import os import requests from typing import Tuple, Union class LLMModel: # def __init__(self, model_name="deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", **kwargs): def __init__(self, model_name="Pro/deepseek-ai/DeepSeek-R1",api_using=None, **kwargs): if api_using == "deepseek": self.api_key = os.getenv("DEEP_SEEK_KEY") self.base_url = os.getenv("DEEP_SEEK_BASE_URL") if model_name != "Pro/deepseek-ai/DeepSeek-R1": self.model_name = model_name else: self.model_name = "deepseek-reasoner" else: self.api_key = os.getenv("SILICONFLOW_KEY") self.base_url = os.getenv("SILICONFLOW_BASE_URL") self.model_name = model_name self.params = kwargs def generate_response(self, prompt: str) -> Tuple[str, str]: """根据输入的提示生成模型的响应""" headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json" } # 构建请求体 data = { "model": self.model_name, "messages": [{"role": "user", "content": prompt}], "temperature": 0.9, **self.params } # 发送请求到完整的chat/completions端点 api_url = f"{self.base_url.rstrip('/')}/chat/completions" try: response = requests.post(api_url, headers=headers, json=data) response.raise_for_status() # 检查响应状态 result = response.json() if "choices" in result and len(result["choices"]) > 0: content = result["choices"][0]["message"]["content"] reasoning_content = result["choices"][0]["message"].get("reasoning_content", "") return content, reasoning_content # 返回内容和推理内容 return "没有返回结果", "" # 返回两个值 except requests.exceptions.RequestException as e: return f"请求失败: {str(e)}", "" # 返回错误信息和空字符串 # 示例用法 if __name__ == "__main__": model = LLMModel() # 默认使用 DeepSeek-V3 模型 prompt = "你好,你喜欢我吗?" result, reasoning = model.generate_response(prompt) print("回复内容:", result) print("推理内容:", reasoning)