import asyncio import contextlib import time import traceback from collections import deque from typing import List, Optional, Dict, Any, Deque, Callable, Awaitable from src.chat.message_receive.chat_stream import get_chat_manager from rich.traceback import install from src.chat.utils.prompt_builder import global_prompt_manager from src.common.logger import get_logger from src.chat.utils.timer_calculator import Timer from src.chat.heart_flow.observation.observation import Observation from src.chat.focus_chat.heartFC_Cycleinfo import CycleDetail from src.chat.focus_chat.info.info_base import InfoBase from src.chat.focus_chat.info_processors.chattinginfo_processor import ChattingInfoProcessor from src.chat.focus_chat.info_processors.working_memory_processor import WorkingMemoryProcessor from src.chat.heart_flow.observation.hfcloop_observation import HFCloopObservation from src.chat.heart_flow.observation.working_observation import WorkingMemoryObservation from src.chat.heart_flow.observation.chatting_observation import ChattingObservation from src.chat.heart_flow.observation.structure_observation import StructureObservation from src.chat.heart_flow.observation.actions_observation import ActionObservation from src.chat.focus_chat.info_processors.tool_processor import ToolProcessor from src.chat.focus_chat.memory_activator import MemoryActivator from src.chat.focus_chat.info_processors.base_processor import BaseProcessor from src.chat.focus_chat.planners.planner_factory import PlannerFactory from src.chat.focus_chat.planners.modify_actions import ActionModifier from src.chat.focus_chat.planners.action_manager import ActionManager from src.config.config import global_config from src.chat.focus_chat.hfc_performance_logger import HFCPerformanceLogger from src.chat.focus_chat.hfc_version_manager import get_hfc_version from src.chat.focus_chat.info.relation_info import RelationInfo from src.chat.focus_chat.info.structured_info import StructuredInfo from src.person_info.relationship_builder_manager import relationship_builder_manager install(extra_lines=3) # 超时常量配置 MEMORY_ACTIVATION_TIMEOUT = 5.0 # 记忆激活任务超时时限(秒) ACTION_MODIFICATION_TIMEOUT = 15.0 # 动作修改任务超时时限(秒) # 定义观察器映射:键是观察器名称,值是 (观察器类, 初始化参数) OBSERVATION_CLASSES = { "ChattingObservation": (ChattingObservation, "chat_id"), "WorkingMemoryObservation": (WorkingMemoryObservation, "observe_id"), "HFCloopObservation": (HFCloopObservation, "observe_id"), "StructureObservation": (StructureObservation, "observe_id"), } # 定义处理器映射:键是处理器名称,值是 (处理器类, 可选的配置键名) PROCESSOR_CLASSES = { "ChattingInfoProcessor": (ChattingInfoProcessor, None), "WorkingMemoryProcessor": (WorkingMemoryProcessor, "working_memory_processor"), } # 定义后期处理器映射:在规划后、动作执行前运行的处理器 POST_PLANNING_PROCESSOR_CLASSES = { "ToolProcessor": (ToolProcessor, "tool_use_processor"), } logger = get_logger("hfc") # Logger Name Changed async def _handle_cycle_delay(action_taken_this_cycle: bool, cycle_start_time: float, log_prefix: str): """处理循环延迟""" cycle_duration = time.monotonic() - cycle_start_time try: sleep_duration = 0.0 if not action_taken_this_cycle and cycle_duration < 1: sleep_duration = 1 - cycle_duration elif cycle_duration < 0.2: sleep_duration = 0.2 if sleep_duration > 0: await asyncio.sleep(sleep_duration) except asyncio.CancelledError: logger.info(f"{log_prefix} Sleep interrupted, loop likely cancelling.") raise class HeartFChatting: """ 管理一个连续的Focus Chat循环 用于在特定聊天流中生成回复。 其生命周期现在由其关联的 SubHeartflow 的 FOCUSED 状态控制。 """ def __init__( self, chat_id: str, on_stop_focus_chat: Optional[Callable[[], Awaitable[None]]] = None, performance_version: str = None, ): """ HeartFChatting 初始化函数 参数: chat_id: 聊天流唯一标识符(如stream_id) on_stop_focus_chat: 当收到stop_focus_chat命令时调用的回调函数 performance_version: 性能记录版本号,用于区分不同启动版本 """ # 基础属性 self.stream_id: str = chat_id # 聊天流ID self.chat_stream = get_chat_manager().get_stream(self.stream_id) self.log_prefix = f"[{get_chat_manager().get_stream_name(self.stream_id) or self.stream_id}]" self.memory_activator = MemoryActivator() self.relationship_builder = relationship_builder_manager.get_or_create_builder(self.stream_id) # 新增:消息计数器和疲惫阈值 self._message_count = 0 # 发送的消息计数 # 基于exit_focus_threshold动态计算疲惫阈值 # 基础值30条,通过exit_focus_threshold调节:threshold越小,越容易疲惫 self._message_threshold = max(10, int(30 * global_config.chat.exit_focus_threshold)) self._fatigue_triggered = False # 是否已触发疲惫退出 # 初始化观察器 self.observations: List[Observation] = [] self._register_observations() # 根据配置文件和默认规则确定启用的处理器 config_processor_settings = global_config.focus_chat_processor self.enabled_processor_names = [] for proc_name, (_proc_class, config_key) in PROCESSOR_CLASSES.items(): # 检查处理器是否应该启用 if not config_key or getattr(config_processor_settings, config_key, True): self.enabled_processor_names.append(proc_name) # 初始化后期处理器(规划后执行的处理器) self.enabled_post_planning_processor_names = [] for proc_name, (_proc_class, config_key) in POST_PLANNING_PROCESSOR_CLASSES.items(): # 对于关系相关处理器,需要同时检查关系配置项 if not config_key or getattr(config_processor_settings, config_key, True): self.enabled_post_planning_processor_names.append(proc_name) # logger.info(f"{self.log_prefix} 将启用的处理器: {self.enabled_processor_names}") # logger.info(f"{self.log_prefix} 将启用的后期处理器: {self.enabled_post_planning_processor_names}") self.processors: List[BaseProcessor] = [] self._register_default_processors() # 初始化后期处理器 self.post_planning_processors: List[BaseProcessor] = [] self._register_post_planning_processors() self.action_manager = ActionManager() self.action_planner = PlannerFactory.create_planner( log_prefix=self.log_prefix, action_manager=self.action_manager ) self.action_modifier = ActionModifier(action_manager=self.action_manager) self.action_observation = ActionObservation(observe_id=self.stream_id) self.action_observation.set_action_manager(self.action_manager) self._processing_lock = asyncio.Lock() # 循环控制内部状态 self._loop_active: bool = False # 循环是否正在运行 self._loop_task: Optional[asyncio.Task] = None # 主循环任务 # 添加循环信息管理相关的属性 self._cycle_counter = 0 self._cycle_history: Deque[CycleDetail] = deque(maxlen=10) # 保留最近10个循环的信息 self._current_cycle_detail: Optional[CycleDetail] = None self._shutting_down: bool = False # 关闭标志位 # 存储回调函数 self.on_stop_focus_chat = on_stop_focus_chat # 初始化性能记录器 # 如果没有指定版本号,则使用全局版本管理器的版本号 actual_version = performance_version or get_hfc_version() self.performance_logger = HFCPerformanceLogger(chat_id, actual_version) logger.info( f"{self.log_prefix} HeartFChatting 初始化完成,消息疲惫阈值: {self._message_threshold}条(基于exit_focus_threshold={global_config.chat.exit_focus_threshold}计算,仅在auto模式下生效)" ) def _register_observations(self): """注册所有观察器""" self.observations = [] # 清空已有的 for name, (observation_class, param_name) in OBSERVATION_CLASSES.items(): try: # 检查是否需要跳过WorkingMemoryObservation if name == "WorkingMemoryObservation": # 如果工作记忆处理器被禁用,则跳过WorkingMemoryObservation if not global_config.focus_chat_processor.working_memory_processor: logger.debug(f"{self.log_prefix} 工作记忆处理器已禁用,跳过注册观察器 {name}") continue # 根据参数名使用正确的参数 kwargs = {param_name: self.stream_id} observation = observation_class(**kwargs) self.observations.append(observation) logger.debug(f"{self.log_prefix} 注册观察器 {name}") except Exception as e: logger.error(f"{self.log_prefix} 观察器 {name} 构造失败: {e}") if self.observations: logger.info(f"{self.log_prefix} 已注册观察器: {[o.__class__.__name__ for o in self.observations]}") else: logger.warning(f"{self.log_prefix} 没有注册任何观察器") def _register_default_processors(self): """根据 self.enabled_processor_names 注册信息处理器""" self.processors = [] # 清空已有的 for name in self.enabled_processor_names: # 'name' is "ChattingInfoProcessor", etc. processor_info = PROCESSOR_CLASSES.get(name) # processor_info is (ProcessorClass, config_key) if processor_info: processor_actual_class = processor_info[0] # 获取实际的类定义 # 根据处理器类名判断是否需要 subheartflow_id if name in [ "WorkingMemoryProcessor", ]: self.processors.append(processor_actual_class(subheartflow_id=self.stream_id)) elif name == "ChattingInfoProcessor": self.processors.append(processor_actual_class()) else: # 对于PROCESSOR_CLASSES中定义但此处未明确处理构造的处理器 # (例如, 新增了一个处理器到PROCESSOR_CLASSES, 它不需要id, 也不叫ChattingInfoProcessor) try: self.processors.append(processor_actual_class()) # 尝试无参构造 logger.debug(f"{self.log_prefix} 注册处理器 {name} (尝试无参构造).") except TypeError: logger.error( f"{self.log_prefix} 处理器 {name} 构造失败。