#Programmable Friendly Conversationalist #Prefrontal cortex import datetime import asyncio from typing import List, Optional, Dict, Any, Tuple, Literal from enum import Enum from src.common.database import db from src.common.logger import get_module_logger from src.plugins.memory_system.Hippocampus import HippocampusManager from ..chat.chat_stream import ChatStream from ..message.message_base import UserInfo, Seg from ..chat.message import Message from ..models.utils_model import LLM_request from ..config.config import global_config from src.plugins.chat.message import MessageSending, MessageRecv, MessageThinking, MessageSet from src.plugins.chat.message_sender import message_manager from src.plugins.chat.chat_stream import chat_manager from src.plugins.willing.willing_manager import willing_manager from ..message.api import global_api from ..storage.storage import MessageStorage from .chat_observer import ChatObserver from .pfc_KnowledgeFetcher import KnowledgeFetcher from .reply_checker import ReplyChecker import json import time logger = get_module_logger("pfc") class ConversationState(Enum): """对话状态""" INIT = "初始化" RETHINKING = "重新思考" ANALYZING = "分析历史" PLANNING = "规划目标" GENERATING = "生成回复" CHECKING = "检查回复" SENDING = "发送消息" WAITING = "等待" LISTENING = "倾听" ENDED = "结束" JUDGING = "判断" ActionType = Literal["direct_reply", "fetch_knowledge", "wait"] class ActionPlanner: """行动规划器""" def __init__(self, stream_id: str): self.llm = LLM_request( model=global_config.llm_normal, temperature=0.7, max_tokens=1000, request_type="action_planning" ) self.personality_info = " ".join(global_config.PROMPT_PERSONALITY) self.name = global_config.BOT_NICKNAME self.chat_observer = ChatObserver.get_instance(stream_id) async def plan( self, goal: str, method: str, reasoning: str, action_history: List[Dict[str, str]] = None, chat_observer: Optional[ChatObserver] = None, # 添加chat_observer参数 ) -> Tuple[str, str]: """规划下一步行动 Args: goal: 对话目标 method: 实现方式 reasoning: 目标原因 action_history: 行动历史记录 Returns: Tuple[str, str]: (行动类型, 行动原因) """ # 构建提示词 # 获取最近20条消息 self.chat_observer.waiting_start_time = time.time() messages = self.chat_observer.get_message_history(limit=20) chat_history_text = "" for msg in messages: time_str = datetime.datetime.fromtimestamp(msg["time"]).strftime("%H:%M:%S") user_info = UserInfo.from_dict(msg.get("user_info", {})) sender = user_info.user_nickname or f"用户{user_info.user_id}" if sender == self.name: sender = "你说" chat_history_text += f"{time_str},{sender}:{msg.get('processed_plain_text', '')}\n" personality_text = f"你的名字是{self.name},{self.personality_info}" # 构建action历史文本 action_history_text = "" if action_history: if action_history[-1]['action'] == "direct_reply": action_history_text = "你刚刚发言回复了对方" # 获取时间信息 time_info = self.chat_observer.get_time_info() prompt = f"""现在你在参与一场QQ聊天,请分析以下内容,根据信息决定下一步行动: {personality_text} 当前对话目标:{goal} 实现该对话目标的方式:{method} 产生该对话目标的原因:{reasoning} {time_info} 最近的对话记录: {chat_history_text} {action_history_text} 请你接下去想想要你要做什么,可以发言,可以等待,可以倾听,可以调取知识。注意不同行动类型的要求,不要重复发言: 行动类型: fetch_knowledge: 需要调取知识,当需要专业知识或特定信息时选择 wait: 当你做出了发言,对方尚未回复时等待对方的回复 listening: 倾听对方发言,当你认为对方发言尚未结束时采用 direct_reply: 不符合上述情况,回复对方,注意不要过多或者重复发言 rethink_goal: 重新思考对话目标,当发现对话目标不合适时选择,会重新思考对话目标 judge_conversation: 判断对话是否结束,当发现对话目标已经达到或者希望停止对话时选择,会判断对话是否结束 请以JSON格式输出,包含以下字段: 1. action: 行动类型,注意你之前的行为 2. reason: 选择该行动的原因,注意你之前的行为(简要解释) 注意:请严格按照JSON格式输出,不要包含任何其他内容。""" logger.debug(f"发送到LLM的提示词: {prompt}") try: content, _ = await self.llm.generate_response_async(prompt) logger.debug(f"LLM原始返回内容: {content}") # 清理内容,尝试提取JSON部分 content = content.strip() try: # 尝试直接解析 result = json.loads(content) except json.JSONDecodeError: # 如果直接解析失败,尝试查找和提取JSON部分 import re json_pattern = r'\{[^{}]*\}' json_match = re.search(json_pattern, content) if json_match: try: result = json.loads(json_match.group()) except json.JSONDecodeError: logger.error("提取的JSON内容解析失败,返回默认行动") return "direct_reply", "JSON解析失败,选择直接回复" else: # 如果找不到JSON,尝试从文本中提取行动和原因 if "direct_reply" in content.lower(): return "direct_reply", "从文本中提取的行动" elif "fetch_knowledge" in content.lower(): return "fetch_knowledge", "从文本中提取的行动" elif "wait" in content.lower(): return "wait", "从文本中提取的行动" elif "listening" in content.lower(): return "listening", "从文本中提取的行动" elif "rethink_goal" in content.lower(): return "rethink_goal", "从文本中提取的行动" elif "judge_conversation" in content.lower(): return "judge_conversation", "从文本中提取的行动" else: logger.error("无法从返回内容中提取行动类型") return "direct_reply", "无法解析响应,选择直接回复" # 验证JSON字段 action = result.get("action", "direct_reply") reason = result.get("reason", "默认原因") # 验证action类型 if action not in ["direct_reply", "fetch_knowledge", "wait", "listening", "rethink_goal", "judge_conversation"]: logger.warning(f"未知的行动类型: {action},默认使用listening") action = "listening" logger.info(f"规划的行动: {action}") logger.info(f"行动原因: {reason}") return action, reason except Exception as e: logger.error(f"规划行动时出错: {str(e)}") return "direct_reply", "发生错误,选择直接回复" class GoalAnalyzer: """对话目标分析器""" def __init__(self, stream_id: str): self.llm = LLM_request( model=global_config.llm_normal, temperature=0.7, max_tokens=1000, request_type="conversation_goal" ) self.personality_info = " ".join(global_config.PROMPT_PERSONALITY) self.name = global_config.BOT_NICKNAME self.nick_name = global_config.BOT_ALIAS_NAMES self.chat_observer = ChatObserver.get_instance(stream_id) async def analyze_goal(self) -> Tuple[str, str, str]: """分析对话历史并设定目标 Args: chat_history: 聊天历史记录列表 Returns: Tuple[str, str, str]: (目标, 方法, 原因) """ max_retries = 3 for retry in range(max_retries): try: # 构建提示词 messages = self.chat_observer.get_message_history(limit=20) chat_history_text = "" for msg in messages: time_str = datetime.datetime.fromtimestamp(msg["time"]).strftime("%H:%M:%S") user_info = UserInfo.from_dict(msg.get("user_info", {})) sender = user_info.user_nickname or f"用户{user_info.user_id}" if sender == self.name: sender = "你说" chat_history_text += f"{time_str},{sender}:{msg.get('processed_plain_text', '')}\n" personality_text = f"你的名字是{self.name},{self.personality_info}" prompt = f"""{personality_text}。现在你在参与一场QQ聊天,请分析以下聊天记录,并根据你的性格特征确定一个明确的对话目标。 这个目标应该反映出对话的意图和期望的结果。 聊天记录: {chat_history_text} 请以JSON格式输出,包含以下字段: 1. goal: 对话目标(简短的一句话) 2. reasoning: 对话原因,为什么设定这个目标(简要解释) 输出格式示例: {{ "goal": "回答用户关于Python编程的具体问题", "reasoning": "用户提出了关于Python的技术问题,需要专业且准确的解答" }}""" logger.debug(f"发送到LLM的提示词: {prompt}") content, _ = await self.llm.generate_response_async(prompt) logger.debug(f"LLM原始返回内容: {content}") # 清理和验证返回内容 if not content or not isinstance(content, str): logger.error("LLM返回内容为空或格式不正确") continue # 尝试提取JSON部分 content = content.strip() try: # 尝试直接解析 result = json.loads(content) except json.JSONDecodeError: # 如果直接解析失败,尝试查找和提取JSON部分 import re json_pattern = r'\{[^{}]*\}' json_match = re.search(json_pattern, content) if json_match: try: result = json.loads(json_match.group()) except json.JSONDecodeError: logger.error(f"提取的JSON内容解析失败,重试第{retry + 1}次") continue else: logger.error(f"无法在返回内容中找到有效的JSON,重试第{retry + 1}次") continue # 验证JSON字段 if not all(key in result for key in ["goal", "reasoning"]): logger.error(f"JSON缺少必要字段,实际内容: {result},重试第{retry + 1}次") continue goal = result["goal"] reasoning = result["reasoning"] # 验证字段内容 if not isinstance(goal, str) or not isinstance(reasoning, str): logger.error(f"JSON字段类型错误,goal和reasoning必须是字符串,重试第{retry + 1}次") continue if not goal.strip() or not reasoning.strip(): logger.error(f"JSON字段内容为空,重试第{retry + 1}次") continue # 使用默认的方法 method = "以友好的态度回应" return goal, method, reasoning except Exception as e: logger.error(f"分析对话目标时出错: {str(e)},重试第{retry + 1}次") if retry == max_retries - 1: return "保持友好的对话", "以友好的态度回应", "确保对话顺利进行" continue # 所有重试都失败后的默认返回 return "保持友好的对话", "以友好的态度回应", "确保对话顺利进行" async def analyze_conversation(self,goal,reasoning): messages = self.chat_observer.get_message_history() chat_history_text = "" for msg in messages: time_str = datetime.datetime.fromtimestamp(msg["time"]).strftime("%H:%M:%S") user_info = UserInfo.from_dict(msg.get("user_info", {})) sender = user_info.user_nickname or f"用户{user_info.user_id}" if sender == self.name: sender = "你说" chat_history_text += f"{time_str},{sender}:{msg.get('processed_plain_text', '')}\n" personality_text = f"你的名字是{self.name},{self.personality_info}" prompt = f"""{personality_text}。现在你在参与一场QQ聊天, 当前对话目标:{goal} 产生该对话目标的原因:{reasoning} 请分析以下聊天记录,并根据你的性格特征评估该目标是否已经达到,或者你是否希望停止该次对话。 聊天记录: {chat_history_text} 请以JSON格式输出,包含以下字段: 1. goal_achieved: 对话目标是否已经达到(true/false) 2. stop_conversation: 是否希望停止该次对话(true/false) 3. reason: 为什么希望停止该次对话(简要解释) 输出格式示例: {{ "goal_achieved": true, "stop_conversation": false, "reason": "用户已经得到了满意的回答,但我仍希望继续聊天" }}""" logger.debug(f"发送到LLM的提示词: {prompt}") try: content, _ = await self.llm.generate_response_async(prompt) logger.debug(f"LLM原始返回内容: {content}") # 清理和验证返回内容 if not content or not isinstance(content, str): logger.error("LLM返回内容为空或格式不正确") return False, False, "确保对话顺利进行" # 尝试提取JSON部分 content = content.strip() try: # 尝试直接解析 result = json.loads(content) except json.JSONDecodeError: # 如果直接解析失败,尝试查找和提取JSON部分 import re json_pattern = r'\{[^{}]*\}' json_match = re.search(json_pattern, content) if json_match: try: result = json.loads(json_match.group()) except json.JSONDecodeError as e: logger.error(f"提取的JSON内容解析失败: {e}") return False, False, "确保对话顺利进行" else: logger.error("无法在返回内容中找到有效的JSON") return False, False, "确保对话顺利进行" # 验证JSON字段 if not all(key in result for key in ["goal_achieved", "stop_conversation", "reason"]): logger.error(f"JSON缺少必要字段,实际内容: {result}") return False, False, "确保对话顺利进行" goal_achieved = result["goal_achieved"] stop_conversation = result["stop_conversation"] reason = result["reason"] # 验证字段类型 if not isinstance(goal_achieved, bool): logger.error("goal_achieved 必须是布尔值") return False, False, "确保对话顺利进行" if not isinstance(stop_conversation, bool): logger.error("stop_conversation 必须是布尔值") return False, False, "确保对话顺利进行" if not isinstance(reason, str): logger.error("reason 必须是字符串") return False, False, "确保对话顺利进行" if not reason.strip(): logger.error("reason 不能为空") return False, False, "确保对话顺利进行" return goal_achieved, stop_conversation, reason except Exception as e: logger.error(f"分析对话目标时出错: {str(e)}") return False, False, "确保对话顺利进行" class Waiter: """快 速 等 待""" def __init__(self, stream_id: str): self.chat_observer = ChatObserver.get_instance(stream_id) self.personality_info = " ".join(global_config.PROMPT_PERSONALITY) self.name = global_config.BOT_NICKNAME async def wait(self) -> bool: """等待 Returns: bool: 是否超时(True表示超时) """ wait_start_time = self.chat_observer.waiting_start_time while not self.chat_observer.new_message_after(wait_start_time): await asyncio.sleep(1) logger.info("等待中...") # 检查是否超过60秒 if time.time() - wait_start_time > 60: logger.info("等待超过60秒,结束对话") return True logger.info("等待结束") return