prompt = "" who_chat_in_group = [chat_stream] who_chat_in_group += get_recent_group_speaker(stream_id, (chat_stream.user_info.user_id, chat_stream.user_info.platform), limit=global_config.MAX_CONTEXT_SIZE) for person in who_chat_in_group: relationship_value = relationship_manager.get_relationship(person).relationship_value if person.user_info.user_cardname: relation_prompt += f"你对昵称为'[({person.user_info.user_id}){person.user_info.user_nickname}]{person.user_info.user_cardname}'的用户的态度为" relation_prompt2 += f"你对昵称为'[({person.user_info.user_id}){person.user_info.user_nickname}]{person.user_info.user_cardname}'的用户的回复态度为" else: relation_prompt += f"你对昵称为'({person.user_info.user_id}){person.user_info.user_nickname}'的用户的态度为" relation_prompt2 += f"你对昵称为'({person.user_info.user_id}){person.user_info.user_nickname}'的用户的回复态度为" relationship_level_num = 2 if -1000 <= relationship_value < -227: relationship_level_num = 0 elif -227 <= relationship_value < -73: relationship_level_num = 1 elif -76 <= relationship_value < 227: relationship_level_num = 2 elif 227 <= relationship_value < 587: relationship_level_num = 3 elif 587 <= relationship_value < 900: relationship_level_num = 4 elif 900 <= relationship_value <= 1000: # 不是随便写的数据喵 relationship_level_num = 5 elif relationship_value > 1000 or relationship_value < -1000: if relationship_value > 1000: relationship_level_num = 5 else: relationship_level_num = 0 logger.debug("relationship_value 超出有效范围 (-1000 到 1000)") relation_prompt2 += relation_prompt2_list[relationship_level_num] + "," relation_prompt += relationship_level[relationship_level_num] + "," # 开始构建prompt # 心情 mood_manager = MoodManager.get_instance() mood_prompt = mood_manager.get_prompt() # 日程构建 current_date = time.strftime("%Y-%m-%d", time.localtime()) current_time = time.strftime("%H:%M:%S", time.localtime()) bot_schedule_now_time, bot_schedule_now_activity = bot_schedule.get_current_task() prompt_date = f"""今天是{current_date},现在是{current_time},你今天的日程是:\n{bot_schedule.today_schedule}\n你现在正在{bot_schedule_now_activity}\n""" # 知识构建 start_time = time.time() prompt_info = "" promt_info_prompt = "" prompt_info = await self.get_prompt_info(message_txt, threshold=0.5) if prompt_info: prompt_info = f"""你有以下这些[知识]:{prompt_info}请你记住上面的[ 知识],之后可能会用到-""" end_time = time.time() logger.debug(f"知识检索耗时: {(end_time - start_time):.3f}秒") # 获取聊天上下文 chat_in_group = True chat_talking_prompt = "" if stream_id: chat_talking_prompt = get_recent_group_detailed_plain_text( stream_id, limit=global_config.MAX_CONTEXT_SIZE, combine=True ) chat_stream = chat_manager.get_stream(stream_id) if chat_stream.group_info: chat_talking_prompt = f"以下是群里正在聊天的内容:\n{chat_talking_prompt}" else: chat_in_group = False chat_talking_prompt = f"以下是你正在和{sender_name}私聊的内容:\n{chat_talking_prompt}" # print(f"\033[1;34m[调试]\033[0m 已从数据库获取群 {group_id} 的消息记录:{chat_talking_prompt}") # 使用新的记忆获取方法 memory_prompt = "" start_time = time.time() # 调用 hippocampus 的 get_relevant_memories 方法 relevant_memories = await hippocampus.get_relevant_memories( text=message_txt, max_topics=5, similarity_threshold=0.4, max_memory_num=5 ) if relevant_memories: # 格式化记忆内容 memory_items = [] for memory in relevant_memories: memory_items.append(f"关于「{memory['topic']}」的记忆:{memory['content']}") memory_prompt = "看到这些聊天,你想起来:\n" + "\n".join(memory_items) + "\n" # 打印调试信息 logger.debug("[记忆检索]找到以下相关记忆:") for memory in relevant_memories: logger.debug(f"- 主题「{memory['topic']}」[相似度: {memory['similarity']:.2f}]: {memory['content']}") end_time = time.time() logger.info(f"回忆耗时: {(end_time - start_time):.3f}秒") # 激活prompt构建 activate_prompt = "" if chat_in_group: activate_prompt = f"以上是群里正在进行的聊天,{memory_prompt},\ {relation_prompt}{relation_prompt2}现在昵称为 '{sender_name}' 的用户说的:{message_txt}。引起了你的注意。