它可能需要参数(如 subheartflow_id)但未在注册逻辑中明确处理。" ) else: # 这理论上不应该发生,因为 enabled_processor_names 是从 PROCESSOR_CLASSES 的键生成的 logger.warning( f"{self.log_prefix} 在 PROCESSOR_CLASSES 中未找到名为 '{name}' 的处理器定义,将跳过注册。" ) if self.processors: logger.info(f"{self.log_prefix} 已注册处理器: {[p.__class__.__name__ for p in self.processors]}") else: logger.warning(f"{self.log_prefix} 没有注册任何处理器。这可能是由于配置错误或所有处理器都被禁用了。") def _register_post_planning_processors(self): """根据 self.enabled_post_planning_processor_names 注册后期处理器""" self.post_planning_processors = [] # 清空已有的 for name in self.enabled_post_planning_processor_names: # 'name' is "PersonImpressionpProcessor", etc. processor_info = POST_PLANNING_PROCESSOR_CLASSES.get(name) # processor_info is (ProcessorClass, config_key) if processor_info: processor_actual_class = processor_info[0] # 获取实际的类定义 # 根据处理器类名判断是否需要 subheartflow_id if name in [ "ToolProcessor", "RelationshipBuildProcessor", "RealTimeInfoProcessor", "ExpressionSelectorProcessor", ]: self.post_planning_processors.append(processor_actual_class(subheartflow_id=self.stream_id)) else: # 对于POST_PLANNING_PROCESSOR_CLASSES中定义但此处未明确处理构造的处理器 # (例如, 新增了一个处理器到POST_PLANNING_PROCESSOR_CLASSES, 它不需要id, 也不叫PersonImpressionpProcessor) try: self.post_planning_processors.append(processor_actual_class()) # 尝试无参构造 logger.debug(f"{self.log_prefix} 注册后期处理器 {name} (尝试无参构造).") except TypeError: logger.error( f"{self.log_prefix} 后期处理器 {name} 构造失败。它可能需要参数(如 subheartflow_id)但未在注册逻辑中明确处理。" ) else: # 这理论上不应该发生,因为 enabled_post_planning_processor_names 是从 POST_PLANNING_PROCESSOR_CLASSES 的键生成的 logger.warning( f"{self.log_prefix} 在 POST_PLANNING_PROCESSOR_CLASSES 中未找到名为 '{name}' 的处理器定义,将跳过注册。" ) if self.post_planning_processors: logger.info( f"{self.log_prefix} 已注册后期处理器: {[p.__class__.__name__ for p in self.post_planning_processors]}" ) else: logger.warning( f"{self.log_prefix} 没有注册任何后期处理器。这可能是由于配置错误或所有后期处理器都被禁用了。" ) async def start(self): """检查是否需要启动主循环,如果未激活则启动。""" logger.debug(f"{self.log_prefix} 开始启动 HeartFChatting") # 如果循环已经激活,直接返回 if self._loop_active: logger.debug(f"{self.log_prefix} HeartFChatting 已激活,无需重复启动") return try: # 重置消息计数器,开始新的focus会话 self.reset_message_count() # 标记为活动状态,防止重复启动 self._loop_active = True # 检查是否已有任务在运行(理论上不应该,因为 _loop_active=False) if self._loop_task and not self._loop_task.done(): logger.warning(f"{self.log_prefix} 发现之前的循环任务仍在运行(不符合预期)。取消旧任务。") self._loop_task.cancel() try: # 等待旧任务确实被取消 await asyncio.wait_for(self._loop_task, timeout=5.0) except (asyncio.CancelledError, asyncio.TimeoutError): pass # 忽略取消或超时错误 except Exception as e: logger.warning(f"{self.log_prefix} 等待旧任务取消时出错: {e}") self._loop_task = None # 清理旧任务引用 logger.debug(f"{self.log_prefix} 创建新的 HeartFChatting 主循环任务") self._loop_task = asyncio.create_task(self._run_focus_chat()) self._loop_task.add_done_callback(self._handle_loop_completion) logger.debug(f"{self.log_prefix} HeartFChatting 启动完成") except Exception as e: # 启动失败时重置状态 self._loop_active = False self._loop_task = None logger.error(f"{self.log_prefix} HeartFChatting 启动失败: {e}") raise def _handle_loop_completion(self, task: asyncio.Task): """当 _hfc_loop 任务完成时执行的回调。""" try: exception = task.exception() if exception: logger.error(f"{self.log_prefix} HeartFChatting: 脱离了聊天(异常): {exception}") logger.error(traceback.format_exc()) # Log full traceback for exceptions else: logger.info(f"{self.log_prefix} HeartFChatting: 脱离了聊天 (外部停止)") except asyncio.CancelledError: logger.info(f"{self.log_prefix} HeartFChatting: 脱离了聊天(任务取消)") finally: self._loop_active = False self._loop_task = None if self._processing_lock.locked(): logger.warning(f"{self.log_prefix} HeartFChatting: 处理锁在循环结束时仍被锁定,强制释放。") self._processing_lock.release() async def _run_focus_chat(self): """主循环,持续进行计划并可能回复消息,直到被外部取消。""" try: while True: # 主循环 logger.debug(f"{self.log_prefix} 开始第{self._cycle_counter}次循环") # 检查关闭标志 if self._shutting_down: logger.info(f"{self.log_prefix} 检测到关闭标志,退出 Focus Chat 循环。") break # 创建新的循环信息 self._cycle_counter += 1 self._current_cycle_detail = CycleDetail(self._cycle_counter) self._current_cycle_detail.prefix = self.log_prefix # 初始化周期状态 cycle_timers = {} loop_cycle_start_time = time.monotonic() # 执行规划和处理阶段 try: async with self._get_cycle_context(): thinking_id = "tid" + str(round(time.time(), 2)) self._current_cycle_detail.set_thinking_id(thinking_id) # 使用异步上下文管理器处理消息 try: async with global_prompt_manager.async_message_scope( self.chat_stream.context.get_template_name() ): # 在上下文内部检查关闭状态 if self._shutting_down: logger.info(f"{self.log_prefix} 在处理上下文中检测到关闭信号,退出") break logger.debug(f"模板 {self.chat_stream.context.get_template_name()}") loop_info = await self._observe_process_plan_action_loop(cycle_timers, thinking_id) if loop_info["loop_action_info"]["command"] == "stop_focus_chat": logger.info(f"{self.log_prefix} 麦麦决定停止专注聊天") # 如果设置了回调函数,则调用它 if self.on_stop_focus_chat: try: await self.on_stop_focus_chat() logger.info(f"{self.log_prefix} 成功调用回调函数处理停止专注聊天") except Exception as e: logger.error(f"{self.log_prefix} 调用停止专注聊天回调函数时出错: {e}") logger.error(traceback.format_exc()) break except asyncio.CancelledError: logger.info(f"{self.log_prefix} 处理上下文时任务被取消") break except Exception as e: logger.error(f"{self.log_prefix} 处理上下文时出错: {e}") # 为当前循环设置错误状态,防止后续重复报错 error_loop_info = { "loop_observation_info": {}, "loop_processor_info": {}, "loop_plan_info": { "action_result": { "action_type": "error", "action_data": {}, }, "observed_messages": "", }, "loop_action_info": { "action_taken": False, "reply_text": "", "command": "", "taken_time": time.time(), }, } self._current_cycle_detail.set_loop_info(error_loop_info) self._current_cycle_detail.complete_cycle() # 上下文处理失败,跳过当前循环 await asyncio.sleep(1) continue self._current_cycle_detail.set_loop_info(loop_info) # 从observations列表中获取HFCloopObservation hfcloop_observation = next( (obs for obs in self.observations if isinstance(obs, HFCloopObservation)), None ) if hfcloop_observation: hfcloop_observation.add_loop_info(self._current_cycle_detail) else: logger.warning(f"{self.log_prefix} 未找到HFCloopObservation实例") self._current_cycle_detail.timers = cycle_timers # 防止循环过快消耗资源 await _handle_cycle_delay( loop_info["loop_action_info"]["action_taken"], loop_cycle_start_time, self.log_prefix ) # 完成当前循环并保存历史 self._current_cycle_detail.complete_cycle() self._cycle_history.append(self._current_cycle_detail) # 记录循环信息和计时器结果 timer_strings = [] for name, elapsed in cycle_timers.items(): formatted_time = f"{elapsed * 1000:.2f}毫秒" if elapsed < 1 else f"{elapsed:.2f}秒" timer_strings.append(f"{name}: {formatted_time}") # 新增:输出每个处理器的耗时 processor_time_costs = self._current_cycle_detail.loop_processor_info.get( "processor_time_costs", {} ) processor_time_strings = [] for pname, ptime in processor_time_costs.items(): formatted_ptime = f"{ptime * 1000:.2f}毫秒" if ptime < 1 else f"{ptime:.2f}秒" processor_time_strings.append(f"{pname}: {formatted_ptime}") processor_time_log = ( ("\n前处理器耗时: " + "; ".join(processor_time_strings)) if processor_time_strings else "" ) # 新增:输出每个后处理器的耗时 post_processor_time_costs = self._current_cycle_detail.loop_post_processor_info.get( "post_processor_time_costs", {} ) post_processor_time_strings = [] for pname, ptime in post_processor_time_costs.items(): formatted_ptime = f"{ptime * 1000:.2f}毫秒" if ptime < 1 else f"{ptime:.2f}秒" post_processor_time_strings.append(f"{pname}: {formatted_ptime}") post_processor_time_log = ( ("\n后处理器耗时: " + "; ".join(post_processor_time_strings)) if post_processor_time_strings else "" ) logger.info( f"{self.log_prefix} 第{self._current_cycle_detail.cycle_id}次思考," f"耗时: {self._current_cycle_detail.end_time - self._current_cycle_detail.start_time:.1f}秒, " f"动作: {self._current_cycle_detail.loop_plan_info.get('action_result', {}).get('action_type', '未知动作')}" + (f"\n详情: {'; '.join(timer_strings)}" if timer_strings else "") + processor_time_log + post_processor_time_log ) # 记录性能数据 try: action_result = self._current_cycle_detail.loop_plan_info.get("action_result", {}) cycle_performance_data = { "cycle_id": self._current_cycle_detail.cycle_id, "action_type": action_result.get("action_type", "unknown"), "total_time": self._current_cycle_detail.end_time - self._current_cycle_detail.start_time, "step_times": cycle_timers.copy(), "processor_time_costs": processor_time_costs, # 前处理器时间 "post_processor_time_costs": post_processor_time_costs, # 后处理器时间 "reasoning": action_result.get("reasoning", ""), "success": self._current_cycle_detail.loop_action_info.get("action_taken", False), } self.performance_logger.record_cycle(cycle_performance_data) except Exception as perf_e: logger.warning(f"{self.log_prefix} 记录性能数据失败: {perf_e}") await asyncio.sleep(global_config.focus_chat.think_interval) except asyncio.CancelledError: logger.info(f"{self.log_prefix} 循环处理时任务被取消") break except Exception as e: logger.error(f"{self.log_prefix} 循环处理时出错: {e}") logger.error(traceback.format_exc()) # 如果_current_cycle_detail存在但未完成,为其设置错误状态 if self._current_cycle_detail and not hasattr(self._current_cycle_detail, "end_time"): error_loop_info = { "loop_observation_info": {}, "loop_processor_info": {}, "loop_plan_info": { "action_result": { "action_type": "error", "action_data": {}, "reasoning": f"循环处理失败: {e}", }, "observed_messages": "", }, "loop_action_info": { "action_taken": False, "reply_text": "", "command": "", "taken_time": time.time(), }, } try: self._current_cycle_detail.set_loop_info(error_loop_info) self._current_cycle_detail.complete_cycle() except Exception as inner_e: logger.error(f"{self.log_prefix} 设置错误状态时出错: {inner_e}") await asyncio.sleep(1) # 出错后等待一秒再继续 except asyncio.CancelledError: # 设置了关闭标志位后被取消是正常流程 if not self._shutting_down: logger.warning(f"{self.log_prefix} 麦麦Focus聊天模式意外被取消") else: logger.info(f"{self.log_prefix} 麦麦已离开Focus聊天模式") except Exception as e: logger.error(f"{self.log_prefix} 麦麦Focus聊天模式意外错误: {e}") print(traceback.format_exc()) @contextlib.asynccontextmanager async def _get_cycle_context(self): """ 循环周期的上下文管理器 用于确保资源的正确获取和释放: 1. 获取处理锁 2. 执行操作 3. 释放锁 """ acquired = False try: await self._processing_lock.acquire() acquired = True yield acquired finally: if acquired and self._processing_lock.locked(): self._processing_lock.release() async def _process_processors(self, observations: List[Observation]) -> tuple[List[InfoBase], Dict[str, float]]: # 记录并行任务开始时间 parallel_start_time = time.time() logger.debug(f"{self.log_prefix} 开始信息处理器并行任务") processor_tasks = [] task_to_name_map = {} processor_time_costs = {} # 新增: 记录每个处理器耗时 for processor in self.processors: processor_name = processor.__class__.log_prefix async def run_with_timeout(proc=processor): return await asyncio.wait_for( proc.process_info(observations=observations), timeout=global_config.focus_chat.processor_max_time, ) task = asyncio.create_task(run_with_timeout()) processor_tasks.append(task) task_to_name_map[task] = processor_name logger.debug(f"{self.log_prefix} 启动处理器任务: {processor_name}") pending_tasks = set(processor_tasks) all_plan_info: List[InfoBase] = [] while pending_tasks: done, pending_tasks = await asyncio.wait(pending_tasks, return_when=asyncio.FIRST_COMPLETED) for task in done: processor_name = task_to_name_map[task] task_completed_time = time.time() duration_since_parallel_start = task_completed_time - parallel_start_time try: result_list = await task logger.info(f"{self.log_prefix} 处理器 {processor_name} 已完成!") if result_list is not None: all_plan_info.extend(result_list) else: logger.warning(f"{self.log_prefix} 处理器 {processor_name} 返回了 None") # 记录耗时 processor_time_costs[processor_name] = duration_since_parallel_start except asyncio.TimeoutError: logger.info( f"{self.log_prefix} 处理器 {processor_name} 超时(>{global_config.focus_chat.processor_max_time}s),已跳过" ) processor_time_costs[processor_name] = global_config.focus_chat.processor_max_time except Exception as e: logger.error( f"{self.log_prefix} 处理器 {processor_name} 执行失败,耗时 (自并行开始): {duration_since_parallel_start:.2f}秒. 