False class ReplyGenerator: """回复生成器""" def __init__(self, stream_id: str): self.llm = LLM_request( model=global_config.llm_normal, temperature=0.7, max_tokens=300, request_type="reply_generation" ) self.personality_info = " ".join(global_config.PROMPT_PERSONALITY) self.name = global_config.BOT_NICKNAME self.chat_observer = ChatObserver.get_instance(stream_id) self.reply_checker = ReplyChecker(stream_id) async def generate( self, goal: str, chat_history: List[Message], knowledge_cache: Dict[str, str], previous_reply: Optional[str] = None, retry_count: int = 0 ) -> Tuple[str, bool]: """生成回复 Args: goal: 对话目标 method: 实现方式 chat_history: 聊天历史 knowledge_cache: 知识缓存 previous_reply: 上一次生成的回复(如果有) retry_count: 当前重试次数 Returns: Tuple[str, bool]: (生成的回复, 是否需要重新规划) """ # 构建提示词 logger.debug(f"开始生成回复:当前目标: {goal}") self.chat_observer.trigger_update() # 触发立即更新 if not await self.chat_observer.wait_for_update(): logger.warning("等待消息更新超时") messages = self.chat_observer.get_message_history(limit=20) chat_history_text = "" for msg in messages: time_str = datetime.datetime.fromtimestamp(msg["time"]).strftime("%H:%M:%S") user_info = UserInfo.from_dict(msg.get("user_info", {})) sender = user_info.user_nickname or f"用户{user_info.user_id}" if sender == self.name: sender = "你说" chat_history_text += f"{time_str},{sender}:{msg.get('processed_plain_text', '')}\n" # 整理知识缓存 knowledge_text = "" if knowledge_cache: knowledge_text = "\n相关知识:" if isinstance(knowledge_cache, dict): for source, content in knowledge_cache.items(): knowledge_text += f"\n{content}" elif isinstance(knowledge_cache, list): for item in knowledge_cache: knowledge_text += f"\n{item}" # 添加上一次生成的回复信息 previous_reply_text = "" if previous_reply: previous_reply_text = f"\n上一次生成的回复(需要改进):\n{previous_reply}" personality_text = f"你的名字是{self.name},{self.personality_info}" prompt = f"""{personality_text}。现在你在参与一场QQ聊天,请根据以下信息生成回复: 当前对话目标:{goal} {knowledge_text} {previous_reply_text} 最近的聊天记录: {chat_history_text} 请根据上述信息,以你的性格特征生成一个自然、得体的回复。回复应该: 1. 符合对话目标,以"你"的角度发言 2. 体现你的性格特征 3. 自然流畅,像正常聊天一样,简短 4. 适当利用相关知识,但不要生硬引用 {f'5. 改进上一次回复中的问题' if previous_reply else ''} 请注意把握聊天内容,不要回复的太有条理,可以有个性。请分清"你"和对方说的话,不要把"你"说的话当做对方说的话,这是你自己说的话。 请你回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景,尽量不要说你说过的话 请你注意不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只输出回复内容。 不要输出多余内容(包括前后缀,冒号和引号,括号,表情包,at或 @等 )。 请直接输出回复内容,不需要任何额外格式。""" try: content, _ = await self.llm.generate_response_async(prompt) logger.info(f"生成的回复: {content}") # 检查生成的回复是否合适 is_suitable, reason, need_replan = await self.reply_checker.check( content, goal, retry_count ) if not is_suitable: logger.warning(f"生成的回复不合适,原因: {reason}") if need_replan: logger.info("需要重新规划对话目标") return "让我重新思考一下...", True else: # 递归调用,将当前回复作为previous_reply传入 return await self.generate( goal, chat_history, knowledge_cache, content, retry_count + 1 ) return content, False except Exception as e: logger.error(f"生成回复时出错: {e}") return "抱歉,我现在有点混乱,让我重新思考一下...", True class Conversation: # 类级别的实例管理 _instances: Dict[str, 'Conversation'] = {} @classmethod def get_instance(cls, stream_id: str) -> 'Conversation': """获取或创建对话实例""" if stream_id not in cls._instances: cls._instances[stream_id] = cls(stream_id) logger.info(f"创建新的对话实例: {stream_id}") return cls._instances[stream_id] @classmethod def remove_instance(cls, stream_id: str): """删除对话实例""" if stream_id in cls._instances: # 停止相关组件 instance = cls._instances[stream_id] instance.chat_observer.stop() # 删除实例 del cls._instances[stream_id] logger.info(f"已删除对话实例 {stream_id}") def __init__(self, stream_id: str): """初始化对话系统""" self.stream_id = stream_id