[inner] version = "0.2.1" # 配置文件版本号迭代规则同bot_config.toml # # === 多API Key支持 === # 本配置文件支持为每个API服务商配置多个API Key,实现以下功能: # 1. 错误自动切换:当某个API Key失败时,自动切换到下一个可用的Key # 2. 负载均衡:在多个可用的API Key之间循环使用,避免单个Key的频率限制 # 3. 向后兼容:仍然支持单个key字段的配置方式 # # 配置方式: # - 多Key配置:使用 api_keys = ["key1", "key2", "key3"] 数组格式 # - 单Key配置:使用 key = "your-key" 字符串格式(向后兼容) # # 错误处理机制: # - 401/403认证错误:立即切换到下一个API Key # - 429频率限制:等待后重试,如果持续失败则切换Key # - 网络错误:短暂等待后重试,失败则切换Key # - 其他错误:按照正常重试机制处理 # # === 任务类型和模型能力配置 === # 为了提高任务分配的准确性和可维护性,现在支持明确配置模型的任务类型和能力: # # task_type(推荐配置): # - 明确指定模型主要用于什么任务 # - 可选值:llm_normal, llm_reasoning, vision, embedding, speech # - 如果不配置,系统会根据capabilities或模型名称自动推断(不推荐) # # capabilities(推荐配置): # - 描述模型支持的所有能力 # - 可选值:text, vision, embedding, speech, tool_calling, reasoning # - 支持多个能力的组合,如:["text", "vision"] # # 配置优先级: # 1. task_type(最高优先级,直接指定任务类型) # 2. capabilities(中等优先级,根据能力推断任务类型) # 3. 模型名称关键字(最低优先级,不推荐依赖) # # 向后兼容: # - 仍然支持 model_flags 字段,但建议迁移到 capabilities # - 未配置新字段时会自动回退到基于模型名称的推断 [request_conf] # 请求配置(此配置项数值均为默认值,如想修改,请取消对应条目的注释) #max_retry = 2 # 最大重试次数(单个模型API调用失败,最多重试的次数) #timeout = 10 # API调用的超时时长(超过这个时长,本次请求将被视为“请求超时”,单位:秒) #retry_interval = 10 # 重试间隔(如果API调用失败,重试的间隔时间,单位:秒) #default_temperature = 0.7 # 默认的温度(如果bot_config.toml中没有设置temperature参数,默认使用这个值) #default_max_tokens = 1024 # 默认的最大输出token数(如果bot_config.toml中没有设置max_tokens参数,默认使用这个值) [[api_providers]] # API服务提供商(可以配置多个) name = "DeepSeek" # API服务商名称(可随意命名,在models的api-provider中需使用这个命名) base_url = "https://api.deepseek.cn/v1" # API服务商的BaseURL # 支持多个API Key,实现自动切换和负载均衡 api_keys = [ # API Key列表(多个key支持错误自动切换和负载均衡) "sk-your-first-key-here", "sk-your-second-key-here", "sk-your-third-key-here" ] # 向后兼容:如果只有一个key,也可以使用单个key字段 #key = "******" # API Key (可选,默认为None) client_type = "openai" # 请求客户端(可选,默认值为"openai",使用gimini等Google系模型时请配置为"gemini") [[api_providers]] # 特殊:Google的Gimini使用特殊API,与OpenAI格式不兼容,需要配置client为"gemini" name = "Google" base_url = "https://api.google.com/v1" # Google API同样支持多key配置 api_keys = [ "your-google-api-key-1", "your-google-api-key-2" ] client_type = "gemini" [[api_providers]] name = "SiliconFlow" base_url = "https://api.siliconflow.cn/v1" # 单个key的示例(向后兼容) key = "******" # #[[api_providers]] #name = "LocalHost" #base_url = "https://localhost:8888" #key = "lm-studio" [[models]] # 模型(可以配置多个) # 模型标识符(API服务商提供的模型标识符) model_identifier = "deepseek-chat" # 模型名称(可随意命名,在bot_config.toml中需使用这个命名) #(可选,若无该字段,则将自动使用model_identifier填充) name = "deepseek-v3" # API服务商名称(对应在api_providers中配置的服务商名称) api_provider = "DeepSeek" # 任务类型(推荐配置,明确指定模型主要用于什么任务) # 可选值:llm_normal, llm_reasoning, vision, embedding, speech # 如果不配置,系统会根据capabilities或模型名称自动推断 task_type = "llm_normal" # 模型能力列表(推荐配置,描述模型支持的能力) # 可选值:text, vision, embedding, speech, tool_calling, reasoning capabilities = ["text", "tool_calling"] # 输入价格(用于API调用统计,单位:元/兆token)(可选,若无该字段,默认值为0) price_in = 2.0 # 输出价格(用于API调用统计,单位:元/兆token)(可选,若无该字段,默认值为0) price_out = 8.0 # 强制流式输出模式(若模型不支持非流式输出,请取消该注释,启用强制流式输出) #(可选,若无该字段,默认值为false) #force_stream_mode = true [[models]] model_identifier = "deepseek-reasoner" name = "deepseek-r1" api_provider = "DeepSeek" # 推理模型的配置示例 task_type = "llm_reasoning" capabilities = ["text", "tool_calling", "reasoning"] # 保留向后兼容的model_flags字段(已废弃,建议使用capabilities) model_flags = [ "text", "tool_calling", "reasoning",] price_in = 4.0 price_out = 16.0 [[models]] model_identifier = "Pro/deepseek-ai/DeepSeek-V3" name = "siliconflow-deepseek-v3" api_provider = "SiliconFlow" task_type = "llm_normal" capabilities = ["text", "tool_calling"] price_in = 2.0 price_out = 8.0 [[models]] model_identifier = "Pro/deepseek-ai/DeepSeek-R1" name = "siliconflow-deepseek-r1" api_provider = "SiliconFlow" task_type = "llm_reasoning" capabilities = ["text", "tool_calling", "reasoning"] price_in = 4.0 price_out = 16.0 [[models]] model_identifier = "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B" name = "deepseek-r1-distill-qwen-32b" api_provider = "SiliconFlow" task_type = "llm_reasoning" capabilities = ["text", "tool_calling", "reasoning"] price_in = 4.0 price_out = 16.0 [[models]] model_identifier = "Qwen/Qwen3-8B" name = "qwen3-8b" api_provider = "SiliconFlow" task_type = "llm_normal" capabilities = ["text"] price_in = 0 price_out = 0 [[models]] model_identifier = "Qwen/Qwen3-14B" name = "qwen3-14b" api_provider = "SiliconFlow" task_type = "llm_normal" capabilities = ["text", "tool_calling"] price_in = 0.5 price_out = 2.0 [[models]] model_identifier = "Qwen/Qwen3-30B-A3B" name = "qwen3-30b" api_provider = "SiliconFlow" task_type = "llm_normal" capabilities = ["text", "tool_calling"] price_in = 0.7 price_out = 2.8 [[models]] model_identifier = "Qwen/Qwen2.5-VL-72B-Instruct" name = "qwen2.5-vl-72b" api_provider = "SiliconFlow" # 视觉模型的配置示例 task_type = "vision" capabilities = ["vision", "text"] # 保留向后兼容的model_flags字段(已废弃,建议使用capabilities) model_flags = [ "vision", "text",] price_in = 4.13 price_out = 4.13 [[models]] model_identifier = "FunAudioLLM/SenseVoiceSmall" name = "sensevoice-small" api_provider = "SiliconFlow" # 语音模型的配置示例 task_type = "speech" capabilities = ["speech"] # 保留向后兼容的model_flags字段(已废弃,建议使用capabilities) model_flags = [ "audio",] price_in = 0 price_out = 0 [[models]] model_identifier = "BAAI/bge-m3" name = "bge-m3" api_provider = "SiliconFlow" # 嵌入模型的配置示例 task_type = "embedding" capabilities = ["text", "embedding"] # 保留向后兼容的model_flags字段(已废弃,建议使用capabilities) model_flags = [ "text", "embedding",] price_in = 0 price_out = 0 [task_model_usage] llm_reasoning = {model="deepseek-r1", temperature=0.8, max_tokens=1024, max_retry=0} llm_normal = {model="deepseek-r1", max_tokens=1024, max_retry=0} embedding = "siliconflow-bge-m3" #schedule = [ # "deepseek-v3", # "deepseek-r1", #]