import asyncio import time import traceback import random # <--- 添加导入 import json # <--- 确保导入 json from typing import List, Optional, Dict, Any, Deque, Callable, Coroutine from collections import deque from src.plugins.chat.message import MessageRecv, BaseMessageInfo, MessageThinking, MessageSending from src.plugins.chat.message import Seg # Local import needed after move from src.plugins.chat.chat_stream import ChatStream from src.plugins.chat.message import UserInfo from src.plugins.chat.chat_stream import chat_manager from src.common.logger_manager import get_logger from src.plugins.models.utils_model import LLMRequest from src.config.config import global_config from src.plugins.chat.utils_image import image_path_to_base64 # Local import needed after move from src.plugins.utils.timer_calculator import Timer # <--- Import Timer from src.do_tool.tool_use import ToolUser from src.plugins.emoji_system.emoji_manager import emoji_manager from src.plugins.utils.json_utils import process_llm_tool_calls, extract_tool_call_arguments from src.heart_flow.sub_mind import SubMind from src.heart_flow.observation import Observation from src.plugins.heartFC_chat.heartflow_prompt_builder import global_prompt_manager, prompt_builder import contextlib from src.plugins.utils.chat_message_builder import num_new_messages_since from src.plugins.heartFC_chat.heartFC_Cycleinfo import CycleInfo from .heartFC_sender import HeartFCSender from src.plugins.chat.utils import process_llm_response from src.plugins.respon_info_catcher.info_catcher import info_catcher_manager from src.plugins.moods.moods import MoodManager from src.individuality.individuality import Individuality WAITING_TIME_THRESHOLD = 300 # 等待新消息时间阈值,单位秒 EMOJI_SEND_PRO = 0.3 # 设置一个概率,比如 30% 才真的发 CONSECUTIVE_NO_REPLY_THRESHOLD = 3 # 连续不回复的阈值 logger = get_logger("hfc") # Logger Name Changed # 默认动作定义 DEFAULT_ACTIONS = {"no_reply": "不回复", "text_reply": "文本回复, 可选附带表情", "emoji_reply": "仅表情回复"} class ActionManager: """动作管理器:控制每次决策可以使用的动作""" def __init__(self): # 初始化为默认动作集 self._available_actions: Dict[str, str] = DEFAULT_ACTIONS.copy() self._original_actions_backup: Optional[Dict[str, str]] = None # 用于临时移除时的备份 def get_available_actions(self) -> Dict[str, str]: """获取当前可用的动作集""" return self._available_actions.copy() # 返回副本以防外部修改 def add_action(self, action_name: str, description: str) -> bool: """ 添加新的动作 参数: action_name: 动作名称 description: 动作描述 返回: bool: 是否添加成功 """ if action_name in self._available_actions: return False self._available_actions[action_name] = description return True def remove_action(self, action_name: str) -> bool: """ 移除指定动作 参数: action_name: 动作名称 返回: bool: 是否移除成功 """ if action_name not in self._available_actions: return False del self._available_actions[action_name] return True def temporarily_remove_actions(self, actions_to_remove: List[str]): """ 临时移除指定的动作,备份原始动作集。 如果已经有备份,则不重复备份。 """ if self._original_actions_backup is None: self._original_actions_backup = self._available_actions.copy() actions_actually_removed = [] for action_name in actions_to_remove: if action_name in self._available_actions: del self._available_actions[action_name] actions_actually_removed.append(action_name) # logger.debug(f"临时移除了动作: {actions_actually_removed}") # 可选日志 def restore_actions(self): """ 恢复之前备份的原始动作集。 """ if self._original_actions_backup is not None: self._available_actions = self._original_actions_backup.copy() self._original_actions_backup = None # logger.debug("恢复了原始动作集") # 可选日志 def clear_actions(self): """清空所有动作""" self._available_actions.clear() def reset_to_default(self): """重置为默认动作集""" self._available_actions = DEFAULT_ACTIONS.copy() # 在文件开头添加自定义异常类 class HeartFCError(Exception): """麦麦聊天系统基础异常类""" pass class PlannerError(HeartFCError): """规划器异常""" pass class ReplierError(HeartFCError): """回复器异常""" pass class SenderError(HeartFCError): """发送器异常""" pass class HeartFChatting: """ 管理一个连续的Plan-Replier-Sender循环 用于在特定聊天流中生成回复。 其生命周期现在由其关联的 SubHeartflow 的 FOCUSED 状态控制。 """ def __init__( self, chat_id: str, sub_mind: SubMind, observations: Observation, on_consecutive_no_reply_callback: Callable[[], Coroutine[None, None, None]], ): """ HeartFChatting 初始化函数 参数: chat_id: 聊天流唯一标识符(如stream_id) sub_mind: 关联的子思维 observations: 关联的观察列表 on_consecutive_no_reply_callback: 连续不回复达到阈值时调用的异步回调函数 """ # 基础属性 self.stream_id: str = chat_id # 聊天流ID self.chat_stream: Optional[ChatStream] = None # 关联的聊天流 self.sub_mind: SubMind = sub_mind # 关联的子思维 self.observations: List[Observation] = observations # 关联的观察列表,用于监控聊天流状态 self.on_consecutive_no_reply_callback = on_consecutive_no_reply_callback # 日志前缀 self.log_prefix: str = f"[{chat_manager.get_stream_name(chat_id) or chat_id}]" # 动作管理器 self.action_manager = ActionManager() # 初始化状态控制 self._initialized = False self._processing_lock = asyncio.Lock() # --- 移除 gpt_instance, 直接初始化 LLM 模型 --- # self.gpt_instance = HeartFCGenerator() # <-- 移除 self.model_normal = LLMRequest( # <-- 新增 LLM 初始化 model=global_config.llm_normal, temperature=global_config.llm_normal["temp"], max_tokens=256, request_type="response_heartflow", ) self.heart_fc_sender = HeartFCSender() # LLM规划器配置 self.planner_llm = LLMRequest( model=global_config.llm_plan, max_tokens=1000, request_type="action_planning", # 用于动作规划 ) # 循环控制内部状态 self._loop_active: bool = False # 循环是否正在运行 self._loop_task: Optional[asyncio.Task] = None # 主循环任务 # 添加循环信息管理相关的属性 self._cycle_counter = 0 self._cycle_history: Deque[CycleInfo] = deque(maxlen=10) # 保留最近10个循环的信息 self._current_cycle: Optional[CycleInfo] = None self._lian_xu_bu_hui_fu_ci_shu: int = 0 # <--- 新增:连续不回复计数器 self._shutting_down: bool = False # <--- 新增:关闭标志位 self._lian_xu_deng_dai_shi_jian: float = 0.0 # <--- 新增:累计等待时间 async def _initialize(self) -> bool: """ 懒初始化以使用提供的标识符解析chat_stream。 确保实例已准备好处理触发器。 """ if self._initialized: return True self.chat_stream = chat_manager.get_stream(self.stream_id) if not self.chat_stream: logger.error(f"{self.log_prefix} 获取ChatStream失败。") return False # 更新日志前缀(以防流名称发生变化) self.log_prefix = f"[{chat_manager.get_stream_name(self.stream_id) or self.stream_id}]" self._initialized = True logger.info(f"麦麦感觉到了,可以开始认真水群{self.log_prefix} ") return True async def start(self): """ 启动 HeartFChatting 的主循环。 注意:调用此方法前必须确保已经成功初始化。 """ logger.info(f"{self.log_prefix} 开始认真水群(HFC)...") await self._start_loop_if_needed() async def _start_loop_if_needed(self): """检查是否需要启动主循环,如果未激活则启动。""" # 如果循环已经激活,直接返回 if self._loop_active: return # 标记为活动状态,防止重复启动 self._loop_active = True # 检查是否已有任务在运行(理论上不应该,因为 _loop_active=False) if self._loop_task and not self._loop_task.done(): logger.warning(f"{self.log_prefix} 发现之前的循环任务仍在运行(不符合预期)。取消旧任务。") self._loop_task.cancel() try: # 等待旧任务确实被取消 await asyncio.wait_for(self._loop_task, timeout=0.5) except (asyncio.CancelledError, asyncio.TimeoutError): pass # 忽略取消或超时错误 self._loop_task = None # 清理旧任务引用 logger.info(f"{self.log_prefix} 启动认真水群(HFC)主循环...") # 创建新的循环任务 self._loop_task = asyncio.create_task(self._hfc_loop()) # 添加完成回调 self._loop_task.add_done_callback(self._handle_loop_completion) def _handle_loop_completion(self, task: asyncio.Task): """当 _hfc_loop 任务完成时执行的回调。""" try: exception = task.exception() if exception: logger.error(f"{self.log_prefix} HeartFChatting: 麦麦脱离了聊天(异常): {exception}") logger.error(traceback.format_exc()) # Log full traceback for exceptions else: # Loop completing normally now means it was cancelled/shutdown externally logger.info(f"{self.log_prefix} HeartFChatting: 麦麦脱离了聊天 (外部停止)") except asyncio.CancelledError: logger.info(f"{self.log_prefix} HeartFChatting: 麦麦脱离了聊天(任务取消)") finally: self._loop_active = False self._loop_task = None if self._processing_lock.locked(): logger.warning(f"{self.log_prefix} HeartFChatting: 处理锁在循环结束时仍被锁定,强制释放。") self._processing_lock.release() async def _hfc_loop(self): """主循环,持续进行计划并可能回复消息,直到被外部取消。""" try: while True: # 主循环 logger.debug(f"{self.log_prefix} 开始第{self._cycle_counter}次循环") # --- 在循环开始处检查关闭标志 --- if self._shutting_down: logger.info(f"{self.log_prefix} 检测到关闭标志,退出 HFC 循环。") break # -------------------------------- # 创建新的循环信息 self._cycle_counter += 1 self._current_cycle = CycleInfo(self._cycle_counter) # 初始化周期状态 