import aiohttp
import asyncio
import requests
import time
import re
from typing import Tuple, Union
from nonebot import get_driver
from loguru import logger
from ..chat.config import global_config
from ..chat.utils_image import compress_base64_image_by_scale
driver = get_driver()
config = driver.config
class LLM_request:
def __init__(self, model, **kwargs):
# 将大写的配置键转换为小写并从config中获取实际值
try:
self.api_key = getattr(config, model["key"])
self.base_url = getattr(config, model["base_url"])
except AttributeError as e:
logger.error(f"配置错误:找不到对应的配置项 - {str(e)}")
raise ValueError(f"配置错误:找不到对应的配置项 - {str(e)}") from e
self.model_name = model["name"]
self.params = kwargs
async def generate_response(self, prompt: str) -> Tuple[str, str]:
"""根据输入的提示生成模型的异步响应"""
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
# 构建请求体
data = {
"model": self.model_name,
"messages": [{"role": "user", "content": prompt}],
**self.params
}
# 发送请求到完整的chat/completions端点
api_url = f"{self.base_url.rstrip('/')}/chat/completions"
logger.info(f"发送请求到URL: {api_url}/{self.model_name}") # 记录请求的URL
max_retries = 3
base_wait_time = 15
for retry in range(max_retries):
try:
async with aiohttp.ClientSession() as session:
async with session.post(api_url, headers=headers, json=data) as response:
if response.status == 429:
wait_time = base_wait_time * (2 ** retry) # 指数退避
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
await asyncio.sleep(wait_time)
continue
if response.status in [500, 503]:
logger.error(f"服务器错误: {response.status}")
raise RuntimeError("服务器负载过高,模型恢复失败QAQ")
response.raise_for_status() # 检查其他响应状态
result = await response.json()
if "choices" in result and len(result["choices"]) > 0:
message = result["choices"][0]["message"]
content = message.get("content", "")
think_match = None
reasoning_content = message.get("reasoning_content", "")
if not reasoning_content:
think_match = re.search(r'(?:)?(.*?)', content, re.DOTALL)
if think_match:
reasoning_content = think_match.group(1).strip()
content = re.sub(r'(?:)?.*?', '', content, flags=re.DOTALL, count=1).strip()
return content, reasoning_content
return "没有返回结果", ""
except Exception as e:
if retry < max_retries - 1: # 如果还有重试机会
wait_time = base_wait_time * (2 ** retry)
logger.error(f"[回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True)
await asyncio.sleep(wait_time)
else:
logger.critical(f"请求失败: {str(e)}", exc_info=True)
logger.critical(f"请求头: {headers} 请求体: {data}")
raise RuntimeError(f"API请求失败: {str(e)}")
logger.error("达到最大重试次数,请求仍然失败")
raise RuntimeError("达到最大重试次数,API请求仍然失败")
async def generate_response_for_image(self, prompt: str, image_base64: str) -> Tuple[str, str]:
"""根据输入的提示和图片生成模型的异步响应"""
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
# 构建请求体
def build_request_data(img_base64: str):
return {
"model": self.model_name,
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": prompt
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{img_base64}"
}
}
]
}
],
**self.params
}
# 发送请求到完整的chat/completions端点
api_url = f"{self.base_url.rstrip('/')}/chat/completions"
logger.info(f"发送请求到URL: {api_url}/{self.model_name}") # 记录请求的URL
max_retries = 3
base_wait_time = 15
current_image_base64 = image_base64
current_image_base64 = compress_base64_image_by_scale(current_image_base64)
for retry in range(max_retries):
try:
data = build_request_data(current_image_base64)
async with aiohttp.ClientSession() as session:
async with session.post(api_url, headers=headers, json=data) as response:
if response.status == 429:
wait_time = base_wait_time * (2 ** retry) # 指数退避
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
await asyncio.sleep(wait_time)
continue
elif response.status == 413:
logger.warning("图片太大(413),尝试压缩...")
