from src.llm_models.utils_model import LLMRequest from src.config.config import global_config import time from src.common.logger import get_logger from src.chat.utils.prompt_builder import Prompt, global_prompt_manager from src.tools.tool_use import ToolUser from src.chat.utils.json_utils import process_llm_tool_calls from typing import List, Dict, Tuple, Optional from src.chat.message_receive.chat_stream import get_chat_manager logger = get_logger("tool_executor") def init_tool_executor_prompt(): """初始化工具执行器的提示词""" tool_executor_prompt = """ 你是一个专门执行工具的助手。你的名字是{bot_name}。现在是{time_now}。 群里正在进行的聊天内容: {chat_history} 现在,{sender}发送了内容:{target_message},你想要回复ta。 请仔细分析聊天内容,考虑以下几点: 1. 内容中是否包含需要查询信息的问题 2. 是否有明确的工具使用指令 If you need to use a tool, please directly call the corresponding tool function. If you do not need to use any tool, simply output "No tool needed". """ Prompt(tool_executor_prompt, "tool_executor_prompt") class ToolExecutor: """独立的工具执行器组件 可以直接输入聊天消息内容,自动判断并执行相应的工具,返回结构化的工具执行结果。 """ def __init__(self, chat_id: str, enable_cache: bool = True, cache_ttl: int = 3): """初始化工具执行器 Args: executor_id: 执行器标识符,用于日志记录 enable_cache: 是否启用缓存机制 cache_ttl: 缓存生存时间(周期数) """ self.chat_id = chat_id self.chat_stream = get_chat_manager().get_stream(self.chat_id) self.log_prefix = f"[{get_chat_manager().get_stream_name(self.chat_id) or self.chat_id}]" self.llm_model = LLMRequest( model=global_config.model.tool_use, request_type="tool_executor", ) # 初始化工具实例 self.tool_instance = ToolUser() # 缓存配置 self.enable_cache = enable_cache self.cache_ttl = cache_ttl self.tool_cache = {} # 格式: {cache_key: {"result": result, "ttl": ttl, "timestamp": timestamp}} logger.info(f"{self.log_prefix}工具执行器初始化完成,缓存{'启用' if enable_cache else '禁用'},TTL={cache_ttl}") async def execute_from_chat_message( self, target_message: str, chat_history: str, sender: str, return_details: bool = False ) -> Tuple[List[Dict], List[str], str]: """从聊天消息执行工具 Args: target_message: 目标消息内容 chat_history: 聊天历史 sender: 发送者 return_details: 是否返回详细信息(使用的工具列表和提示词) Returns: 如果return_details为False: List[Dict] - 工具执行结果列表 如果return_details为True: Tuple[List[Dict], List[str], str] - (结果列表, 使用的工具, 提示词) """ # 首先检查缓存 cache_key = self._generate_cache_key(target_message, chat_history, sender) if cached_result := self._get_from_cache(cache_key): logger.info(f"{self.log_prefix}使用缓存结果,跳过工具执行") if not return_details: return cached_result, [], "使用缓存结果" # 从缓存结果中提取工具名称 used_tools = [result.get("tool_name", "unknown") for result in cached_result] return cached_result, used_tools, "使用缓存结果" # 缓存未命中,执行工具调用 # 获取可用工具 tools = self.tool_instance._define_tools() # 获取当前时间 time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) bot_name = global_config.bot.nickname # 构建工具调用提示词 prompt = await global_prompt_manager.format_prompt( "tool_executor_prompt", target_message=target_message, chat_history=chat_history, sender=sender, bot_name=bot_name, time_now=time_now, ) logger.debug(f"{self.log_prefix}开始LLM工具调用分析") # 调用LLM进行工具决策 response, other_info = await self.llm_model.generate_response_async(prompt=prompt, tools=tools) # 解析LLM响应 if len(other_info) == 3: reasoning_content, model_name, tool_calls = other_info else: reasoning_content, model_name = other_info tool_calls = None # 执行工具调用 