import traceback from typing import Dict, Any from src.common.logger_manager import get_logger from src.manager.mood_manager import mood_manager # 导入情绪管理器 from src.chat.message_receive.chat_stream import chat_manager from src.chat.message_receive.message import MessageRecv from src.experimental.only_message_process import MessageProcessor from src.experimental.PFC.pfc_manager import PFCManager from src.chat.focus_chat.heartflow_message_processor import HeartFCMessageReceiver from src.chat.utils.prompt_builder import Prompt, global_prompt_manager from src.config.config import global_config from src.chat.command.command_handler import command_manager # 导入命令管理器 # 定义日志配置 # 配置主程序日志格式 logger = get_logger("chat") class ChatBot: def __init__(self): self.bot = None # bot 实例引用 self._started = False self.mood_manager = mood_manager # 获取情绪管理器单例 self.heartflow_message_receiver = HeartFCMessageReceiver() # 新增 # 创建初始化PFC管理器的任务,会在_ensure_started时执行 self.only_process_chat = MessageProcessor() self.pfc_manager = PFCManager.get_instance() async def _ensure_started(self): """确保所有任务已启动""" if not self._started: logger.trace("确保ChatBot所有任务已启动") self._started = True async def _create_pfc_chat(self, message: MessageRecv): try: if global_config.experimental.pfc_chatting: chat_id = str(message.chat_stream.stream_id) private_name = str(message.message_info.user_info.user_nickname) await self.pfc_manager.get_or_create_conversation(chat_id, private_name) except Exception as e: logger.error(f"创建PFC聊天失败: {e}") async def message_process(self, message_data: Dict[str, Any]) -> None: """处理转化后的统一格式消息 这个函数本质是预处理一些数据,根据配置信息和消息内容,预处理消息,并分发到合适的消息处理器中 heart_flow模式:使用思维流系统进行回复 - 包含思维流状态管理 - 在回复前进行观察和状态更新 - 回复后更新思维流状态 - 消息过滤 - 记忆激活 - 意愿计算 - 消息生成和发送 - 表情包处理 - 性能计时 """ try: # 确保所有任务已启动 await self._ensure_started() if message_data["message_info"].get("group_info") is not None: message_data["message_info"]["group_info"]["group_id"] = str( message_data["message_info"]["group_info"]["group_id"] ) message_data["message_info"]["user_info"]["user_id"] = str( message_data["message_info"]["user_info"]["user_id"] ) # print(message_data) # logger.debug(str(message_data)) message = MessageRecv(message_data) group_info = message.message_info.group_info user_info = message.message_info.user_info chat_manager.register_message(message) # 创建聊天流 chat = await chat_manager.get_or_create_stream( platform=message.message_info.platform, user_info=user_info, group_info=group_info, ) message.update_chat_stream(chat) # 处理消息内容,生成纯文本 await message.process() # 命令处理 - 在消息处理的早期阶段检查并处理命令 is_command, cmd_result, continue_process = await command_manager.process_command(message) # 如果是命令且不需要继续处理,则直接返回 if is_command and not continue_process: logger.info(f"命令处理完成,跳过后续消息处理: {cmd_result}") return # 确认从接口发来的message是否有自定义的prompt模板信息 if message.message_info.template_info and not message.message_info.template_info.template_default: template_group_name = message.message_info.template_info.template_name template_items = message.message_info.template_info.template_items async with global_prompt_manager.async_message_scope(template_group_name): if isinstance(template_items, dict): for k in template_items.keys(): await Prompt.create_async(template_items[k], k) logger.debug(f"注册{template_items[k]},{k}") else: template_group_name = None async def preprocess(): logger.trace("开始预处理消息...") # 如果在私聊中 if group_info is None: logger.trace("检测到私聊消息") if global_config.experimental.pfc_chatting: logger.trace("进入PFC私聊处理流程") # 创建聊天流 logger.trace(f"为{user_info.user_id}创建/获取聊天流") await self.only_process_chat.process_message(message) await self._create_pfc_chat(message) # 禁止PFC,进入普通的心流消息处理逻辑 else: logger.trace("进入普通心流私聊处理") await self.heartflow_message_receiver.process_message(message_data) # 群聊默认进入心流消息处理逻辑 else: logger.trace(f"检测到群聊消息,群ID: {group_info.group_id}") await self.heartflow_message_receiver.process_message(message_data) if template_group_name: async with global_prompt_manager.async_message_scope(template_group_name): await preprocess() else: await preprocess() except Exception as e: logger.error(f"预处理消息失败: {e}") traceback.print_exc() # 创建全局ChatBot实例 chat_bot = ChatBot()