current_image_base64 = compress_base64_image_by_scale(current_image_base64)
continue
response.raise_for_status() # 检查其他响应状态
result = await response.json()
if "choices" in result and len(result["choices"]) > 0:
message = result["choices"][0]["message"]
content = message.get("content", "")
think_match = None
reasoning_content = message.get("reasoning_content", "")
if not reasoning_content:
think_match = re.search(r'(?:)?(.*?)', content, re.DOTALL)
if think_match:
reasoning_content = think_match.group(1).strip()
content = re.sub(r'(?:)?.*?', '', content, flags=re.DOTALL, count=1).strip()
return content, reasoning_content
return "没有返回结果", ""
except Exception as e:
if retry < max_retries - 1: # 如果还有重试机会
wait_time = base_wait_time * (2 ** retry)
logger.error(f"[image回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True)
await asyncio.sleep(wait_time)
else:
logger.critical(f"请求失败: {str(e)}", exc_info=True)
logger.critical(f"请求头: {headers} 请求体: {data}")
raise RuntimeError(f"API请求失败: {str(e)}")
logger.error("达到最大重试次数,请求仍然失败")
raise RuntimeError("达到最大重试次数,API请求仍然失败")
async def generate_response_async(self, prompt: str) -> Union[str, Tuple[str, str]]:
"""异步方式根据输入的提示生成模型的响应"""
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
# 构建请求体
data = {
"model": self.model_name,
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.5,
**self.params
}
# 发送请求到完整的 chat/completions 端点
api_url = f"{self.base_url.rstrip('/')}/chat/completions"
logger.info(f"Request URL: {api_url}") # 记录请求的 URL
max_retries = 3
base_wait_time = 15
async with aiohttp.ClientSession() as session:
for retry in range(max_retries):
try:
async with session.post(api_url, headers=headers, json=data) as response:
if response.status == 429:
wait_time = base_wait_time * (2 ** retry) # 指数退避
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
await asyncio.sleep(wait_time)
continue
response.raise_for_status() # 检查其他响应状态
result = await response.json()
if "choices" in result and len(result["choices"]) > 0:
message = result["choices"][0]["message"]
content = message.get("content", "")
think_match = None
reasoning_content = message.get("reasoning_content", "")
if not reasoning_content:
think_match = re.search(r'(?:)?(.*?)', content, re.DOTALL)
if think_match:
reasoning_content = think_match.group(1).strip()
content = re.sub(r'(?:)?.*?', '', content, flags=re.DOTALL, count=1).strip()
return content, reasoning_content
return "没有返回结果", ""
except Exception as e:
if retry < max_retries - 1: # 如果还有重试机会
wait_time = base_wait_time * (2 ** retry)
logger.error(f"[回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
await asyncio.sleep(wait_time)
else:
logger.error(f"请求失败: {str(e)}")
logger.critical(f"请求头: {headers} 请求体: {data}")
return f"请求失败: {str(e)}", ""
logger.error("达到最大重试次数,请求仍然失败")
return "达到最大重试次数,请求仍然失败", ""
def generate_response_for_image_sync(self, prompt: str, image_base64: str) -> Tuple[str, str]:
"""同步方法:根据输入的提示和图片生成模型的响应"""
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
image_base64=compress_base64_image_by_scale(image_base64)
# 构建请求体
data = {
"model": self.model_name,
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": prompt
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}"
}
}
]
}
],
**self.params
}
# 发送请求到完整的chat/completions端点
api_url = f"{self.base_url.rstrip('/')}/chat/completions"
logger.info(f"发送请求到URL: {api_url}/{self.model_name}") # 记录请求的URL
max_retries = 2
base_wait_time = 6
for retry in range(max_retries):
try:
response = requests.post(api_url, headers=headers, json=data, timeout=30)
if response.status_code == 429:
wait_time = base_wait_time * (2 ** retry)
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
time.sleep(wait_time)
continue
response.raise_for_status() # 检查其他响应状态
result = response.json()
if "choices" in result and len(result["choices"]) > 0:
message = result["choices"][0]["message"]
content = message.get("content", "")
think_match = None
reasoning_content = message.get("reasoning_content", "")
if not reasoning_content:
think_match = re.search(r'(?:)?(.*?)', content, re.DOTALL)
if think_match:
reasoning_content = think_match.group(1).strip()