cycle_timers = {} loop_cycle_start_time = time.monotonic() # 执行规划和处理阶段 async with self._get_cycle_context() as acquired_lock: if not acquired_lock: # 如果未能获取锁(理论上不太可能,除非 shutdown 过程中释放了但又被抢了?) # 或者也可以在这里再次检查 self._shutting_down if self._shutting_down: break # 再次检查,确保退出 logger.warning(f"{self.log_prefix} 未能获取循环处理锁,跳过本次循环。") await asyncio.sleep(0.1) # 短暂等待避免空转 continue # 记录规划开始时间点 planner_start_db_time = time.time() # 主循环:思考->决策->执行 action_taken, thinking_id = await self._think_plan_execute_loop(cycle_timers, planner_start_db_time) # 更新循环信息 self._current_cycle.set_thinking_id(thinking_id) self._current_cycle.timers = cycle_timers # 防止循环过快消耗资源 await self._handle_cycle_delay(action_taken, loop_cycle_start_time, self.log_prefix) # 完成当前循环并保存历史 self._current_cycle.complete_cycle() self._cycle_history.append(self._current_cycle) # 记录循环信息和计时器结果 timer_strings = [] for name, elapsed in cycle_timers.items(): formatted_time = f"{elapsed * 1000:.2f}毫秒" if elapsed < 1 else f"{elapsed:.2f}秒" timer_strings.append(f"{name}: {formatted_time}") logger.debug( f"{self.log_prefix} 第 #{self._current_cycle.cycle_id}次思考完成," f"耗时: {self._current_cycle.end_time - self._current_cycle.start_time:.2f}秒, " f"动作: {self._current_cycle.action_type}" + (f"\n计时器详情: {'; '.join(timer_strings)}" if timer_strings else "") ) except asyncio.CancelledError: # 设置了关闭标志位后被取消是正常流程 if not self._shutting_down: logger.warning(f"{self.log_prefix} HeartFChatting: 麦麦的认真水群(HFC)循环意外被取消") else: logger.info(f"{self.log_prefix} HeartFChatting: 麦麦的认真水群(HFC)循环已取消 (正常关闭)") except Exception as e: logger.error(f"{self.log_prefix} HeartFChatting: 意外错误: {e}") logger.error(traceback.format_exc()) @contextlib.asynccontextmanager async def _get_cycle_context(self): """ 循环周期的上下文管理器 用于确保资源的正确获取和释放: 1. 获取处理锁 2. 执行操作 3. 释放锁 """ acquired = False try: await self._processing_lock.acquire() acquired = True yield acquired finally: if acquired and self._processing_lock.locked(): self._processing_lock.release() async def _check_new_messages(self, start_time: float) -> bool: """ 检查从指定时间点后是否有新消息 参数: start_time: 开始检查的时间点 返回: bool: 是否有新消息 """ try: new_msg_count = num_new_messages_since(self.stream_id, start_time) if new_msg_count > 0: logger.info(f"{self.log_prefix} 检测到{new_msg_count}条新消息") return True return False except Exception as e: logger.error(f"{self.log_prefix} 检查新消息时出错: {e}") return False async def _think_plan_execute_loop(self, cycle_timers: dict, planner_start_db_time: float) -> tuple[bool, str]: """执行规划阶段""" try: # think:思考 current_mind = await self._get_submind_thinking(cycle_timers) # 记录子思维思考内容 if self._current_cycle: self._current_cycle.set_response_info(sub_mind_thinking=current_mind) # plan:决策 with Timer("决策", cycle_timers): planner_result = await self._planner(current_mind, cycle_timers) # 效果不太好,还没处理replan导致观察时间点改变的问题 # action = planner_result.get("action", "error") # reasoning = planner_result.get("reasoning", "未提供理由") # self._current_cycle.set_action_info(action, reasoning, False) # 在获取规划结果后检查新消息 # if await self._check_new_messages(planner_start_db_time): # if random.random() < 0.2: # logger.info(f"{self.log_prefix} 看到了新消息,麦麦决定重新观察和规划...") # # 重新规划 # with Timer("重新决策", cycle_timers): # self._current_cycle.replanned = True # planner_result = await self._planner(current_mind, cycle_timers, is_re_planned=True) # logger.info(f"{self.log_prefix} 重新规划完成.") # 解析规划结果 action = planner_result.get("action", "error") reasoning = planner_result.get("reasoning", "未提供理由") # 更新循环信息 self._current_cycle.set_action_info(action, reasoning, True) # 处理LLM错误 if planner_result.get("llm_error"): logger.error(f"{self.log_prefix} LLM失败: {reasoning}") return False, "" # execute:执行 return await self._handle_action( action, reasoning, planner_result.get("emoji_query", ""), cycle_timers, planner_start_db_time ) except PlannerError as e: logger.error(f"{self.log_prefix} 规划错误: {e}") # 更新循环信息 self._current_cycle.set_action_info("error", str(e), False) return False, "" async def _handle_action( self, action: str, reasoning: str, emoji_query: str, cycle_timers: dict, planner_start_db_time: float ) -> tuple[bool, str]: """ 处理规划动作 参数: action: 动作类型 reasoning: 决策理由 emoji_query: 表情查询 cycle_timers: 计时器字典 planner_start_db_time: 规划开始时间 返回: tuple[bool, str]: (是否执行了动作, 思考消息ID) """ action_handlers = { "text_reply": self._handle_text_reply, "emoji_reply": self._handle_emoji_reply, "no_reply": self._handle_no_reply, } handler = action_handlers.get(action) if not handler: logger.warning(f"{self.log_prefix} 未知动作: {action}, 原因: {reasoning}") return False, "" try: if action == "text_reply": return await handler(reasoning, emoji_query, cycle_timers) elif action == "emoji_reply": return await handler(reasoning, emoji_query), "" else: # no_reply return await handler(reasoning, planner_start_db_time, cycle_timers), "" except HeartFCError as e: logger.error(f"{self.log_prefix} 处理{action}时出错: {e}") # 出错时也重置计数器 self._lian_xu_bu_hui_fu_ci_shu = 0 self._lian_xu_deng_dai_shi_jian = 0.0 # 重置累计等待时间 return False, "" async def _handle_text_reply(self, reasoning: str, emoji_query: str, cycle_timers: dict) -> tuple[bool, str]: """ 处理文本回复 工作流程: 1. 获取锚点消息 2. 创建思考消息 3. 生成回复 4. 发送消息 参数: reasoning: 回复原因 emoji_query: 表情查询 cycle_timers: 计时器字典 返回: tuple[bool, str]: (是否回复成功, 思考消息ID) """ # 重置连续不回复计数器 self._lian_xu_bu_hui_fu_ci_shu = 0 self._lian_xu_deng_dai_shi_jian = 0.0 # 重置累计等待时间 # 获取锚点消息 anchor_message = await self._get_anchor_message() if not anchor_message: raise PlannerError("无法获取锚点消息") # 创建思考消息 thinking_id = await self._create_thinking_message(anchor_message) if not thinking_id: raise PlannerError("无法创建思考消息") try: # 生成回复 with Timer("生成回复", cycle_timers): reply = await self._replier_work( anchor_message=anchor_message, thinking_id=thinking_id, reason=reasoning, ) if not reply: raise ReplierError("回复生成失败") # 发送消息 with Timer("发送消息", cycle_timers): await self._sender( thinking_id=thinking_id, anchor_message=anchor_message, response_set=reply, send_emoji=emoji_query, ) return True, thinking_id except (ReplierError, SenderError) as e: logger.error(f"{self.log_prefix} 回复失败: {e}") return True, thinking_id # 仍然返回thinking_id以便跟踪 async def _handle_emoji_reply(self, reasoning: str, emoji_query: str) -> bool: """ 处理表情回复 工作流程: 1. 获取锚点消息 2. 发送表情 参数: reasoning: 回复原因 emoji_query: 表情查询 返回: bool: 是否发送成功 """ logger.info(f"{self.log_prefix} 决定回复表情({emoji_query}): {reasoning}") self._lian_xu_deng_dai_shi_jian = 0.0 # 重置累计等待时间(即使不计数也保持一致性) try: anchor = await self._get_anchor_message() if not anchor: raise PlannerError("无法获取锚点消息") await self._handle_emoji(anchor, [], emoji_query) return True except Exception as e: logger.error(f"{self.log_prefix} 表情发送失败: {e}") return False async def _handle_no_reply(self, reasoning: str, planner_start_db_time: float, cycle_timers: dict) -> bool: """ 处理不回复的情况 工作流程: 1. 等待新消息、超时或关闭信号 2. 根据等待结果更新连续不回复计数 3. 如果达到阈值,触发回调 参数: reasoning: 不回复的原因 planner_start_db_time: 规划开始时间 cycle_timers: 计时器字典 返回: bool: 是否成功处理 """ logger.info(f"{self.log_prefix} 决定不回复: {reasoning}") observation = self.observations[0] if self.observations else None try: dang_qian_deng_dai = 0.0 # 初始化本次等待时间 with Timer("等待新消息", cycle_timers): # 等待新消息、超时或关闭信号,并获取结果 await self._wait_for_new_message(observation, planner_start_db_time, self.log_prefix) # 从计时器获取实际等待时间 dang_qian_deng_dai = cycle_timers.get("等待新消息", 0.0) if not self._shutting_down: self._lian_xu_bu_hui_fu_ci_shu += 1 self._lian_xu_deng_dai_shi_jian += dang_qian_deng_dai # 累加等待时间 logger.debug( f"{self.log_prefix} 连续不回复计数增加: {self._lian_xu_bu_hui_fu_ci_shu}/{CONSECUTIVE_NO_REPLY_THRESHOLD}, " f"本次等待: {dang_qian_deng_dai:.2f}秒, 累计等待: {self._lian_xu_deng_dai_shi_jian:.2f}秒" ) # 检查是否同时达到次数和时间阈值 time_threshold = 0.66 * WAITING_TIME_THRESHOLD * CONSECUTIVE_NO_REPLY_THRESHOLD if ( self._lian_xu_bu_hui_fu_ci_shu >= CONSECUTIVE_NO_REPLY_THRESHOLD and self._lian_xu_deng_dai_shi_jian >= time_threshold ): logger.info( f"{self.log_prefix} 连续不回复达到阈值 ({self._lian_xu_bu_hui_fu_ci_shu}次) " f"且累计等待时间达到 {self._lian_xu_deng_dai_shi_jian:.2f}秒 (阈值 {time_threshold}秒)," f"调用回调请求状态转换" ) # 调用回调。注意:这里不重置计数器和时间,依赖回调函数成功改变状态来隐式重置上下文。 