错误: {e}", exc_info=True, ) traceback.print_exc() processor_time_costs[processor_name] = duration_since_parallel_start if pending_tasks: current_progress_time = time.time() elapsed_for_log = current_progress_time - parallel_start_time pending_names_for_log = [task_to_name_map[t] for t in pending_tasks] logger.info( f"{self.log_prefix} 信息处理已进行 {elapsed_for_log:.2f}秒,待完成任务: {', '.join(pending_names_for_log)}" ) # 所有任务完成后的最终日志 parallel_end_time = time.time() total_duration = parallel_end_time - parallel_start_time logger.info(f"{self.log_prefix} 所有处理器任务全部完成,总耗时: {total_duration:.2f}秒") # logger.debug(f"{self.log_prefix} 所有信息处理器处理后的信息: {all_plan_info}") return all_plan_info, processor_time_costs async def _process_post_planning_processors_with_timing( self, observations: List[Observation], action_type: str, action_data: dict ) -> tuple[dict, dict]: """ 处理后期处理器(规划后执行的处理器)并收集详细时间统计 包括:关系处理器、表达选择器、记忆激活器 参数: observations: 观察器列表 action_type: 动作类型 action_data: 原始动作数据 返回: tuple[dict, dict]: (更新后的动作数据, 后处理器时间统计) """ logger.info(f"{self.log_prefix} 开始执行后期处理器(带详细统计)") # 创建所有后期任务 task_list = [] task_to_name_map = {} task_start_times = {} post_processor_time_costs = {} # 添加后期处理器任务 for processor in self.post_planning_processors: processor_name = processor.__class__.__name__ async def run_processor_with_timeout_and_timing(proc=processor, name=processor_name): start_time = time.time() try: result = await asyncio.wait_for( proc.process_info(observations=observations, action_type=action_type, action_data=action_data), timeout=global_config.focus_chat.processor_max_time, ) end_time = time.time() post_processor_time_costs[name] = end_time - start_time logger.debug(f"{self.log_prefix} 后期处理器 {name} 耗时: {end_time - start_time:.3f}秒") return result except Exception as e: end_time = time.time() post_processor_time_costs[name] = end_time - start_time logger.warning(f"{self.log_prefix} 后期处理器 {name} 执行异常,耗时: {end_time - start_time:.3f}秒") raise e task = asyncio.create_task(run_processor_with_timeout_and_timing()) task_list.append(task) task_to_name_map[task] = ("processor", processor_name) task_start_times[task] = time.time() logger.info(f"{self.log_prefix} 启动后期处理器任务: {processor_name}") # 如果没有任何后期任务,直接返回 if not task_list: logger.info(f"{self.log_prefix} 没有启用的后期处理器或记忆激活器") return action_data, {} # 等待所有任务完成 pending_tasks = set(task_list) all_post_plan_info = [] while pending_tasks: done, pending_tasks = await asyncio.wait(pending_tasks, return_when=asyncio.FIRST_COMPLETED) for task in done: task_type, task_name = task_to_name_map[task] try: result = await task if task_type == "processor": logger.info(f"{self.log_prefix} 后期处理器 {task_name} 已完成!") if result is not None: all_post_plan_info.extend(result) else: logger.warning(f"{self.log_prefix} 后期处理器 {task_name} 返回了 None") except asyncio.TimeoutError: # 对于超时任务,记录已用时间 elapsed_time = time.time() - task_start_times[task] if task_type == "processor": post_processor_time_costs[task_name] = elapsed_time logger.warning( f"{self.log_prefix} 后期处理器 {task_name} 超时(>{global_config.focus_chat.processor_max_time}s),已跳过,耗时: {elapsed_time:.3f}秒" ) except Exception as e: # 对于异常任务,记录已用时间 elapsed_time = time.time() - task_start_times[task] if task_type == "processor": post_processor_time_costs[task_name] = elapsed_time logger.error( f"{self.log_prefix} 后期处理器 {task_name} 执行失败,耗时: {elapsed_time:.3f}秒. 错误: {e}", exc_info=True, ) # 将后期处理器的结果整合到 action_data 中 updated_action_data = action_data.copy() structured_info = "" for info in all_post_plan_info: if isinstance(info, StructuredInfo): structured_info = info.get_processed_info() if structured_info: updated_action_data["structured_info"] = structured_info if all_post_plan_info: logger.info(f"{self.log_prefix} 后期处理完成,产生了 {len(all_post_plan_info)} 个信息项") # 输出详细统计信息 if post_processor_time_costs: stats_str = ", ".join( [f"{name}: {time_cost:.3f}s" for name, time_cost in post_processor_time_costs.items()] ) logger.info(f"{self.log_prefix} 后期处理器详细耗时统计: {stats_str}") return updated_action_data, post_processor_time_costs async def _observe_process_plan_action_loop(self, cycle_timers: dict, thinking_id: str) -> dict: try: loop_start_time = time.time() with Timer("观察", cycle_timers): # 执行所有观察器的观察 for observation in self.observations: await observation.observe() loop_observation_info = { "observations": self.observations, } await self.relationship_builder.build_relation() # 并行执行调整动作、回忆和处理器阶段 with Timer("调整动作、处理", cycle_timers): # 创建并行任务 async def modify_actions_task(): # 调用完整的动作修改流程 await self.action_modifier.modify_actions( observations=self.observations, ) await self.action_observation.observe() self.observations.append(self.action_observation) return