import orjson import time import traceback import asyncio import math import random import json from typing import Dict, Any, Optional, Tuple, List, TYPE_CHECKING from rich.traceback import install from datetime import datetime from json_repair import repair_json from src.llm_models.utils_model import LLMRequest from src.config.config import global_config, model_config from src.common.logger import get_logger from src.chat.utils.prompt import Prompt, global_prompt_manager from src.chat.utils.chat_message_builder import ( build_readable_actions, get_actions_by_timestamp_with_chat, build_readable_messages_with_id, get_raw_msg_before_timestamp_with_chat, ) from src.chat.utils.utils import get_chat_type_and_target_info from src.chat.planner_actions.action_manager import ActionManager from src.chat.message_receive.chat_stream import get_chat_manager from src.plugin_system.base.component_types import ( ActionInfo, ChatMode, ComponentType, ActionActivationType, ) from src.plugin_system.core.component_registry import component_registry from src.schedule.schedule_manager import schedule_manager from src.mood.mood_manager import mood_manager from src.chat.memory_system.Hippocampus import hippocampus_manager if TYPE_CHECKING: pass logger = get_logger("planner") install(extra_lines=3) def init_prompt(): Prompt( """ {schedule_block} {mood_block} {time_block} {identity_block} {users_in_chat} {custom_prompt_block} {chat_context_description},以下是具体的聊天内容。 {chat_content_block} {moderation_prompt} **任务: 构建一个完整的响应** 你的任务是根据当前的聊天内容,构建一个完整的、人性化的响应。一个完整的响应由两部分组成: 1. **主要动作**: 这是响应的核心,通常是 `reply`(文本回复)。 2. **辅助动作 (可选)**: 这是为了增强表达效果的附加动作,例如 `emoji`(发送表情包)或 `poke_user`(戳一戳)。 **决策流程:** 1. 首先,决定是否要进行 `reply`。 2. 然后,评估当前的对话气氛和用户情绪,判断是否需要一个**辅助动作**来让你的回应更生动、更符合你的性格。 3. 如果需要,选择一个最合适的辅助动作与 `reply` 组合。 4. 如果用户明确要求了某个动作,请务必优先满足。 **可用动作:** {actions_before_now_block} {no_action_block} 动作:reply 动作描述:参与聊天回复,发送文本进行表达 - 你想要闲聊或者随便附和 - {mentioned_bonus} - 如果你刚刚进行了回复,不要对同一个话题重复回应 - 不要回复自己发送的消息 {{ "action": "reply", "target_message_id": "触发action的消息id", "reason": "回复的原因" }} {action_options_text} **输出格式:** 你必须以严格的 JSON 格式输出,返回一个包含所有选定动作的JSON列表。如果没有任何合适的动作,返回一个空列表[]。 **单动作示例 (仅回复):** [ {{ "action": "reply", "target_message_id": "m123", "reason": "回答用户的问题" }} ] **组合动作示例 (回复 + 表情包):** [ {{ "action": "reply", "target_message_id": "m123", "reason": "回答用户的问题" }}, {{ "action": "emoji", "target_message_id": "m123", "reason": "用一个可爱的表情来缓和气氛" }} ] 不要输出markdown格式```json等内容,直接输出且仅包含 JSON 列表内容: """, "planner_prompt", ) Prompt( """ # 主动思考决策 ## 你的内部状态 {time_block} {identity_block} {schedule_block} {mood_block} ## 长期记忆摘要 {long_term_memory_block} ## 最近的聊天内容 {chat_content_block} ## 最近的动作历史 {actions_before_now_block} ## 任务 你现在要决定是否主动说些什么。就像一个真实的人一样,有时候会突然想起之前聊到的话题,或者对朋友的近况感到好奇,想主动询问或关心一下。 请基于聊天内容,用你的判断力来决定是否要主动发言。不要按照固定规则,而是像人类一样自然地思考: - 是否想起了什么之前提到的事情,想问问后来怎么样了? - 是否注意到朋友提到了什么值得关心的事情? - 是否有什么话题突然想到,觉得现在聊聊很合适? - 或者觉得现在保持沉默更好? ## 可用动作 动作:proactive_reply 动作描述:主动发起对话,可以是关心朋友、询问近况、延续之前的话题,或分享想法。 - 当你突然想起之前的话题,想询问进展时 - 当你想关心朋友的情况时 - 当你有什么想法想分享时 - 当你觉得现在是个合适的聊天时机时 {{ "action": "proactive_reply", "reason": "你决定主动发言的具体原因", "topic": "你想说的内容主题(简洁描述)" }} 动作:do_nothing 动作描述:保持沉默,不主动发起对话。 - 当你觉得现在不是合适的时机时 - 当最近已经说得够多了时 - 当对话氛围不适合插入时 {{ "action": "do_nothing", "reason": "决定保持沉默的原因" }} 你必须从上面列出的可用action中选择一个。要像真人一样自然地思考和决策。 请以严格的 JSON 格式输出,且仅包含 JSON 内容: """, "proactive_planner_prompt", ) Prompt( """ 动作:{action_name} 动作描述:{action_description} {action_require} {{ "action": "{action_name}", "target_message_id": "触发action的消息id", "reason": "触发action的原因"{action_parameters} }} """, "action_prompt", ) class ActionPlanner: def __init__(self, chat_id: str, action_manager: ActionManager): self.chat_id = chat_id self.log_prefix = f"[{get_chat_manager().get_stream_name(chat_id) or chat_id}]" self.action_manager = action_manager # LLM规划器配置 # --- 大脑 --- self.planner_llm = LLMRequest( model_set=model_config.model_task_config.planner, request_type="planner" ) self.last_obs_time_mark = 0.0 async def _get_long_term_memory_context(self) -> str: """ 获取长期记忆上下文 """ try: # 1. 