content = re.sub(r'(?:)?.*?', '', content, flags=re.DOTALL, count=1).strip()
return content, reasoning_content
return "没有返回结果", ""
except Exception as e:
if retry < max_retries - 1: # 如果还有重试机会
wait_time = base_wait_time * (2 ** retry)
logger.error(f"[image_sync回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True)
time.sleep(wait_time)
else:
logger.critical(f"请求失败: {str(e)}", exc_info=True)
logger.critical(f"请求头: {headers} 请求体: {data}")
raise RuntimeError(f"API请求失败: {str(e)}")
logger.error("达到最大重试次数,请求仍然失败")
raise RuntimeError("达到最大重试次数,API请求仍然失败")
def get_embedding_sync(self, text: str, model: str = "BAAI/bge-m3") -> Union[list, None]:
"""同步方法:获取文本的embedding向量
Args:
text: 需要获取embedding的文本
model: 使用的模型名称,默认为"BAAI/bge-m3"
Returns:
list: embedding向量,如果失败则返回None
"""
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
data = {
"model": model,
"input": text,
"encoding_format": "float"
}
api_url = f"{self.base_url.rstrip('/')}/embeddings"
logger.info(f"发送请求到URL: {api_url}/{self.model_name}") # 记录请求的URL
max_retries = 2
base_wait_time = 6
for retry in range(max_retries):
try:
response = requests.post(api_url, headers=headers, json=data, timeout=30)
if response.status_code == 429:
wait_time = base_wait_time * (2 ** retry)
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
time.sleep(wait_time)
continue
response.raise_for_status()
result = response.json()
if 'data' in result and len(result['data']) > 0:
return result['data'][0]['embedding']
return None
except Exception as e:
if retry < max_retries - 1:
wait_time = base_wait_time * (2 ** retry)
logger.error(f"[embedding_sync]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True)
time.sleep(wait_time)
else:
logger.critical(f"embedding请求失败: {str(e)}", exc_info=True)
logger.critical(f"请求头: {headers} 请求体: {data}")
return None
logger.error("达到最大重试次数,embedding请求仍然失败")
return None
async def get_embedding(self, text: str, model: str = "BAAI/bge-m3") -> Union[list, None]:
"""异步方法:获取文本的embedding向量
Args:
text: 需要获取embedding的文本
model: 使用的模型名称,默认为"BAAI/bge-m3"
Returns:
list: embedding向量,如果失败则返回None
"""
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
data = {
"model": model,
"input": text,
"encoding_format": "float"
}
api_url = f"{self.base_url.rstrip('/')}/embeddings"
logger.info(f"发送请求到URL: {api_url}/{self.model_name}") # 记录请求的URL
max_retries = 3
base_wait_time = 15
for retry in range(max_retries):
try:
async with aiohttp.ClientSession() as session:
async with session.post(api_url, headers=headers, json=data) as response:
if response.status == 429:
wait_time = base_wait_time * (2 ** retry)
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
await asyncio.sleep(wait_time)
continue
response.raise_for_status()
result = await response.json()
if 'data' in result and len(result['data']) > 0:
return result['data'][0]['embedding']
return None
except Exception as e:
if retry < max_retries - 1:
wait_time = base_wait_time * (2 ** retry)
logger.error(f"[embedding]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True)
await asyncio.sleep(wait_time)
else:
logger.critical(f"embedding请求失败: {str(e)}", exc_info=True)
logger.critical(f"请求头: {headers} 请求体: {data}")
return None
logger.error("达到最大重试次数,embedding请求仍然失败")
return None
def rerank_sync(self, query: str, documents: list, top_k: int = 5) -> list:
"""同步方法:使用重排序API对文档进行排序
Args:
query: 查询文本
documents: 待排序的文档列表
top_k: 返回前k个结果
Returns:
list: [(document, score), ...] 格式的结果列表
"""
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
data = {
"model": self.model_name,
"query": query,
"documents": documents,
"top_n": top_k,
"return_documents": True,
}
api_url = f"{self.base_url.rstrip('/')}/rerank"
logger.info(f"发送请求到URL: {api_url}")
max_retries = 2
base_wait_time = 6
for retry in range(max_retries):
try:
response = requests.post(api_url, headers=headers, json=data, timeout=30)
if response.status_code == 429:
wait_time = base_wait_time * (2 ** retry)
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
time.sleep(wait_time)
continue
if response.status_code in [500, 503]:
wait_time = base_wait_time * (2 ** retry)
logger.error(f"服务器错误({response.status_code}),等待{wait_time}秒后重试...")
