import aiohttp import asyncio import json import requests import time import re from typing import Tuple, Union from nonebot import get_driver from loguru import logger from ..chat.config import global_config from ..chat.utils_image import compress_base64_image_by_scale from datetime import datetime from ...common.database import Database driver = get_driver() config = driver.config class LLM_request: def __init__(self, model, **kwargs): # 将大写的配置键转换为小写并从config中获取实际值 try: self.api_key = getattr(config, model["key"]) self.base_url = getattr(config, model["base_url"]) except AttributeError as e: logger.error(f"配置错误:找不到对应的配置项 - {str(e)}") raise ValueError(f"配置错误:找不到对应的配置项 - {str(e)}") from e self.model_name = model["name"] self.params = kwargs self.pri_in = model.get("pri_in", 0) self.pri_out = model.get("pri_out", 0) # 获取数据库实例 self.db = Database.get_instance() self._init_database() def _init_database(self): """初始化数据库集合""" try: # 创建llm_usage集合的索引 self.db.db.llm_usage.create_index([("timestamp", 1)]) self.db.db.llm_usage.create_index([("model_name", 1)]) self.db.db.llm_usage.create_index([("user_id", 1)]) self.db.db.llm_usage.create_index([("request_type", 1)]) except Exception as e: logger.error(f"创建数据库索引失败: {e}") def _record_usage(self, prompt_tokens: int, completion_tokens: int, total_tokens: int, user_id: str = "system", request_type: str = "chat", endpoint: str = "/chat/completions"): """记录模型使用情况到数据库 Args: prompt_tokens: 输入token数 completion_tokens: 输出token数 total_tokens: 总token数 user_id: 用户ID,默认为system request_type: 请求类型(chat/embedding/image等) endpoint: API端点 """ try: usage_data = { "model_name": self.model_name, "user_id": user_id, "request_type": request_type, "endpoint": endpoint, "prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens, "total_tokens": total_tokens, "cost": self._calculate_cost(prompt_tokens, completion_tokens), "status": "success", "timestamp": datetime.now() } self.db.db.llm_usage.insert_one(usage_data) logger.info( f"Token使用情况 - 模型: {self.model_name}, " f"用户: {user_id}, 类型: {request_type}, " f"提示词: {prompt_tokens}, 完成: {completion_tokens}, " f"总计: {total_tokens}" ) except Exception as e: logger.error(f"记录token使用情况失败: {e}") def _calculate_cost(self, prompt_tokens: int, completion_tokens: int) -> float: """计算API调用成本 使用模型的pri_in和pri_out价格计算输入和输出的成本 Args: prompt_tokens: 输入token数量 completion_tokens: 输出token数量 Returns: float: 总成本(元) """ # 使用模型的pri_in和pri_out计算成本 input_cost = (prompt_tokens / 1000000) * self.pri_in output_cost = (completion_tokens / 1000000) * self.pri_out return round(input_cost + output_cost, 6) async def _execute_request( self, endpoint: str, prompt: str = None, image_base64: str = None, payload: dict = None, retry_policy: dict = None, response_handler: callable = None, user_id: str = "system", request_type: str = "chat" ): """统一请求执行入口 Args: endpoint: API端点路径 (如 "chat/completions") prompt: prompt文本 image_base64: 图片的base64编码 payload: 请求体数据 retry_policy: 自定义重试策略 response_handler: 自定义响应处理器 user_id: 用户ID request_type: 请求类型 """ # 合并重试策略 default_retry = { "max_retries": 3, "base_wait": 15, "retry_codes": [429, 413, 500, 503], "abort_codes": [400, 401, 402, 403]} policy = {**default_retry, **(retry_policy or {})} # 常见Error Code Mapping error_code_mapping = { 400: "参数不正确", 401: "API key 错误,认证失败", 402: "账号余额不足", 403: "需要实名,或余额不足", 404: "Not Found", 429: "请求过于频繁,请稍后再试", 500: "服务器内部故障", 503: "服务器负载过高" } api_url = f"{self.base_url.rstrip('/')}/{endpoint.lstrip('/')}" #判断是否为流式 stream_mode = self.params.get("stream", False) if self.params.get("stream", False) is True: logger.info(f"进入流式输出模式,发送请求到URL: {api_url}") else: logger.info(f"发送请求到URL: {api_url}") logger.info(f"使用模型: {self.model_name}") # 构建请求体 if image_base64: payload = await self._build_payload(prompt, image_base64) elif payload is None: payload = await self._build_payload(prompt) for retry in range(policy["max_retries"]): try: # 使用上下文管理器处理会话 headers = await self._build_headers() #似乎是openai流式必须要的东西,不过阿里云的qwq-plus加了这个没有影响 if stream_mode: headers["Accept"] = "text/event-stream" async with aiohttp.ClientSession() as session: async with session.post(api_url, headers=headers, json=payload) as response: # 处理需要重试的状态码 if response.status in policy["retry_codes"]: wait_time = policy["base_wait"] * (2 ** retry) logger.warning(f"错误码: {response.status}, 等待 {wait_time}秒后重试") if response.status == 413: logger.warning("请求体过大,尝试压缩...") image_base64 = compress_base64_image_by_scale(image_base64) payload = await self._build_payload(prompt, image_base64) elif response.status in [500, 503]: logger.error(f"错误码: {response.status} - {error_code_mapping.get(response.status)}") raise RuntimeError("服务器负载过高,模型恢复失败QAQ") else: logger.warning(f"请求限制(429),等待{wait_time}秒后重试...") await asyncio.sleep(wait_time) continue elif response.status in policy["abort_codes"]: logger.error(f"错误码: {response.status} - {error_code_mapping.get(response.status)}") raise RuntimeError(f"请求被拒绝: {error_code_mapping.get(response.status)}") response.raise_for_status() if stream_mode: accumulated_content = "" async for line_bytes in response.content: line = line_bytes.decode("utf-8").strip() if not line: continue if line.startswith("data:"): data_str = line[5:].strip() if data_str == "[DONE]": break try: chunk = json.loads(data_str) delta = chunk["choices"][0]["delta"] delta_content = delta.get("content") if delta_content is None: delta_content = "" accumulated_content += delta_content except Exception as e: logger.error(f"解析流式输出错误: {e}") content = accumulated_content reasoning_content = "" think_match = re.search(r'(.*?)', content, re.DOTALL) if think_match: reasoning_content = think_match.group(1).strip() content = re.sub(r'.*?', '', content, flags=re.DOTALL).strip() # 构造一个伪result以便调用自定义响应处理器或默认处理器 result = {"choices": [{"message": {"content": content, "reasoning_content": reasoning_content}}]} return response_handler(result) if response_handler else self._default_response_handler(result, user_id, request_type, endpoint) else: result = await response.json() # 使用自定义处理器或默认处理 return response_handler(result) if response_handler else self._default_response_handler(result, user_id, request_type, endpoint) except Exception as e: if retry < policy["max_retries"] - 1: wait_time = policy["base_wait"] * (2 ** retry) logger.error(f"请求失败,等待{wait_time}秒后重试... 错误: {str(e)}") await asyncio.sleep(wait_time) else: logger.critical(f"请求失败: {str(e)}") logger.critical(f"请求头: {await self._build_headers()} 请求体: {payload}") raise RuntimeError(f"API请求失败: {str(e)}") logger.error("达到最大重试次数,请求仍然失败") raise RuntimeError("达到最大重试次数,API请求仍然失败") async def _build_payload(self, prompt: str, image_base64: str = None) -> dict: """构建请求体""" # 复制一份参数,避免直接修改 self.params params_copy = dict(self.params) if self.model_name.lower() == "o3-mini" or "o1-mini" or "o1" or "o1-2024-12-17" or "o1-preview-2024-09-12" or "o3-mini-2025-01-31" or "o1-mini-2024-09-12": # 删除可能存在的 'temprature' 参数 params_copy.pop("temprature", None) # 如果存在 'max_tokens' 参数,则将其替换为 'max_completion_tokens' if "max_tokens" in params_copy: params_copy["max_completion_tokens"] = params_copy.pop("max_tokens") # 构造基础请求体,注意这里依然使用 global_config.max_response_length 