生成时间相关的关键词 now = datetime.now() keywords = ["今天", "日程", "计划"] if 5 <= now.hour < 12: keywords.append("早上") elif 12 <= now.hour < 18: keywords.append("中午") else: keywords.append("晚上") # TODO: 添加与聊天对象相关的关键词 # 2. 调用 hippocampus_manager 检索记忆 retrieved_memories = await hippocampus_manager.get_memory_from_topic( valid_keywords=keywords, max_memory_num=5, max_memory_length=1 ) if not retrieved_memories: return "最近没有什么特别的记忆。" # 3. 格式化记忆 memory_statements = [] for topic, memory_item in retrieved_memories: memory_statements.append(f"关于'{topic}', 你记得'{memory_item}'。") return " ".join(memory_statements) except Exception as e: logger.error(f"获取长期记忆时出错: {e}") return "回忆时出现了一些问题。" async def _build_action_options( self, current_available_actions: Dict[str, ActionInfo], mode: ChatMode, target_prompt: str = "", ) -> str: """ 构建动作选项 """ action_options_block = "" for action_name, action_info in current_available_actions.items(): # TODO: 增加一个字段来判断action是否支持在PROACTIVE模式下使用 param_text = "" if action_info.action_parameters: param_text = "\n" + "\n".join( f' "{p_name}":"{p_desc}"' for p_name, p_desc in action_info.action_parameters.items() ) require_text = "\n".join(f"- {req}" for req in action_info.action_require) using_action_prompt = await global_prompt_manager.get_prompt_async("action_prompt") action_options_block += using_action_prompt.format( action_name=action_name, action_description=action_info.description, action_parameters=param_text, action_require=require_text, ) return action_options_block def find_message_by_id(self, message_id: str, message_id_list: list) -> Optional[Dict[str, Any]]: # sourcery skip: use-next """ 根据message_id从message_id_list中查找对应的原始消息 Args: message_id: 要查找的消息ID message_id_list: 消息ID列表,格式为[{'id': str, 'message': dict}, ...] Returns: 找到的原始消息字典,如果未找到则返回None """ # 检测message_id 是否为纯数字 if message_id.isdigit(): message_id = f"m{message_id}" for item in message_id_list: if item.get("id") == message_id: return item.get("message") return None def get_latest_message(self, message_id_list: list) -> Optional[Dict[str, Any]]: """ 获取消息列表中的最新消息 Args: message_id_list: 消息ID列表,格式为[{'id': str, 'message': dict}, ...] Returns: 最新的消息字典,如果列表为空则返回None """ if not message_id_list: return None # 假设消息列表是按时间顺序排列的,最后一个是最新的 return message_id_list[-1].get("message") async def _parse_single_action( self, action_json: dict, message_id_list: list, # 使用 planner.py 的 list of dict current_available_actions: list, # 使用 planner.py 的 list of tuple ) -> List[Dict[str, Any]]: """ [注释] 解析单个LLM返回的action JSON,并将其转换为标准化的字典。 """ parsed_actions = [] try: action = action_json.get("action", "no_action") reasoning = action_json.get("reason", "未提供原因") action_data = {k: v for k, v in action_json.items() if k not in ["action", "reason"]} target_message = None if action not in ["no_action", "no_reply", "do_nothing"]: if target_message_id := action_json.get("target_message_id"): target_message = self.find_message_by_id(target_message_id, message_id_list) if target_message is None: logger.warning(f"{self.log_prefix}无法找到target_message_id '{target_message_id}'") target_message = self.get_latest_message(message_id_list) else: logger.warning(f"{self.log_prefix}动作'{action}'缺少target_message_id") available_action_names = [name for name, _ in current_available_actions] if action not in ["no_action", "no_reply", "reply", "do_nothing"] and action not in available_action_names: logger.warning( f"{self.log_prefix}LLM 返回了当前不可用或无效的动作: '{action}' (可用: {available_action_names}),将强制使用 'no_action'" ) reasoning = f"LLM 返回了当前不可用的动作 '{action}' (可用: {available_action_names})。