import time import orjson import hashlib from pathlib import Path import numpy as np import faiss from typing import Any, Dict, Optional, Union from src.common.logger import get_logger from src.llm_models.utils_model import LLMRequest from src.config.config import global_config, model_config from src.common.database.sqlalchemy_models import CacheEntries from src.common.database.sqlalchemy_database_api import db_query, db_save from src.common.vector_db import vector_db_service logger = get_logger("cache_manager") class CacheManager: """ 一个支持分层和语义缓存的通用工具缓存管理器。 采用单例模式,确保在整个应用中只有一个缓存实例。 L1缓存: 内存字典 (KV) + FAISS (Vector)。 L2缓存: 数据库 (KV) + ChromaDB (Vector)。 """ _instance = None def __new__(cls, *args, **kwargs): if not cls._instance: cls._instance = super(CacheManager, cls).__new__(cls) return cls._instance def __init__(self, default_ttl: int = 3600): """ 初始化缓存管理器。 """ if not hasattr(self, "_initialized"): self.default_ttl = default_ttl self.semantic_cache_collection_name = "semantic_cache" # L1 缓存 (内存) self.l1_kv_cache: Dict[str, Dict[str, Any]] = {} embedding_dim = global_config.lpmm_knowledge.embedding_dimension self.l1_vector_index = faiss.IndexFlatIP(embedding_dim) self.l1_vector_id_to_key: Dict[int, str] = {} # L2 向量缓存 (使用新的服务) vector_db_service.get_or_create_collection(self.semantic_cache_collection_name) # 嵌入模型 self.embedding_model = LLMRequest(model_config.model_task_config.embedding) self._initialized = True logger.info("缓存管理器已初始化: L1 (内存+FAISS), L2 (数据库+ChromaDB)") def _validate_embedding(self, embedding_result: Any) -> Optional[np.ndarray]: """ 验证和标准化嵌入向量格式 """ try: if embedding_result is None: return None # 确保embedding_result是一维数组或列表 if isinstance(embedding_result, (list, tuple, np.ndarray)): # 转换为numpy数组进行处理 embedding_array = np.array(embedding_result) # 如果是多维数组,展平它 if embedding_array.ndim > 1: embedding_array = embedding_array.flatten() # 检查维度是否符合预期 expected_dim = global_config.lpmm_knowledge.embedding_dimension if embedding_array.shape[0] != expected_dim: logger.warning(f"嵌入向量维度不匹配: 期望 {expected_dim}, 实际 {embedding_array.shape[0]}") return None # 检查是否包含有效的数值 if np.isnan(embedding_array).any() or np.isinf(embedding_array).any(): logger.warning("嵌入向量包含无效的数值 (NaN 或 Inf)") return None return embedding_array.astype("float32") else: logger.warning(f"嵌入结果格式不支持: {type(embedding_result)}") return None except Exception as e: logger.error(f"验证嵌入向量时发生错误: {e}") return None def _generate_key(self, tool_name: str, function_args: Dict[str, Any], tool_file_path: Union[str, Path]) -> str: """生成确定性的缓存键,包含文件修改时间以实现自动失效。""" try: tool_file_path = Path(tool_file_path) if tool_file_path.exists(): file_name = tool_file_path.name file_mtime = tool_file_path.stat().st_mtime file_hash = hashlib.md5(f"{file_name}:{file_mtime}".encode()).hexdigest() else: file_hash = "unknown" logger.warning(f"工具文件不存在: {tool_file_path}") except (OSError, TypeError) as e: file_hash = "unknown" logger.warning(f"无法获取文件信息: {tool_file_path},错误: {e}") try: sorted_args = orjson.dumps(function_args, option=orjson.OPT_SORT_KEYS).decode("utf-8") except TypeError: sorted_args = repr(sorted(function_args.items())) return f"{tool_name}::{sorted_args}::{file_hash}" async def get( self, tool_name: str, function_args: Dict[str, Any], tool_file_path: Union[str, Path], semantic_query: Optional[str] = None, ) -> Optional[Any]: """ 从缓存获取结果,查询顺序: L1-KV -> L1-Vector -> L2-KV -> L2-Vector。 """ # 步骤 1: L1 精确缓存查询 key = self._generate_key(tool_name, function_args, tool_file_path) logger.debug(f"生成的缓存键: {key}") if semantic_query: logger.debug(f"使用的语义查询: '{semantic_query}'") if key in self.l1_kv_cache: entry = self.l1_kv_cache[key] if time.time() < entry["expires_at"]: logger.info(f"命中L1键值缓存: {key}") return entry["data"] else: del self.l1_kv_cache[key] # 步骤 2: L1/L2 语义和L2精确缓存查询 query_embedding = None if semantic_query and self.embedding_model: embedding_result = await self.embedding_model.get_embedding(semantic_query) if embedding_result: # embedding_result是一个元组(embedding_vector, model_name),取第一个元素 embedding_vector = embedding_result[0] if isinstance(embedding_result, tuple) else embedding_result validated_embedding = self._validate_embedding(embedding_vector) if validated_embedding is not None: query_embedding = np.array([validated_embedding], dtype="float32") # 步骤 2a: L1 语义缓存 (FAISS) if query_embedding is not None and self.l1_vector_index.ntotal > 0: faiss.normalize_L2(query_embedding) distances, indices = self.l1_vector_index.search(query_embedding, 1) # type: ignore if indices.size > 0 and distances[0][0] > 0.75: # IP 越大越相似 hit_index = indices[0][0] l1_hit_key = self.l1_vector_id_to_key.get(hit_index) if l1_hit_key and l1_hit_key in self.l1_kv_cache: logger.info(f"命中L1语义缓存: {l1_hit_key}") return self.l1_kv_cache[l1_hit_key]["data"] # 步骤 2b: L2 精确缓存 (数据库) cache_results_obj = await db_query( model_class=CacheEntries, query_type="get", filters={"cache_key": key}, single_result=True ) if cache_results_obj: # 使用 getattr 安全访问属性,避免 Pylance 类型检查错误 expires_at = getattr(cache_results_obj, "expires_at", 0) if time.time() < expires_at: logger.info(f"命中L2键值缓存: {key}") cache_value = getattr(cache_results_obj, "cache_value", "{}") data = orjson.loads(cache_value) # 更新访问统计 await db_query( model_class=CacheEntries, query_type="update", filters={"cache_key": key}, data={ "last_accessed": time.time(), "access_count": getattr(cache_results_obj, "access_count", 0) + 1, }, ) # 回填 L1 self.l1_kv_cache[key] = {"data": data, "expires_at": expires_at} return data else: # 删除过期的缓存条目 await db_query(model_class=CacheEntries, query_type="delete", filters={"cache_key": key}) # 步骤 2c: L2 语义缓存 (VectorDB Service) if query_embedding is not None: try: results = vector_db_service.query( collection_name=self.semantic_cache_collection_name, query_embeddings=query_embedding.tolist(), n_results=1, ) if results and results.get("ids") and results["ids"][0]: distance = ( results["distances"][0][0] if results.get("distances") and results["distances"][0] else "N/A" ) logger.debug(f"L2语义搜索找到最相似的结果: id={results['ids'][0]}, 距离={distance}") if distance != "N/A" and distance < 0.75: l2_hit_key = results["ids"][0][0] if isinstance(results["ids"][0], list) else results["ids"][0] logger.info(f"命中L2语义缓存: key='{l2_hit_key}', 距离={distance:.4f}") # 从数据库获取缓存数据 semantic_cache_results_obj = await db_query( model_class=CacheEntries, query_type="get", filters={"cache_key": l2_hit_key}, single_result=True, ) if semantic_cache_results_obj: expires_at = getattr(semantic_cache_results_obj, "expires_at", 0) if time.time() < expires_at: cache_value = getattr(semantic_cache_results_obj, "cache_value", "{}") data = orjson.loads(cache_value) logger.debug(f"L2语义缓存返回的数据: {data}") # 回填 L1 self.l1_kv_cache[key] = {"data": data, "expires_at": expires_at} if query_embedding is not None: try: new_id = self.l1_vector_index.ntotal faiss.normalize_L2(query_embedding) self.l1_vector_index.add(x=query_embedding) # type: ignore self.l1_vector_id_to_key[new_id] = key except Exception as e: logger.error(f"回填L1向量索引时发生错误: {e}") return data except Exception as e: logger.warning(f"VectorDB Service 查询失败: {e}") logger.debug(f"缓存未命中: {key}") return None async def set( self, tool_name: str, function_args: Dict[str, Any], tool_file_path: Union[str, Path], data: Any, ttl: Optional[int] = None, semantic_query: Optional[str] = None, ): """将结果存入所有缓存层。""" if ttl is None: ttl = self.default_ttl if ttl <= 0: return key = self._generate_key(tool_name, function_args, tool_file_path) expires_at = time.time() + ttl # 写入 L1 self.l1_kv_cache[key] = {"data": data, "expires_at": expires_at} # 写入 L2 (数据库) cache_data = { "cache_key": key, "cache_value": orjson.dumps(data).decode("utf-8"), "expires_at": expires_at, "tool_name": tool_name, "created_at": time.time(), "last_accessed": time.time(), "access_count": 1, } await db_save(model_class=CacheEntries, data=cache_data, key_field="cache_key", key_value=key) # 写入语义缓存 if semantic_query and self.embedding_model: try: embedding_result = await self.embedding_model.get_embedding(semantic_query) if embedding_result: embedding_vector = embedding_result[0] if isinstance(embedding_result, tuple) else embedding_result validated_embedding = self._validate_embedding(embedding_vector) if validated_embedding is not None: embedding = np.array([validated_embedding], dtype="float32") # 写入 L1 Vector new_id = self.l1_vector_index.ntotal faiss.normalize_L2(embedding) self.l1_vector_index.add(x=embedding) # type: ignore self.l1_vector_id_to_key[new_id] = key # 写入 L2 Vector (使用新的服务) vector_db_service.add( collection_name=self.semantic_cache_collection_name, embeddings=embedding.tolist(), ids=[key], ) except Exception as e: logger.warning(f"语义缓存写入失败: {e}") logger.info(f"已缓存条目: {key}, TTL: {ttl}s") def clear_l1(self): """清空L1缓存。""" self.l1_kv_cache.clear() self.l1_vector_index.reset() self.l1_vector_id_to_key.clear() logger.info("L1 (内存+FAISS) 缓存已清空。") async def clear_l2(self): """清空L2缓存。""" # 清空数据库缓存 await db_query( model_class=CacheEntries, query_type="delete", filters={}, # 删除所有记录 ) # 清空 VectorDB try: vector_db_service.delete_collection(name=self.semantic_cache_collection_name) vector_db_service.get_or_create_collection(name=self.semantic_cache_collection_name) except Exception as e: logger.warning(f"清空 VectorDB 集合失败: {e}") logger.info("L2 (数据库 & VectorDB) 缓存已清空。") async def clear_all(self): """清空所有缓存。""" self.clear_l1() await self.clear_l2() logger.info("所有缓存层级已清空。") async def clean_expired(self): """清理过期的缓存条目""" current_time = time.time() # 清理L1过期条目 expired_keys = [] for key, entry in self.l1_kv_cache.items(): if current_time >= entry["expires_at"]: expired_keys.append(key) for key in expired_keys: del self.l1_kv_cache[key] # 清理L2过期条目 await db_query(model_class=CacheEntries, query_type="delete", filters={"expires_at": {"$lt": current_time}}) if expired_keys: logger.info(f"清理了 {len(expired_keys)} 个过期的L1缓存条目") # 全局实例 tool_cache = CacheManager()