填充 'max_tokens' # 如果需要统一改为 max_completion_tokens,也可以在下面做相同的调整 if image_base64: payload = { "model": self.model_name, "messages": [ { "role": "user", "content": [ {"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}} ] } ], "max_tokens": global_config.max_response_length, **params_copy } else: payload = { "model": self.model_name, "messages": [{"role": "user", "content": prompt}], "max_tokens": global_config.max_response_length, **params_copy } # 如果是 o3-mini 模型,也将基础请求体中的 max_tokens 改为 max_completion_tokens if self.model_name.lower() == "o3-mini" and "max_tokens" in payload: payload["max_completion_tokens"] = payload.pop("max_tokens") return payload def _default_response_handler(self, result: dict, user_id: str = "system", request_type: str = "chat", endpoint: str = "/chat/completions") -> Tuple: """默认响应解析""" if "choices" in result and result["choices"]: message = result["choices"][0]["message"] content = message.get("content", "") content, reasoning = self._extract_reasoning(content) reasoning_content = message.get("model_extra", {}).get("reasoning_content", "") if not reasoning_content: reasoning_content = message.get("reasoning_content", "") if not reasoning_content: reasoning_content = reasoning # 记录token使用情况 usage = result.get("usage", {}) if usage: prompt_tokens = usage.get("prompt_tokens", 0) completion_tokens = usage.get("completion_tokens", 0) total_tokens = usage.get("total_tokens", 0) self._record_usage( prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=total_tokens, user_id=user_id, request_type=request_type, endpoint=endpoint ) return content, reasoning_content return "没有返回结果", "" def _extract_reasoning(self, content: str) -> tuple[str, str]: """CoT思维链提取""" match = re.search(r'(?:)?(.*?)', content, re.DOTALL) content = re.sub(r'(?:)?.*?', '', content, flags=re.DOTALL, count=1).strip() if match: reasoning = match.group(1).strip() else: reasoning = "" return content, reasoning async def _build_headers(self) -> dict: """构建请求头""" return { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json" } async def generate_response(self, prompt: str) -> Tuple[str, str]: """根据输入的提示生成模型的异步响应""" content, reasoning_content = await self._execute_request( endpoint="/chat/completions", prompt=prompt ) return content, reasoning_content async def generate_response_for_image(self, prompt: str, image_base64: str) -> Tuple[str, str]: """根据输入的提示和图片生成模型的异步响应""" content, reasoning_content = await self._execute_request( endpoint="/chat/completions", prompt=prompt, image_base64=image_base64 ) return content, reasoning_content async def generate_response_async(self, prompt: str, **kwargs) -> Union[str, Tuple[str, str]]: """异步方式根据输入的提示生成模型的响应""" # 构建请求体 data = { "model": self.model_name, "messages": [{"role": "user", "content": prompt}], "max_tokens": global_config.max_response_length, **self.params } content, reasoning_content = await self._execute_request( endpoint="/chat/completions", payload=data, prompt=prompt ) return content, reasoning_content async def get_embedding(self, text: str) -> Union[list, None]: """异步方法:获取文本的embedding向量 Args: text: 需要获取embedding的文本 Returns: list: embedding向量,如果失败则返回None """ def embedding_handler(result): """处理响应""" if "data" in result and len(result["data"]) > 0: return result["data"][0].get("embedding", None) return None embedding = await self._execute_request( endpoint="/embeddings", prompt=text, payload={ "model": self.model_name, "input": text, "encoding_format": "float" }, retry_policy={ "max_retries": 2, "base_wait": 6 }, response_handler=embedding_handler ) return embedding