if retry < max_retries - 1:
time.sleep(wait_time)
continue
else:
# 如果是最后一次重试,尝试使用chat/completions作为备选方案
return self._fallback_rerank_with_chat(query, documents, top_k)
response.raise_for_status()
result = response.json()
if 'results' in result:
return [(item["document"], item["score"]) for item in result["results"]]
return []
except Exception as e:
if retry < max_retries - 1:
wait_time = base_wait_time * (2 ** retry)
logger.error(f"[rerank_sync]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True)
time.sleep(wait_time)
else:
logger.critical(f"重排序请求失败: {str(e)}", exc_info=True)
logger.error("达到最大重试次数,重排序请求仍然失败")
return []
async def rerank(self, query: str, documents: list, top_k: int = 5) -> list:
"""异步方法:使用重排序API对文档进行排序
Args:
query: 查询文本
documents: 待排序的文档列表
top_k: 返回前k个结果
Returns:
list: [(document, score), ...] 格式的结果列表
"""
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
data = {
"model": self.model_name,
"query": query,
"documents": documents,
"top_n": top_k,
"return_documents": True,
}
api_url = f"{self.base_url.rstrip('/')}/v1/rerank"
logger.info(f"发送请求到URL: {api_url}")
max_retries = 3
base_wait_time = 15
for retry in range(max_retries):
try:
async with aiohttp.ClientSession() as session:
async with session.post(api_url, headers=headers, json=data) as response:
if response.status == 429:
wait_time = base_wait_time * (2 ** retry)
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
await asyncio.sleep(wait_time)
continue
if response.status in [500, 503]:
wait_time = base_wait_time * (2 ** retry)
logger.error(f"服务器错误({response.status}),等待{wait_time}秒后重试...")
if retry < max_retries - 1:
await asyncio.sleep(wait_time)
continue
else:
# 如果是最后一次重试,尝试使用chat/completions作为备选方案
return await self._fallback_rerank_with_chat_async(query, documents, top_k)
response.raise_for_status()
result = await response.json()
if 'results' in result:
return [(item["document"], item["score"]) for item in result["results"]]
return []
except Exception as e:
if retry < max_retries - 1:
wait_time = base_wait_time * (2 ** retry)
logger.error(f"[rerank]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True)
await asyncio.sleep(wait_time)
else:
logger.critical(f"重排序请求失败: {str(e)}", exc_info=True)
# 作为最后的备选方案,尝试使用chat/completions
return await self._fallback_rerank_with_chat_async(query, documents, top_k)
logger.error("达到最大重试次数,重排序请求仍然失败")
return []
async def _fallback_rerank_with_chat_async(self, query: str, documents: list, top_k: int = 5) -> list:
"""当rerank API失败时的备选方案,使用chat/completions异步实现重排序
Args:
query: 查询文本
documents: 待排序的文档列表
top_k: 返回前k个结果
Returns:
list: [(document, score), ...] 格式的结果列表
"""
try:
logger.info("使用chat/completions作为重排序的备选方案")
# 构建提示词
prompt = f"""请对以下文档列表进行重排序,按照与查询的相关性从高到低排序。
查询: {query}
文档列表:
{documents}
请以JSON格式返回排序结果,格式为:
[{{"document": "文档内容", "score": 相关性分数}}, ...]
只返回JSON,不要其他任何文字。"""
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
data = {
"model": self.model_name,
"messages": [{"role": "user", "content": prompt}],
**self.params
}
api_url = f"{self.base_url.rstrip('/')}/v1/chat/completions"
async with aiohttp.ClientSession() as session:
async with session.post(api_url, headers=headers, json=data) as response:
response.raise_for_status()
result = await response.json()
if "choices" in result and len(result["choices"]) > 0:
message = result["choices"][0]["message"]
content = message.get("content", "")
try:
import json
parsed_content = json.loads(content)
if isinstance(parsed_content, list):
return [(item["document"], item["score"]) for item in parsed_content]
except:
pass
return []
except Exception as e:
logger.error(f"备选方案也失败了: {str(e)}")
return []