self.state = ConversationState.INIT self.current_goal: Optional[str] = None self.current_method: Optional[str] = None self.goal_reasoning: Optional[str] = None self.generated_reply: Optional[str] = None self.should_continue = True # 初始化聊天观察器 self.chat_observer = ChatObserver.get_instance(stream_id) # 添加action历史记录 self.action_history: List[Dict[str, str]] = [] # 知识缓存 self.knowledge_cache: Dict[str, str] = {} # 确保初始化为字典 # 初始化各个组件 self.goal_analyzer = GoalAnalyzer(self.stream_id) self.action_planner = ActionPlanner(self.stream_id) self.reply_generator = ReplyGenerator(self.stream_id) self.knowledge_fetcher = KnowledgeFetcher() self.direct_sender = DirectMessageSender() self.waiter = Waiter(self.stream_id) # 创建聊天流 self.chat_stream = chat_manager.get_stream(self.stream_id) def _clear_knowledge_cache(self): """清空知识缓存""" self.knowledge_cache.clear() # 使用clear方法清空字典 async def start(self): """开始对话流程""" logger.info("对话系统启动") self.should_continue = True self.chat_observer.start() # 启动观察器 await asyncio.sleep(1) # 启动对话循环 await self._conversation_loop() async def _conversation_loop(self): """对话循环""" # 获取最近的消息历史 self.current_goal, self.current_method, self.goal_reasoning = await self.goal_analyzer.analyze_goal() while self.should_continue: # 执行行动 self.chat_observer.trigger_update() # 触发立即更新 if not await self.chat_observer.wait_for_update(): logger.warning("等待消息更新超时") action, reason = await self.action_planner.plan( self.current_goal, self.current_method, self.goal_reasoning, self.action_history, # 传入action历史 self.chat_observer # 传入chat_observer ) # 执行行动 await self._handle_action(action, reason) def _convert_to_message(self, msg_dict: Dict[str, Any]) -> Message: """将消息字典转换为Message对象""" try: chat_info = msg_dict.get("chat_info", {}) chat_stream = ChatStream.from_dict(chat_info) user_info = UserInfo.from_dict(msg_dict.get("user_info", {})) return Message( message_id=msg_dict["message_id"], chat_stream=chat_stream, time=msg_dict["time"], user_info=user_info, processed_plain_text=msg_dict.get("processed_plain_text", ""), detailed_plain_text=msg_dict.get("detailed_plain_text", "") ) except Exception as e: logger.warning(f"转换消息时出错: {e}") raise async def _handle_action(self, action: str, reason: str): """处理规划的行动""" logger.info(f"执行行动: {action}, 原因: {reason}") # 记录action历史 self.action_history.append({ "action": action, "reason": reason, "time": datetime.datetime.now().strftime("%H:%M:%S") }) # 只保留最近的10条记录 if len(self.action_history) > 10: self.action_history = self.action_history[-10:] if action == "direct_reply": self.state = ConversationState.GENERATING messages = self.chat_observer.get_message_history(limit=30) self.generated_reply, need_replan = await self.reply_generator.generate( self.current_goal, self.current_method, [self._convert_to_message(msg) for msg in messages], self.knowledge_cache ) if need_replan: self.state = ConversationState.RETHINKING self.current_goal, self.current_method, self.goal_reasoning = await self.goal_analyzer.analyze_goal() else: await self._send_reply() elif action == "fetch_knowledge": self.state = ConversationState.GENERATING messages = self.chat_observer.get_message_history(limit=30) knowledge, sources = await self.knowledge_fetcher.fetch( self.current_goal, [self._convert_to_message(msg) for msg in messages] ) logger.info(f"获取到知识,来源: {sources}") if knowledge != "未找到相关知识": self.knowledge_cache[sources] = knowledge self.generated_reply, need_replan = await self.reply_generator.generate( self.current_goal, self.current_method, [self._convert_to_message(msg) for msg in messages], self.knowledge_cache ) if need_replan: self.state = ConversationState.RETHINKING self.current_goal, self.current_method, self.goal_reasoning = await self.goal_analyzer.analyze_goal() else: await self._send_reply() elif action == "rethink_goal": self.state = ConversationState.RETHINKING self.current_goal, self.current_method, self.goal_reasoning = await self.goal_analyzer.analyze_goal() elif action == "judge_conversation": self.state = ConversationState.JUDGING self.goal_achieved, self.stop_conversation, self.reason = await self.goal_analyzer.analyze_conversation(self.current_goal, self.goal_reasoning) if self.stop_conversation: await self._stop_conversation() elif action == "listening": self.state = ConversationState.LISTENING logger.info("倾听对方发言...") if await self.waiter.wait(): # 如果返回True表示超时 await self._send_timeout_message() await self._stop_conversation() else: # wait self.state = ConversationState.WAITING logger.info("等待更多信息...") if await self.waiter.wait(): # 如果返回True表示超时 await self._send_timeout_message() await self._stop_conversation() async def _stop_conversation(self): """完全停止对话""" logger.info("停止对话") self.should_continue = False self.state = ConversationState.ENDED # 删除实例(这会同时停止chat_observer) self.remove_instance(self.stream_id) async def _send_timeout_message(self): """发送超时结束消息""" try: messages = self.chat_observer.get_message_history(limit=1) if not messages: return latest_message = self._convert_to_message(messages[0]) await self.direct_sender.send_message( chat_stream=self.chat_stream, content="抱歉,由于等待时间过长,我需要先去忙别的了。下次再聊吧~", reply_to_message=latest_message ) except Exception as e: logger.error(f"发送超时消息失败: {str(e)}") async def _send_reply(self): """发送回复""" if not self.generated_reply: logger.warning("没有生成回复") return messages = self.chat_observer.get_message_history(limit=1) if not messages: logger.warning("没有最近的消息可以回复") return latest_message = self._convert_to_message(messages[0]) try: await self.direct_sender.send_message( chat_stream=self.chat_stream, content=self.generated_reply, reply_to_message=latest_message ) self.chat_observer.trigger_update() # 触发立即更新 if not await self.chat_observer.wait_for_update(): logger.warning("等待消息更新超时") self.state = ConversationState.ANALYZING except Exception as e: logger.error(f"发送消息失败: {str(e)}") self.state = ConversationState.ANALYZING class DirectMessageSender: """直接发送消息到平台的发送器""" def __init__(self): self.logger = get_module_logger("direct_sender") self.storage = MessageStorage() async def send_message( self, chat_stream: ChatStream, content: str, reply_to_message: Optional[Message] = None, ) -> None: """直接发送消息到平台 Args: chat_stream: 聊天流 content: 消息内容 reply_to_message: 要回复的消息 """ # 构建消息对象 message_segment = Seg(type="text", data=content) bot_user_info = UserInfo( user_id=global_config.BOT_QQ, user_nickname=global_config.BOT_NICKNAME, platform=chat_stream.platform, ) message = MessageSending( message_id=f"dm{round(time.time(), 2)}", chat_stream=chat_stream, bot_user_info=bot_user_info, sender_info=reply_to_message.message_info.user_info if reply_to_message else None, message_segment=message_segment, reply=reply_to_message, is_head=True, is_emoji=False, thinking_start_time=time.time(), ) # 处理消息 await message.process() # 发送消息 try: message_json = message.to_dict() end_point = global_config.api_urls.get(chat_stream.platform, None) if not end_point: raise ValueError(f"未找到平台:{chat_stream.platform} 的url配置") await global_api.send_message(end_point, message_json) # 存储消息 await self.storage.store_message(message, message.chat_stream) self.logger.info(f"直接发送消息成功: {content[:30]}...") except Exception as e: self.logger.error(f"直接发送消息失败: {str(e)}") raise