tool_results, used_tools = await self._execute_tool_calls(tool_calls) # 缓存结果 if tool_results: self._set_cache(cache_key, tool_results) if used_tools: logger.info(f"{self.log_prefix}工具执行完成,共执行{len(used_tools)}个工具: {used_tools}") if return_details: return tool_results, used_tools, prompt else: return tool_results, [], "" async def _execute_tool_calls(self, tool_calls) -> Tuple[List[Dict], List[str]]: """执行工具调用 Args: tool_calls: LLM返回的工具调用列表 Returns: Tuple[List[Dict], List[str]]: (工具执行结果列表, 使用的工具名称列表) """ tool_results = [] used_tools = [] if not tool_calls: logger.debug(f"{self.log_prefix}无需执行工具") return tool_results, used_tools logger.info(f"{self.log_prefix}开始执行工具调用: {tool_calls}") # 处理工具调用 success, valid_tool_calls, error_msg = process_llm_tool_calls(tool_calls) if not success: logger.error(f"{self.log_prefix}工具调用解析失败: {error_msg}") return tool_results, used_tools if not valid_tool_calls: logger.debug(f"{self.log_prefix}无有效工具调用") return tool_results, used_tools # 执行每个工具调用 for tool_call in valid_tool_calls: try: tool_name = tool_call.get("name", "unknown_tool") used_tools.append(tool_name) logger.debug(f"{self.log_prefix}执行工具: {tool_name}") # 执行工具 result = await self.tool_instance._execute_tool_call(tool_call) if result: tool_info = { "type": result.get("type", "unknown_type"), "id": result.get("id", f"tool_exec_{time.time()}"), "content": result.get("content", ""), "tool_name": tool_name, "timestamp": time.time(), } tool_results.append(tool_info) logger.info(f"{self.log_prefix}工具{tool_name}执行成功,类型: {tool_info['type']}") content = tool_info["content"] if not isinstance(content, (str, list, tuple)): content = str(content) preview = content[:200] logger.debug(f"{self.log_prefix}工具{tool_name}结果内容: {preview}...") except Exception as e: logger.error(f"{self.log_prefix}工具{tool_name}执行失败: {e}") # 添加错误信息到结果中 error_info = { "type": "tool_error", "id": f"tool_error_{time.time()}", "content": f"工具{tool_name}执行失败: {str(e)}", "tool_name": tool_name, "timestamp": time.time(), } tool_results.append(error_info) return tool_results, used_tools def _generate_cache_key(self, target_message: str, chat_history: str, sender: str) -> str: """生成缓存键 Args: target_message: 目标消息内容 chat_history: 聊天历史 sender: 发送者 Returns: str: 缓存键 """ import hashlib # 使用消息内容和群聊状态生成唯一缓存键 content = f"{target_message}_{chat_history}_{sender}" return hashlib.md5(content.encode()).hexdigest() def _get_from_cache(self, cache_key: str) -> Optional[List[Dict]]: """从缓存获取结果 Args: cache_key: 缓存键 Returns: Optional[List[Dict]]: 缓存的结果,如果不存在或过期则返回None """ if not self.enable_cache or cache_key not in self.tool_cache: return None cache_item = self.tool_cache[cache_key] if cache_item["ttl"] <= 0: # 缓存过期,删除 del self.tool_cache[cache_key] logger.debug(f"{self.log_prefix}缓存过期,删除缓存键: {cache_key}") return None # 减少TTL cache_item["ttl"] -= 1 logger.debug(f"{self.log_prefix}使用缓存结果,剩余TTL: {cache_item['ttl']}") return cache_item["result"] def _set_cache(self, cache_key: str, result: List[Dict]): """设置缓存 Args: cache_key: 缓存键 result: 要缓存的结果 """ if not self.enable_cache: return self.tool_cache[cache_key] = {"result": result, "ttl": self.cache_ttl, "timestamp": time.time()} logger.debug(f"{self.log_prefix}设置缓存,TTL: {self.cache_ttl}") def _cleanup_expired_cache(self): """清理过期的缓存""" if