请分析聊天记录,根据你和他的关系和态度进行回复,明确你的立场和情感。" else: activate_prompt = f"以上是你正在和{sender_name}私聊的内容,{memory_prompt} 现在昵称为 '{sender_name}' 的用户说的:{message_txt}。引起了你的注意,{relation_prompt}{mood_prompt},你的回复态度是{relation_prompt2}" # 关键词检测与反应 keywords_reaction_prompt = "" for rule in global_config.keywords_reaction_rules: if rule.get("enable", False): if any(keyword in message_txt.lower() for keyword in rule.get("keywords", [])): logger.info( f"检测到以下关键词之一:{rule.get('keywords', [])},触发反应:{rule.get('reaction', '')}" ) keywords_reaction_prompt += rule.get("reaction", "") + "," # 人格选择 personality = global_config.PROMPT_PERSONALITY probability_1 = global_config.PERSONALITY_1 probability_2 = global_config.PERSONALITY_2 probability_3 = global_config.PERSONALITY_3 prompt_personality = f"{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},你还有很多别名:{'/'.join(global_config.BOT_ALIAS_NAMES)}," personality_choice = random.random() if personality_choice < probability_1: # 第一种人格 prompt_personality += f'''{personality[0]}, 你正在浏览qq群,{promt_info_prompt}, 现在请你给出日常且口语化的回复,根据关系明确你的立场,表现你自己的见解,尽量简短一些。{keywords_reaction_prompt} 请注意把握群里的聊天内容,不要刻意突出自身学科背景,不要回复的太有条理,可以有个性。''' elif personality_choice < probability_1 + probability_2: # 第二种人格 prompt_personality += f'''{personality[1]}, 你正在浏览qq群,{promt_info_prompt}, 现在请你给出日常且口语化的回复,根据关系明确你的立场,请表现你自己的见解,不要一昧迎合,尽量简短一些。{keywords_reaction_prompt} 请你表达自己的见解和观点。可以有个性。''' else: # 第三种人格 prompt_personality += f'''{personality[2]}, 你正在浏览qq群,{promt_info_prompt}, 现在请你给出日常且口语化的回复,根据关系明确你的立场,请表现你自己的见解,不要一昧迎合,尽量简短一些。{keywords_reaction_prompt} 请你表达自己的见解和观点。可以有个性。''' # 中文高手(新加的好玩功能) prompt_ger = "" if random.random() < 0.04: prompt_ger += "你喜欢用倒装句" if random.random() < 0.02: prompt_ger += "你喜欢用反问句" if random.random() < 0.01: prompt_ger += "你喜欢用文言文" # 额外信息要求 extra_info = f'''但是记得你的回复态度和你的立场,切记你回复的人是{sender_name},不要输出你的思考过程,只需要输出最终的回复,务必简短一些,尤其注意在没明确提到时不要过多提及自身的背景, 不要直接回复别人发的表情包,记住不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只需要输出回复内容就好,不要输出其他任何内容''' # 合并prompt prompt = "" prompt += f"{prompt_info}\n" prompt += f"{prompt_date}\n" prompt += f"{chat_talking_prompt}\n" prompt += f"{prompt_personality}\n" prompt += f"{prompt_ger}\n" prompt += f"{extra_info}\n" # '''读空气prompt处理''' # activate_prompt_check = f"以上是群里正在进行的聊天,昵称为 '{sender_name}' 的用户说的:{message_txt}。引起了你的注意,你和他{relation_prompt},你想要{relation_prompt_2},但是这不一定是合适的时机,请你决定是否要回应这条消息。" # prompt_personality_check = '' # extra_check_info = f"请注意把握群里的聊天内容的基础上,综合群内的氛围,例如,和{global_config.BOT_NICKNAME}相关的话题要积极回复,如果是at自己的消息一定要回复,如果自己正在和别人聊天一定要回复,其他话题如果合适搭话也可以回复,如果认为应该回复请输出yes,否则输出no,请注意是决定是否需要回复,而不是编写回复内容,除了yes和no不要输出任何回复内容。" # if personality_choice < probability_1: # 第一种人格 # prompt_personality_check = f'''你的网名叫{global_config.BOT_NICKNAME},{personality[0]}, 你正在浏览qq群,{promt_info_prompt} {activate_prompt_check} {extra_check_info}''' # elif personality_choice < probability_1 + probability_2: # 第二种人格 # prompt_personality_check = f'''你的网名叫{global_config.BOT_NICKNAME},{personality[1]}, 你正在浏览qq群,{promt_info_prompt} {activate_prompt_check} {extra_check_info}''' # else: # 第三种人格 # prompt_personality_check = f'''你的网名叫{global_config.BOT_NICKNAME},{personality[2]}, 你正在浏览qq群,{promt_info_prompt} {activate_prompt_check} {extra_check_info}''' # prompt_check_if_response = f"{prompt_info}\n{prompt_date}\n{chat_talking_prompt}\n{prompt_personality_check}" prompt_check_if_response = "" return prompt, prompt_check_if_response def _build_initiative_prompt_select(self, group_id, probability_1=0.8, probability_2=0.1): current_date = time.strftime("%Y-%m-%d", time.localtime()) current_time = time.strftime("%H:%M:%S", time.localtime()) bot_schedule_now_time, bot_schedule_now_activity = bot_schedule.get_current_task() prompt_date = f"""今天是{current_date},现在是{current_time},你今天的日程是:\n{bot_schedule.today_schedule}\n你现在正在{bot_schedule_now_activity}\n""" chat_talking_prompt = "" if group_id: chat_talking_prompt = get_recent_group_detailed_plain_text( group_id, limit=global_config.MAX_CONTEXT_SIZE, combine=True ) chat_talking_prompt = f"以下是群里正在聊天的内容:\n{chat_talking_prompt}" # print(f"\033[1;34m[调试]\033[0m 已从数据库获取群 {group_id} 的消息记录:{chat_talking_prompt}") # 获取主动发言的话题 all_nodes = memory_graph.dots all_nodes = filter(lambda dot: len(dot[1]["memory_items"]) > 3, all_nodes) nodes_for_select = random.sample(all_nodes, 5) topics = [info[0] for info in nodes_for_select] infos = [info[1] for info in nodes_for_select] # 激活prompt构建 activate_prompt = "" activate_prompt = "以上是群里正在进行的聊天。" personality = global_config.PROMPT_PERSONALITY prompt_personality = "" personality_choice = random.random() if personality_choice < probability_1: # 第一种人格 prompt_personality = f"""{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[0]}""" elif personality_choice < probability_1 + probability_2: # 第二种人格 prompt_personality = f"""{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[1]}""" else: # 第三种人格 prompt_personality = f"""{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[2]}""" topics_str = ",".join(f'"{topics}"') prompt_for_select = f"你现在想在群里发言,回忆了一下,想到几个话题,分别是{topics_str},综合当前状态以及群内气氛,请你在其中选择一个合适的话题,注意只需要输出话题,除了话题什么也不要输出(双引号也不要输出)" prompt_initiative_select = f"{prompt_date}\n{prompt_personality}\n{prompt_for_select}" prompt_regular = f"{prompt_date}\n{prompt_personality}" return prompt_initiative_select, nodes_for_select, prompt_regular def _build_initiative_prompt_check(self, selected_node, prompt_regular): memory = random.sample(selected_node["memory_items"], 3) memory = "\n".join(memory) prompt_for_check = f"{prompt_regular}你现在想在群里发言,回忆了一下,想到一个话题,是{selected_node['concept']},关于这个话题的记忆有\n{memory}\n,以这个作为主题发言合适吗?请在把握群里的聊天内容的基础上,综合群内的氛围,如果认为应该发言请输出yes,否则输出no,请注意是决定是否需要发言,而不是编写回复内容,除了yes和no不要输出任何回复内容。" return prompt_for_check, memory def _build_initiative_prompt(self, selected_node, prompt_regular, memory): prompt_for_initiative = f"{prompt_regular}你现在想在群里发言,回忆了一下,想到一个话题,是{selected_node['concept']},关于这个话题的记忆有\n{memory}\n,请在把握群里的聊天内容的基础上,综合群内的氛围,以日常且口语化的口吻,简短且随意一点进行发言,不要说的太有条理,可以有个性。记住不要输出多余内容(包括前后缀,冒号和引号,括号,表情等)" return prompt_for_initiative async def get_prompt_info(self, message: str, threshold: float): related_info = "" logger.debug(f"获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}") embedding = await get_embedding(message) related_info += self.get_info_from_db(embedding, threshold=threshold) return related_info def get_info_from_db(self, query_embedding: list, limit: int = 1, threshold: float = 0.5) -> str: if not query_embedding: return "" # 使用余弦相似度计算 pipeline = [ { "$addFields": { "dotProduct": { "$reduce": { "input": {"$range": [0, {"$size": "$embedding"}]}, "initialValue": 0, "in": { "$add": [ "$$value", { "$multiply": [ {"$arrayElemAt": ["$embedding", "$$this"]}, {"$arrayElemAt": [query_embedding, "$$this"]}, ] }, ] }, } }, "magnitude1": { "$sqrt": { "$reduce": { "input": "$embedding", "initialValue": 0, "in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]}, } } }, "magnitude2": { "$sqrt": { "$reduce": { "input": query_embedding, "initialValue": 0, "in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]}, } } }, } }, {"$addFields": {"similarity": {"$divide": ["$dotProduct", {"$multiply": ["$magnitude1", "$magnitude2"]}]}}}, { "$match": { "similarity": {"$gte": threshold} # 只保留相似度大于等于阈值的结果 } }, {"$sort": {"similarity": -1}}, {"$limit": limit}, {"$project": {"content": 1, "similarity": 1}}, ] results = list(db.knowledges.aggregate(pipeline)) # print(f"\033[1;34m[调试]\033[0m获取知识库内容结果: {results}") if not results: return "" # 返回所有找到的内容,用换行分隔 return "\n".join(str(result["content"]) for result in results) prompt_builder = PromptBuilder()