await self.on_consecutive_no_reply_callback() elif self._lian_xu_bu_hui_fu_ci_shu >= CONSECUTIVE_NO_REPLY_THRESHOLD: # 仅次数达到阈值,但时间未达到 logger.debug( f"{self.log_prefix} 连续不回复次数达到阈值 ({self._lian_xu_bu_hui_fu_ci_shu}次) " f"但累计等待时间 {self._lian_xu_deng_dai_shi_jian:.2f}秒 未达到时间阈值 ({time_threshold}秒),暂不调用回调" ) # else: 次数和时间都未达到阈值,不做处理 return True except asyncio.CancelledError: # 如果在等待过程中任务被取消(可能是因为 shutdown) logger.info(f"{self.log_prefix} 处理 'no_reply' 时等待被中断 (CancelledError)") # 让异常向上传播,由 _hfc_loop 的异常处理逻辑接管 raise except Exception as e: # 捕获调用管理器或其他地方可能发生的错误 logger.error(f"{self.log_prefix} 处理 'no_reply' 时发生错误: {e}") logger.error(traceback.format_exc()) # 发生意外错误时,可以选择是否重置计数器,这里选择不重置 return False # 表示动作未成功 async def _wait_for_new_message(self, observation, planner_start_db_time: float, log_prefix: str) -> bool: """ 等待新消息 或 检测到关闭信号 参数: observation: 观察实例 planner_start_db_time: 开始等待的时间 log_prefix: 日志前缀 返回: bool: 是否检测到新消息 (如果因关闭信号退出则返回 False) """ wait_start_time = time.monotonic() while True: # --- 在每次循环开始时检查关闭标志 --- if self._shutting_down: logger.info(f"{log_prefix} 等待新消息时检测到关闭信号,中断等待。") return False # 表示因为关闭而退出 # ----------------------------------- # 检查新消息 if await observation.has_new_messages_since(planner_start_db_time): logger.info(f"{log_prefix} 检测到新消息") return True # 检查超时 (放在检查新消息和关闭之后) if time.monotonic() - wait_start_time > WAITING_TIME_THRESHOLD: logger.warning(f"{log_prefix} 等待新消息超时({WAITING_TIME_THRESHOLD}秒)") return False try: # 短暂休眠,让其他任务有机会运行,并能更快响应取消或关闭 await asyncio.sleep(0.5) # 缩短休眠时间 except asyncio.CancelledError: # 如果在休眠时被取消,再次检查关闭标志 # 如果是正常关闭,则不需要警告 if not self._shutting_down: logger.warning(f"{log_prefix} _wait_for_new_message 的休眠被意外取消") # 无论如何,重新抛出异常,让上层处理 raise async def _log_cycle_timers(self, cycle_timers: dict, log_prefix: str): """记录循环周期的计时器结果""" if cycle_timers: timer_strings = [] for name, elapsed in cycle_timers.items(): formatted_time = f"{elapsed * 1000:.2f}毫秒" if elapsed < 1 else f"{elapsed:.2f}秒" timer_strings.append(f"{name}: {formatted_time}") if timer_strings: # 在记录前检查关闭标志 if not self._shutting_down: logger.debug(f"{log_prefix} 该次决策耗时: {'; '.join(timer_strings)}") async def _handle_cycle_delay(self, action_taken_this_cycle: bool, cycle_start_time: float, log_prefix: str): """处理循环延迟""" cycle_duration = time.monotonic() - cycle_start_time try: sleep_duration = 0.0 if not action_taken_this_cycle and cycle_duration < 1: sleep_duration = 1 - cycle_duration elif cycle_duration < 0.2: sleep_duration = 0.2 if sleep_duration > 0: await asyncio.sleep(sleep_duration) except asyncio.CancelledError: logger.info(f"{log_prefix} Sleep interrupted, loop likely cancelling.") raise async def _get_submind_thinking(self, cycle_timers: dict) -> str: """ 获取子思维的思考结果 返回: str: 思考结果,如果思考失败则返回错误信息 """ try: with Timer("观察", cycle_timers): observation = self.observations[0] await observation.observe() # 获取上一个循环的信息 # last_cycle = self._cycle_history[-1] if self._cycle_history else None with Timer("思考", cycle_timers): # 获取上一个循环的动作 # 传递上一个循环的信息给 do_thinking_before_reply current_mind, _past_mind = await self.sub_mind.do_thinking_before_reply( history_cycle=self._cycle_history ) return current_mind except Exception as e: logger.error(f"{self.log_prefix}[SubMind] 思考失败: {e}") logger.error(traceback.format_exc()) return "[思考时出错]" async def _planner(self, current_mind: str, cycle_timers: dict, is_re_planned: bool = False) -> Dict[str, Any]: """ 规划器 (Planner): 使用LLM根据上下文决定是否和如何回复。 重构为:让LLM返回结构化JSON文本,然后在代码中解析。 参数: current_mind: 子思维的当前思考结果 cycle_timers: 计时器字典 is_re_planned: 是否为重新规划 (此重构中暂时简化,不处理 is_re_planned 的特殊逻辑) """ logger.info(f"{self.log_prefix}[Planner] 开始执行规划器 (JSON解析模式)") actions_to_remove_temporarily = [] # --- 检查历史动作并决定临时移除动作 (逻辑保持不变) --- lian_xu_wen_ben_hui_fu = 0 probability_roll = random.random() for cycle in reversed(self._cycle_history): if cycle.action_taken: if cycle.action_type == "text_reply": lian_xu_wen_ben_hui_fu += 1 else: break if len(self._cycle_history) > 0 and cycle.cycle_id <= self._cycle_history[0].cycle_id + ( len(self._cycle_history) - 4 ): break logger.debug(f"{self.log_prefix}[Planner] 检测到连续文本回复次数: {lian_xu_wen_ben_hui_fu}") if