原始理由: {reasoning}" action = "no_action" # 将列表转换为字典格式以供将来使用 available_actions_dict = dict(current_available_actions) parsed_actions.append( { "action_type": action, "reasoning": reasoning, "action_data": action_data, "action_message": target_message, "available_actions": available_actions_dict, } ) # 如果是at_user动作且只有user_name,尝试转换为user_id if action == "at_user" and "user_name" in action_data and "user_id" not in action_data: user_name = action_data["user_name"] from src.person_info.person_info import get_person_info_manager user_info = await get_person_info_manager().get_person_info_by_name(user_name) if user_info and user_info.get("user_id"): action_data["user_id"] = user_info["user_id"] logger.info(f"成功将用户名 '{user_name}' 解析为 user_id '{user_info['user_id']}'") else: logger.warning(f"无法将用户名 '{user_name}' 解析为 user_id") except Exception as e: logger.error(f"{self.log_prefix}解析单个action时出错: {e}") parsed_actions.append( { "action_type": "no_action", "reasoning": f"解析action时出错: {e}", "action_data": {}, "action_message": None, "available_actions": dict(current_available_actions), } ) return parsed_actions def _filter_no_actions(self, action_list: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """ [注释] 从一个action字典列表中过滤掉所有的 'no_action'。 如果过滤后列表为空, 则返回一个空的列表, 或者根据需要返回一个默认的no_action字典。 """ non_no_actions = [a for a in action_list if a.get("action_type") not in ["no_action", "no_reply"]] if non_no_actions: return non_no_actions # 如果都是 no_action,则返回一个包含第一个 no_action 的列表,以保留 reason return action_list[:1] if action_list else [] async def plan( self, mode: ChatMode = ChatMode.FOCUS, loop_start_time: float = 0.0, available_actions: Optional[Dict[str, ActionInfo]] = None, pseudo_message: Optional[str] = None, ) -> Tuple[List[Dict[str, Any]], Optional[Dict[str, Any]]]: """ [注释] "大脑"规划器。 统一决策是否进行聊天回复(reply)以及执行哪些actions。 """ # --- 1. 准备上下文信息 --- is_group_chat, chat_target_info, current_available_actions = self.get_necessary_info() if available_actions is None: available_actions = current_available_actions # --- 2. 大脑统一决策 --- final_actions: List[Dict[str, Any]] = [] try: prompt, used_message_id_list = await self.build_planner_prompt( is_group_chat=is_group_chat, chat_target_info=chat_target_info, current_available_actions=available_actions, mode=mode, ) llm_content, _ = await self.planner_llm.generate_response_async(prompt=prompt) if llm_content: parsed_json = orjson.loads(repair_json(llm_content)) # 确保处理的是列表 if isinstance(parsed_json, dict): parsed_json = [parsed_json] if isinstance(parsed_json, list): for item in parsed_json: if isinstance(item, dict): final_actions.extend(await self._parse_single_action(item, used_message_id_list, list(available_actions.items()))) # 如果是私聊且开启了强制回复,并且没有任何回复性action,则强制添加reply if not is_group_chat and global_config.chat.force_reply_private: has_reply_action = any(a.get("action_type") == "reply" for a in final_actions) if not has_reply_action: final_actions.append({ "action_type": "reply", "reasoning": "私聊强制回复", "action_data": {}, "action_message": self.get_latest_message(used_message_id_list), "available_actions": available_actions, }) logger.info(f"{self.log_prefix}私聊强制回复已触发,添加 'reply' 动作") logger.info(f"{self.log_prefix}大脑决策: {[a.get('action_type') for a in final_actions]}") except Exception as e: logger.error(f"{self.log_prefix}大脑处理过程中发生意外错误: {e}\n{traceback.format_exc()}") final_actions.append({"action_type": "no_action", "reasoning": f"大脑处理错误: {e}"}) # --- 3. 