True # 创建两个并行任务,为LLM调用添加超时保护 action_modify_task = asyncio.create_task( asyncio.wait_for(modify_actions_task(), timeout=ACTION_MODIFICATION_TIMEOUT) ) processor_task = asyncio.create_task(self._process_processors(self.observations)) # 等待两个任务完成,使用超时保护和详细错误处理 action_modify_result = None all_plan_info = [] processor_time_costs = {} try: action_modify_result, (all_plan_info, processor_time_costs) = await asyncio.gather( action_modify_task, processor_task, return_exceptions=True ) # 检查各个任务的结果 if isinstance(action_modify_result, Exception): if isinstance(action_modify_result, asyncio.TimeoutError): logger.error(f"{self.log_prefix} 动作修改任务超时") else: logger.error(f"{self.log_prefix} 动作修改任务失败: {action_modify_result}") processor_result = (all_plan_info, processor_time_costs) if isinstance(processor_result, Exception): if isinstance(processor_result, asyncio.TimeoutError): logger.error(f"{self.log_prefix} 处理器任务超时") else: logger.error(f"{self.log_prefix} 处理器任务失败: {processor_result}") all_plan_info = [] processor_time_costs = {} else: all_plan_info, processor_time_costs = processor_result except Exception as e: logger.error(f"{self.log_prefix} 并行任务gather失败: {e}") # 设置默认值以继续执行 all_plan_info = [] processor_time_costs = {} loop_processor_info = { "all_plan_info": all_plan_info, "processor_time_costs": processor_time_costs, } logger.debug(f"{self.log_prefix} 并行阶段完成,准备进入规划器,plan_info数量: {len(all_plan_info)}") with Timer("规划器", cycle_timers): plan_result = await self.action_planner.plan(all_plan_info, self.observations, loop_start_time) loop_plan_info = { "action_result": plan_result.get("action_result", {}), "observed_messages": plan_result.get("observed_messages", ""), } # 修正:将后期处理器从执行动作Timer中分离出来 action_type, action_data, reasoning = ( plan_result.get("action_result", {}).get("action_type", "error"), plan_result.get("action_result", {}).get("action_data", {}), plan_result.get("action_result", {}).get("reasoning", "未提供理由"), ) if action_type == "reply": action_str = "回复" elif action_type == "no_reply": action_str = "不回复" else: action_str = action_type logger.debug(f"{self.log_prefix} 麦麦想要:'{action_str}'") # 添加:单独计时后期处理器,并收集详细统计 post_processor_time_costs = {} if action_type != "no_reply": with Timer("后期处理器", cycle_timers): logger.debug(f"{self.log_prefix} 执行后期处理器(动作类型: {action_type})") # 记录详细的后处理器时间 post_start_time = time.time() action_data, post_processor_time_costs = await self._process_post_planning_processors_with_timing( self.observations, action_type, action_data ) post_end_time = time.time() logger.info(f"{self.log_prefix} 后期处理器总耗时: {post_end_time - post_start_time:.3f}秒") else: logger.debug(f"{self.log_prefix} 跳过后期处理器(动作类型: {action_type})") # 修正:纯动作执行计时 with Timer("动作执行", cycle_timers): success, reply_text, command = await self._handle_action( action_type, reasoning, action_data, cycle_timers, thinking_id ) loop_action_info = { "action_taken": success, "reply_text": reply_text, "command": command, "taken_time": time.time(), } # 添加后处理器统计到loop_info loop_post_processor_info = { "post_processor_time_costs": post_processor_time_costs, } loop_info = { "loop_observation_info": loop_observation_info, "loop_processor_info": loop_processor_info, "loop_plan_info": loop_plan_info, "loop_action_info": loop_action_info, "loop_post_processor_info": loop_post_processor_info, # 新增 } return loop_info except Exception as e: logger.error(f"{self.log_prefix} FOCUS聊天处理失败: {e}") logger.error(traceback.format_exc()) return { "loop_observation_info": {}, "loop_processor_info": {}, "loop_plan_info": { "action_result": {"action_type": "error", "action_data": {}, "reasoning": f"处理失败: {e}"}, "observed_messages": "", }, "loop_action_info": {"action_taken": False, "reply_text": "", "command": "", "taken_time": time.time()}, } async def _handle_action( self, action: str, reasoning: str, action_data: dict, cycle_timers: dict, thinking_id: str, ) -> tuple[bool, str, str]: """ 处理规划动作,使用动作工厂创建相应的动作处理器 参数: action: 动作类型 reasoning: 决策理由 action_data: 动作数据,包含不同动作需要的参数 cycle_timers: 计时器字典 thinking_id: 思考ID 返回: tuple[bool, str, str]: (是否执行了动作, 思考消息ID, 命令) """ try: # 使用工厂创建动作处理器实例 try: action_handler = self.action_manager.create_action( action_name=action, action_data=action_data, reasoning=reasoning, cycle_timers=cycle_timers, thinking_id=thinking_id, chat_stream=self.chat_stream, log_prefix=self.log_prefix, shutting_down=self._shutting_down, ) except Exception as e: logger.error(f"{self.log_prefix} 创建动作处理器时出错: {e}") traceback.print_exc() return False, "", "" if not action_handler: logger.warning(f"{self.log_prefix} 未能创建动作处理器: {action}, 原因: {reasoning}") return False, "", "" # 处理动作并获取结果 result = await action_handler.handle_action() if len(result) == 3: success, reply_text, command = result else: success, reply_text = result command = "" # 检查action_data中是否有系统命令,优先使用系统命令 if "_system_command" in action_data: command = action_data["_system_command"] logger.debug(f"{self.log_prefix} 从action_data中获取系统命令: {command}") # 新增:消息计数和疲惫检查 if action == "reply" and success: self._message_count += 1 current_threshold = self._get_current_fatigue_threshold() logger.info( f"{self.log_prefix} 已发送第 {self._message_count} 条消息(动态阈值: {current_threshold}, exit_focus_threshold: {global_config.chat.exit_focus_threshold})" ) # 检查是否达到疲惫阈值(只有在auto模式下才会自动退出) if ( global_config.chat.chat_mode == "auto" and self._message_count >= current_threshold and not self._fatigue_triggered ): self._fatigue_triggered = True logger.info( f"{self.log_prefix} [auto模式] 已发送 {self._message_count} 条消息,达到疲惫阈值 {current_threshold},麦麦感到疲惫了,准备退出专注聊天模式" ) # 设置系统命令,在下次循环检查时触发退出 command = "stop_focus_chat" elif self._message_count >= current_threshold and global_config.chat.chat_mode != "auto": logger.info( f"{self.log_prefix} [非auto模式] 已发送 {self._message_count} 条消息,达到疲惫阈值 {current_threshold},但非auto模式不会自动退出" ) logger.debug(f"{self.log_prefix} 麦麦执行了'{action}', 返回结果'{success}', '{reply_text}', '{command}'") return success, reply_text, command except Exception as e: logger.error(f"{self.log_prefix} 处理{action}时出错: {e}") traceback.print_exc() return False, "", "" def _get_current_fatigue_threshold(self) -> int: """动态获取当前的疲惫阈值,基于exit_focus_threshold配置 Returns: int: 当前的疲惫阈值 """ return max(10, int(30 / global_config.chat.exit_focus_threshold)) def get_message_count_info(self) -> dict: """获取消息计数信息 Returns: dict: 包含消息计数信息的字典 """ current_threshold = self._get_current_fatigue_threshold() return { "current_count": self._message_count, "threshold": current_threshold, "fatigue_triggered": self._fatigue_triggered, "remaining": max(0, current_threshold - self._message_count), } def reset_message_count(self): """重置消息计数器(用于重新启动focus模式时)""" self._message_count = 0 self._fatigue_triggered = False logger.info(f"{self.log_prefix} 消息计数器已重置") async def shutdown(self): """优雅关闭HeartFChatting实例,取消活动循环任务""" logger.info(f"{self.log_prefix} 正在关闭HeartFChatting...") self._shutting_down = True # <-- 在开始关闭时设置标志位 # 记录最终的消息统计 if self._message_count > 0: logger.info(f"{self.log_prefix} 本次focus会话共发送了 {self._message_count} 条消息") if self._fatigue_triggered: logger.info(f"{self.log_prefix} 因疲惫而退出focus模式") # 取消循环任务 if self._loop_task and not self._loop_task.done(): logger.info(f"{self.log_prefix} 正在取消HeartFChatting循环任务") self._loop_task.cancel() try: await asyncio.wait_for(self._loop_task, timeout=1.0) logger.info(f"{self.log_prefix} HeartFChatting循环任务已取消") except (asyncio.CancelledError, asyncio.TimeoutError): pass except Exception as e: logger.error(f"{self.log_prefix} 取消循环任务出错: {e}") else: logger.info(f"{self.log_prefix} 没有活动的HeartFChatting循环任务") # 清理状态 self._loop_active = False self._loop_task = None if self._processing_lock.locked(): self._processing_lock.release() logger.warning(f"{self.log_prefix} 已释放处理锁") # 完成性能统计 try: self.performance_logger.finalize_session() logger.info(f"{self.log_prefix} 性能统计已完成") except Exception as e: logger.warning(f"{self.log_prefix} 完成性能统计时出错: {e}") # 重置消息计数器,为下次启动做准备 self.reset_message_count() logger.info(f"{self.log_prefix} HeartFChatting关闭完成") def get_cycle_history(self, last_n: Optional[int] = None) -> List[Dict[str, Any]]: """获取循环历史记录 参数: last_n: 获取最近n个循环的信息,如果为None则获取所有历史记录 返回: List[Dict[str, Any]]: 循环历史记录列表 """ history = list(self._cycle_history) if last_n is not None: history = history[-last_n:] return [cycle.to_dict() for cycle in history]