lian_xu_wen_ben_hui_fu >= 3: logger.info(f"{self.log_prefix}[Planner] 连续回复 >= 3 次,强制移除 text_reply 和 emoji_reply") actions_to_remove_temporarily.extend(["text_reply", "emoji_reply"]) elif lian_xu_wen_ben_hui_fu == 2: if probability_roll < 0.8: logger.info(f"{self.log_prefix}[Planner] 连续回复 2 次,80% 概率移除 text_reply 和 emoji_reply (触发)") actions_to_remove_temporarily.extend(["text_reply", "emoji_reply"]) else: logger.info(f"{self.log_prefix}[Planner] 连续回复 2 次,80% 概率移除 text_reply 和 emoji_reply (未触发)") elif lian_xu_wen_ben_hui_fu == 1: if probability_roll < 0.4: logger.info(f"{self.log_prefix}[Planner] 连续回复 1 次,40% 概率移除 text_reply (触发)") actions_to_remove_temporarily.append("text_reply") else: logger.info(f"{self.log_prefix}[Planner] 连续回复 1 次,40% 概率移除 text_reply (未触发)") # --- 结束检查历史动作 --- # 获取观察信息 observation = self.observations[0] # if is_re_planned: # 暂时简化,不处理重新规划 # await observation.observe() observed_messages = observation.talking_message observed_messages_str = observation.talking_message_str_truncate # --- 使用 LLM 进行决策 (JSON 输出模式) --- # action = "no_reply" # 默认动作 reasoning = "规划器初始化默认" emoji_query = "" llm_error = False # LLM 请求或解析错误标志 # 获取我们将传递给 prompt 构建器和用于验证的当前可用动作 current_available_actions = self.action_manager.get_available_actions() try: # --- 应用临时动作移除 --- if actions_to_remove_temporarily: self.action_manager.temporarily_remove_actions(actions_to_remove_temporarily) # 更新 current_available_actions 以反映移除后的状态 current_available_actions = self.action_manager.get_available_actions() logger.debug( f"{self.log_prefix}[Planner] 临时移除的动作: {actions_to_remove_temporarily}, 当前可用: {list(current_available_actions.keys())}" ) # --- 构建提示词 (调用修改后的 _build_planner_prompt) --- # replan_prompt_str = "" # 暂时简化 # if is_re_planned: # replan_prompt_str = await self._build_replan_prompt( # self._current_cycle.action_type, self._current_cycle.reasoning # ) prompt = await self._build_planner_prompt( observed_messages_str, current_mind, self.sub_mind.structured_info, "", # replan_prompt_str, current_available_actions # <--- 传入当前可用动作 ) # --- 调用 LLM (普通文本生成) --- llm_content = None try: # 假设 LLMRequest 有 generate_response 方法返回 (content, reasoning, model_name) # 我们只需要 content # !! 注意:这里假设 self.planner_llm 有 generate_response 方法 # !! 如果你的 LLMRequest 类使用的是其他方法名,请相应修改 llm_content, _, _ = await self.planner_llm.generate_response(prompt=prompt) logger.debug(f"{self.log_prefix}[Planner] LLM 原始 JSON 响应 (预期): {llm_content}") except Exception as req_e: logger.error(f"{self.log_prefix}[Planner] LLM 请求执行失败: {req_e}") reasoning = f"LLM 请求失败: {req_e}" llm_error = True # 直接使用默认动作返回错误结果 action = "no_reply" # 明确设置为默认值 emoji_query = "" # 明确设置为空 # 不再立即返回,而是继续执行 finally 块以恢复动作 # return { ... } # --- 解析 LLM 返回的 JSON (仅当 LLM 请求未出错时进行) --- if not llm_error and llm_content: try: # 尝试去除可能的 markdown 代码块标记 cleaned_content = llm_content.strip().removeprefix("```json").removeprefix("```").removesuffix("```").strip() if not cleaned_content: raise json.JSONDecodeError("Cleaned content is empty", cleaned_content, 0) parsed_json = json.loads(cleaned_content) # 提取决策,提供默认值 extracted_action = parsed_json.get("action", "no_reply") extracted_reasoning = parsed_json.get("reasoning", "LLM未提供理由") extracted_emoji_query = parsed_json.get("emoji_query", "") # 验证动作是否在当前可用列表中 # !! 使用调用 prompt 时实际可用的动作列表进行验证 if extracted_action not in current_available_actions: logger.warning( f"{self.log_prefix}[Planner] LLM 返回了当前不可用或无效的动作: '{extracted_action}' (可用: {list(current_available_actions.keys())}),将强制使用 'no_reply'" ) action = "no_reply" reasoning = f"LLM 返回了当前不可用的动作 '{extracted_action}' (可用: {list(current_available_actions.keys())})。原始理由: {extracted_reasoning}" emoji_query = "" # 检查 no_reply 是否也恰好被移除了 (极端情况) if "no_reply" not in current_available_actions: logger.error(f"{self.log_prefix}[Planner] 严重错误:'no_reply' 动作也不可用!