后处理 --- final_actions = self._filter_no_actions(final_actions) # === 概率模式后处理:根据配置决定是否强制添加 emoji 动作 === if global_config.emoji.emoji_activate_type == 'random': has_reply_action = any(a.get("action_type") == "reply" for a in final_actions) if has_reply_action: # 检查此动作是否已被选择 is_already_chosen = any(a.get("action_type") == 'emoji' for a in final_actions) if not is_already_chosen: if random.random() < global_config.emoji.emoji_chance: logger.info(f"{self.log_prefix}根据概率 '{global_config.emoji.emoji_chance}' 添加 emoji 动作") final_actions.append({ "action_type": 'emoji', "reasoning": f"根据概率 {global_config.emoji.emoji_chance} 自动添加", "action_data": {}, "action_message": self.get_latest_message(used_message_id_list), "available_actions": available_actions, }) if not final_actions: final_actions = [ { "action_type": "no_action", "reasoning": "规划器选择不执行动作", "action_data": {}, "action_message": None, "available_actions": available_actions } ] final_target_message = next((act.get("action_message") for act in final_actions if act.get("action_message")), None) # 记录每个动作的原因 for action_info in final_actions: action_type = action_info.get("action_type", "N/A") reasoning = action_info.get("reasoning", "无") logger.info(f"{self.log_prefix}决策: [{action_type}],原因: {reasoning}") actions_str = ", ".join([a.get('action_type', 'N/A') for a in final_actions]) logger.info(f"{self.log_prefix}最终执行动作 ({len(final_actions)}): [{actions_str}]") return final_actions, final_target_message async def build_planner_prompt( self, is_group_chat: bool, chat_target_info: Optional[dict], current_available_actions: Dict[str, ActionInfo], mode: ChatMode = ChatMode.FOCUS, refresh_time: bool = False, # 添加缺失的参数 ) -> tuple[str, list]: """构建 Planner LLM 的提示词 (获取模板并填充数据)""" try: # --- 通用信息获取 --- time_block = f"当前时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}" bot_name = global_config.bot.nickname bot_nickname = ( f",也有人叫你{','.join(global_config.bot.alias_names)}" if global_config.bot.alias_names else "" ) bot_core_personality = global_config.personality.personality_core identity_block = f"你的名字是{bot_name}{bot_nickname},你{bot_core_personality}:" schedule_block = "" if global_config.planning_system.schedule_enable: if current_activity := schedule_manager.get_current_activity(): schedule_block = f"你当前正在:{current_activity},但注意它与群聊的聊天无关。" mood_block = "" if global_config.mood.enable_mood: chat_mood = mood_manager.get_mood_by_chat_id(self.chat_id) mood_block = f"你现在的心情是:{chat_mood.mood_state}" # --- 根据模式构建不同的Prompt --- if mode == ChatMode.PROACTIVE: long_term_memory_block = await self._get_long_term_memory_context() # 获取最近的聊天记录用于主动思考决策 message_list_short = get_raw_msg_before_timestamp_with_chat( chat_id=self.chat_id, timestamp=time.time(), limit=int(global_config.chat.max_context_size * 0.2), # 主动思考时只看少量最近消息 ) chat_content_block, message_id_list = build_readable_messages_with_id( messages=message_list_short, timestamp_mode="normal", truncate=False, show_actions=False, ) prompt_template = await global_prompt_manager.get_prompt_async("proactive_planner_prompt") actions_before_now = get_actions_by_timestamp_with_chat( chat_id=self.chat_id, timestamp_start=time.time() - 3600, timestamp_end=time.time(), limit=5, ) actions_before_now_block = build_readable_actions(actions=actions_before_now) actions_before_now_block = f"你刚刚选择并执行过的action是:\n{actions_before_now_block}" prompt = prompt_template.format( time_block=time_block, identity_block=identity_block, schedule_block=schedule_block, mood_block=mood_block, long_term_memory_block=long_term_memory_block, chat_content_block=chat_content_block or "最近没有聊天内容。", actions_before_now_block=actions_before_now_block, ) return prompt, message_id_list # --- FOCUS 和 NORMAL 模式的逻辑 --- message_list_before_now = get_raw_msg_before_timestamp_with_chat( chat_id=self.chat_id, timestamp=time.time(), limit=int(global_config.chat.max_context_size * 0.6), ) chat_content_block, message_id_list = build_readable_messages_with_id( messages=message_list_before_now, timestamp_mode="normal", read_mark=self.last_obs_time_mark, truncate=True, show_actions=True, ) actions_before_now = get_actions_by_timestamp_with_chat( chat_id=self.chat_id, timestamp_start=time.time() - 3600, timestamp_end=time.time(), limit=5, ) actions_before_now_block = build_readable_actions(actions=actions_before_now) actions_before_now_block = f"你刚刚选择并执行过的action是:\n{actions_before_now_block}" if refresh_time: self.last_obs_time_mark = time.time() mentioned_bonus = "" if global_config.chat.mentioned_bot_inevitable_reply: mentioned_bonus = "\n- 有人提到你" if global_config.chat.at_bot_inevitable_reply: mentioned_bonus = "\n- 有人提到你,或者at你" if mode == ChatMode.FOCUS: no_action_block = """ 动作:no_action 动作描述:不选择任何动作 {{ "action": "no_action", "reason":"不动作的原因" }} 动作:no_reply 动作描述:不进行回复,等待合适的回复时机 - 当你刚刚发送了消息,没有人回复时,选择no_reply - 当你一次发送了太多消息,为了避免打扰聊天节奏,选择no_reply {{ "action": "no_reply", "reason":"不回复的原因" }} """ else: # NORMAL Mode no_action_block = """重要说明: - 'reply' 表示只进行普通聊天回复,不执行任何额外动作 - 其他action表示在普通回复的基础上,执行相应的额外动作 {{ "action": "reply", "target_message_id":"触发action的消息id", "reason":"回复的原因" }}""" chat_context_description = "你现在正在一个群聊中" chat_target_name = None if not is_group_chat and chat_target_info: chat_target_name = ( chat_target_info.get("person_name") or chat_target_info.get("user_nickname") or "对方" ) chat_context_description = f"你正在和 {chat_target_name} 私聊" action_options_block = await self._build_action_options(current_available_actions, mode) moderation_prompt_block = "请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。" custom_prompt_block = "" if global_config.custom_prompt.planner_custom_prompt_content: custom_prompt_block = global_config.custom_prompt.planner_custom_prompt_content from src.person_info.person_info import get_person_info_manager users_in_chat_str = "" if is_group_chat and chat_target_info and chat_target_info.get("group_id"): user_list = await get_person_info_manager().get_specific_value_list("person_name", lambda x: x is not None) if user_list: users_in_chat_str = "当前聊天中的用户列表(用于@):\n" + "\n".join([f"- {name} (ID: {pid})" for pid, name in user_list.items()]) + "\n" planner_prompt_template = await global_prompt_manager.get_prompt_async("planner_prompt") prompt = planner_prompt_template.format( schedule_block=schedule_block, mood_block=mood_block, time_block=time_block, chat_context_description=chat_context_description, chat_content_block=chat_content_block, actions_before_now_block=actions_before_now_block, mentioned_bonus=mentioned_bonus, no_action_block=no_action_block, mentioned_bonus=mentioned_bonus, action_options_text=action_options_block, moderation_prompt=moderation_prompt_block, identity_block=identity_block, custom_prompt_block=custom_prompt_block, bot_name=bot_name, users_in_chat=users_in_chat_str ) return prompt, message_id_list except Exception as e: logger.error(f"构建 Planner 提示词时出错: {e}") logger.error(traceback.format_exc()) return "构建 Planner Prompt 时出错", [] def get_necessary_info(self) -> Tuple[bool, Optional[dict], Dict[str, ActionInfo]]: """ 获取 Planner 需要的必要信息 """ is_group_chat = True is_group_chat, chat_target_info = get_chat_type_and_target_info(self.chat_id) logger.debug(f"{self.log_prefix}获取到聊天信息 - 群聊: {is_group_chat}, 目标信息: {chat_target_info}") current_available_actions_dict = self.action_manager.get_using_actions() # 获取完整的动作信息 all_registered_actions: Dict[str, ActionInfo] = component_registry.get_components_by_type( # type: ignore ComponentType.ACTION ) current_available_actions = {} for action_name in current_available_actions_dict: if action_name in all_registered_actions: current_available_actions[action_name] = all_registered_actions[action_name] else: logger.warning(f"{self.log_prefix}使用中的动作 {action_name} 未在已注册动作中找到") # 将no_reply作为系统级特殊动作添加到可用动作中 # no_reply虽然是系统级决策,但需要让规划器认为它是可用的 no_reply_info = ActionInfo( name="no_reply", component_type=ComponentType.ACTION, description="系统级动作:选择不回复消息的决策", action_parameters={}, activation_keywords=[], plugin_name="SYSTEM", enabled=True, # 始终启用 parallel_action=False, ) current_available_actions["no_reply"] = no_reply_info return is_group_chat, chat_target_info, current_available_actions init_prompt()