not self.enable_cache: return expired_keys = [] expired_keys.extend(cache_key for cache_key, cache_item in self.tool_cache.items() if cache_item["ttl"] <= 0) for key in expired_keys: del self.tool_cache[key] if expired_keys: logger.debug(f"{self.log_prefix}清理了{len(expired_keys)}个过期缓存") def get_available_tools(self) -> List[str]: """获取可用工具列表 Returns: List[str]: 可用工具名称列表 """ tools = self.tool_instance._define_tools() return [tool.get("function", {}).get("name", "unknown") for tool in tools] async def execute_specific_tool( self, tool_name: str, tool_args: Dict, validate_args: bool = True ) -> Optional[Dict]: """直接执行指定工具 Args: tool_name: 工具名称 tool_args: 工具参数 validate_args: 是否验证参数 Returns: Optional[Dict]: 工具执行结果,失败时返回None """ try: tool_call = {"name": tool_name, "arguments": tool_args} logger.info(f"{self.log_prefix}直接执行工具: {tool_name}") result = await self.tool_instance._execute_tool_call(tool_call) if result: tool_info = { "type": result.get("type", "unknown_type"), "id": result.get("id", f"direct_tool_{time.time()}"), "content": result.get("content", ""), "tool_name": tool_name, "timestamp": time.time(), } logger.info(f"{self.log_prefix}直接工具执行成功: {tool_name}") return tool_info except Exception as e: logger.error(f"{self.log_prefix}直接工具执行失败 {tool_name}: {e}") return None def clear_cache(self): """清空所有缓存""" if self.enable_cache: cache_count = len(self.tool_cache) self.tool_cache.clear() logger.info(f"{self.log_prefix}清空了{cache_count}个缓存项") def get_cache_status(self) -> Dict: """获取缓存状态信息 Returns: Dict: 包含缓存统计信息的字典 """ if not self.enable_cache: return {"enabled": False, "cache_count": 0} # 清理过期缓存 self._cleanup_expired_cache() total_count = len(self.tool_cache) ttl_distribution = {} for cache_item in self.tool_cache.values(): ttl = cache_item["ttl"] ttl_distribution[ttl] = ttl_distribution.get(ttl, 0) + 1 return { "enabled": True, "cache_count": total_count, "cache_ttl": self.cache_ttl, "ttl_distribution": ttl_distribution, } def set_cache_config(self, enable_cache: Optional[bool] = None, cache_ttl: int = -1): """动态修改缓存配置 Args: enable_cache: 是否启用缓存 cache_ttl: 缓存TTL """ if enable_cache is not None: self.enable_cache = enable_cache logger.info(f"{self.log_prefix}缓存状态修改为: {'启用' if enable_cache else '禁用'}") if cache_ttl > 0: self.cache_ttl = cache_ttl logger.info(f"{self.log_prefix}缓存TTL修改为: {cache_ttl}") # 初始化提示词 init_tool_executor_prompt() """ 使用示例: # 1. 基础使用 - 从聊天消息执行工具(启用缓存,默认TTL=3) executor = ToolExecutor(executor_id="my_executor") results, _, _ = await executor.execute_from_chat_message( talking_message_str="今天天气怎么样?现在几点了?", is_group_chat=False ) # 2. 禁用缓存的执行器 no_cache_executor = ToolExecutor(executor_id="no_cache", enable_cache=False) # 3. 自定义缓存TTL long_cache_executor = ToolExecutor(executor_id="long_cache", cache_ttl=10) # 4. 获取详细信息 results, used_tools, prompt = await executor.execute_from_chat_message( talking_message_str="帮我查询Python相关知识", is_group_chat=False, return_details=True ) # 5. 直接执行特定工具 result = await executor.execute_specific_tool( tool_name="get_knowledge", tool_args={"query": "机器学习"} ) # 6. 缓存管理 available_tools = executor.get_available_tools() cache_status = executor.get_cache_status() # 查看缓存状态 executor.clear_cache() # 清空缓存 executor.set_cache_config(cache_ttl=5) # 动态修改缓存配置 """