无法执行任何动作。") action = "error" # 回退到错误状态 reasoning = "无法执行任何有效动作,包括 no_reply" llm_error = True # 标记为严重错误 else: llm_error = False # 视为逻辑修正而非 LLM 错误 else: # 动作有效且可用 action = extracted_action reasoning = extracted_reasoning emoji_query = extracted_emoji_query llm_error = False # 解析成功 logger.debug( f"{self.log_prefix}[要做什么]\nPrompt:\n{prompt}\n\n决策结果 (来自JSON): {action}, 理由: {reasoning}, 表情查询: '{emoji_query}'" ) except json.JSONDecodeError as json_e: logger.warning(f"{self.log_prefix}[Planner] 解析LLM响应JSON失败: {json_e}. LLM原始输出: '{llm_content}'") reasoning = f"解析LLM响应JSON失败: {json_e}. 将使用默认动作 'no_reply'." action = "no_reply" # 解析失败则默认不回复 emoji_query = "" llm_error = True # 标记解析错误 except Exception as parse_e: logger.error(f"{self.log_prefix}[Planner] 处理LLM响应时发生意外错误: {parse_e}") reasoning = f"处理LLM响应时发生意外错误: {parse_e}. 将使用默认动作 'no_reply'." action = "no_reply" emoji_query = "" llm_error = True elif not llm_error and not llm_content: # LLM 请求成功但返回空内容 logger.warning(f"{self.log_prefix}[Planner] LLM 返回了空内容。") reasoning = "LLM 返回了空内容,使用默认动作 'no_reply'." action = "no_reply" emoji_query = "" llm_error = True # 标记为空响应错误 # 如果 llm_error 在此阶段为 True,意味着请求成功但解析失败或返回空 # 如果 llm_error 在请求阶段就为 True,则跳过了此解析块 except Exception as outer_e: logger.error(f"{self.log_prefix}[Planner] Planner 处理过程中发生意外错误: {outer_e}") logger.error(traceback.format_exc()) action = "error" # 发生未知错误,标记为 error 动作 reasoning = f"Planner 内部处理错误: {outer_e}" emoji_query = "" llm_error = True finally: # --- 确保动作恢复 --- # 检查 self._original_actions_backup 是否有值来判断是否需要恢复 if self.action_manager._original_actions_backup is not None: self.action_manager.restore_actions() logger.debug( f"{self.log_prefix}[Planner] 恢复了原始动作集, 当前可用: {list(self.action_manager.get_available_actions().keys())}" ) # --- 结束确保动作恢复 --- # --- 概率性忽略文本回复附带的表情 (逻辑保持不变) --- if action == "text_reply" and emoji_query: logger.debug(f"{self.log_prefix}[Planner] 大模型建议文字回复带表情: '{emoji_query}'") if random.random() > EMOJI_SEND_PRO: logger.info( f"{self.log_prefix}[Planner] 但是麦麦这次不想加表情 ({1 - EMOJI_SEND_PRO:.0%}),忽略表情 '{emoji_query}'" ) emoji_query = "" # 清空表情请求 else: logger.info(f"{self.log_prefix}[Planner] 好吧,加上表情 '{emoji_query}'") # --- 结束概率性忽略 --- # 返回结果字典 return { "action": action, "reasoning": reasoning, "emoji_query": emoji_query, "current_mind": current_mind, "observed_messages": observed_messages, "llm_error": llm_error, # 返回错误状态 } async def _get_anchor_message(self) -> Optional[MessageRecv]: """ 重构观察到的最后一条消息作为回复的锚点, 如果重构失败或观察为空,则创建一个占位符。 """ try: placeholder_id = f"mid_pf_{int(time.time() * 1000)}" placeholder_user = UserInfo( user_id="system_trigger", user_nickname="System Trigger", platform=self.chat_stream.platform ) placeholder_msg_info = BaseMessageInfo( message_id=placeholder_id, platform=self.chat_stream.platform, group_info=self.chat_stream.group_info, user_info=placeholder_user, time=time.time(), ) placeholder_msg_dict = { "message_info": placeholder_msg_info.to_dict(), "processed_plain_text": "[System Trigger Context]", "raw_message": "", "time": placeholder_msg_info.time, } anchor_message = MessageRecv(placeholder_msg_dict) anchor_message.update_chat_stream(self.chat_stream) logger.info( f"{self.log_prefix} Created placeholder anchor message: ID={anchor_message.message_info.message_id}" ) return anchor_message except Exception as e: logger.error(f"{self.log_prefix} Error getting/creating anchor message: {e}") logger.error(traceback.format_exc()) return None # --- 发送器 (Sender) --- # async def _sender( self, thinking_id: str, anchor_message: MessageRecv, response_set: List[str], send_emoji: str, # Emoji query decided by planner or tools ): """ 发送器 (Sender): 使用 HeartFCSender 实例发送生成的回复。 处理相关的操作,如发送表情和更新关系。 """ logger.info(f"{self.log_prefix}开始发送回复 (使用 HeartFCSender)") first_bot_msg: Optional[MessageSending] = None try: # _send_response_messages 现在将使用 self.sender 内部处理注册和发送 # 它需要负责创建 MessageThinking 和 MessageSending 对象 # 并调用 self.sender.register_thinking 和 self.sender.type_and_send_message first_bot_msg = await self._send_response_messages( anchor_message=anchor_message, response_set=response_set, thinking_id=thinking_id ) if first_bot_msg: # --- 处理关联表情(如果指定) --- # if send_emoji: logger.info(f"{self.log_prefix}正在发送关联表情: '{send_emoji}'") # 优先使用 first_bot_msg 作为锚点,否则回退到原始锚点 emoji_anchor = first_bot_msg await self._handle_emoji(emoji_anchor, response_set, send_emoji) else: # 如果 _send_response_messages 返回 None,表示在发送前就失败或没有消息可发送 logger.warning( f"{self.log_prefix}[Sender-{thinking_id}] 未能发送任何回复消息 (_send_response_messages 返回 None)。" ) # 这里可能不需要抛出异常,取决于 _send_response_messages 的具体实现 except Exception as e: # 异常现在由 type_and_send_message 内部处理日志,这里只记录发送流程失败 logger.error(f"{self.log_prefix}[Sender-{thinking_id}] 发送回复过程中遇到错误: {e}") # 思考状态应已在 type_and_send_message 的 finally 块中清理 # 可以选择重新抛出或根据业务逻辑处理 # raise RuntimeError(f"发送回复失败: {e}") from e async def shutdown(self): """优雅关闭HeartFChatting实例,取消活动循环任务""" logger.info(f"{self.log_prefix} 正在关闭HeartFChatting...") self._shutting_down = True # <-- 在开始关闭时设置标志位 # 取消循环任务 if self._loop_task and not self._loop_task.done(): logger.info(f"{self.log_prefix} 正在取消HeartFChatting循环任务") self._loop_task.cancel() try: await asyncio.wait_for(self._loop_task, timeout=1.0) logger.info(f"{self.log_prefix} HeartFChatting循环任务已取消") except (asyncio.CancelledError, asyncio.TimeoutError): pass except Exception as e: logger.error(f"{self.log_prefix} 取消循环任务出错: {e}") else: logger.info(f"{self.log_prefix} 没有活动的HeartFChatting循环任务") # 清理状态 self._loop_active = False self._loop_task = None if self._processing_lock.locked(): self._processing_lock.release() logger.warning(f"{self.log_prefix} 已释放处理锁") logger.info(f"{self.log_prefix} HeartFChatting关闭完成") async def _build_replan_prompt(self, action: str, reasoning: str) -> str: """构建 Replanner LLM 的提示词""" prompt = (await global_prompt_manager.get_prompt_async("replan_prompt")).format( action=action, reasoning=reasoning, ) # 在记录循环日志前检查关闭标志 if not self._shutting_down: self._current_cycle.complete_cycle() self._cycle_history.append(self._current_cycle) # 记录循环信息和计时器结果 timer_strings = [] for name, elapsed in self._current_cycle.timers.items(): formatted_time = f"{elapsed * 1000:.2f}毫秒" if elapsed < 1 else f"{elapsed:.2f}秒" timer_strings.append(f"{name}: {formatted_time}") logger.debug( f"{self.log_prefix} 第 #{self._current_cycle.cycle_id}次思考完成," f"耗时: {self._current_cycle.end_time - self._current_cycle.start_time:.2f}秒, " f"动作: {self._current_cycle.action_type}" + (f"\n计时器详情: {'; '.join(timer_strings)}" if timer_strings else "") ) return prompt async def _build_planner_prompt( self, observed_messages_str: str, current_mind: Optional[str], structured_info: Dict[str, Any], replan_prompt: str, current_available_actions: Dict[str, str], ) -> str: """构建 Planner LLM 的提示词 (获取模板并填充数据)""" try: # 准备结构化信息块 structured_info_block = "" if structured_info: structured_info_block = f"以下是一些额外的信息:\n{structured_info}\n" # 准备聊天内容块 chat_content_block = "" if observed_messages_str: chat_content_block = "观察到的最新聊天内容如下:\n---\n" chat_content_block += observed_messages_str chat_content_block += "\n---" else: chat_content_block = "当前没有观察到新的聊天内容。\n" # 准备当前思维块 (修改以匹配模板) current_mind_block = "" if current_mind: # 模板中占位符是 {current_mind_block},它期望包含"你的内心想法:"的前缀 current_mind_block = f"你的内心想法:\n{current_mind}" else: current_mind_block = "你的内心想法:\n[没有特别的想法]" # 准备循环信息块 (分析最近的活动循环) recent_active_cycles = [] for cycle in reversed(self._cycle_history): # 只关心实际执行了动作的循环 if cycle.action_taken: recent_active_cycles.append(cycle) # 最多找最近的3个活动循环 if len(recent_active_cycles) == 3: break cycle_info_block = "" consecutive_text_replies = 0 responses_for_prompt = [] # 检查这最近的活动循环中有多少是连续的文本回复 (从最近的开始看) for cycle in recent_active_cycles: if cycle.action_type == "text_reply": consecutive_text_replies += 1 # 获取回复内容,如果不存在则返回'[空回复]' response_text = cycle.response_info.get("response_text", []) # 使用简单的 join 来格式化回复内容列表 formatted_response = "[空回复]" if not response_text else " ".join(response_text) responses_for_prompt.append(formatted_response) else: # 一旦遇到非文本回复,连续性中断 break # 根据连续文本回复的数量构建提示信息 # 注意: responses_for_prompt 列表是从最近到最远排序的 if consecutive_text_replies >= 3: # 如果最近的三个活动都是文本回复 cycle_info_block = f'你已经连续回复了三条消息(最近: "{responses_for_prompt[0]}",第二近: "{responses_for_prompt[1]}",第三近: "{responses_for_prompt[2]}")。你回复的有点多了,请注意' elif consecutive_text_replies == 2: # 如果最近的两个活动是文本回复 cycle_info_block = f'你已经连续回复了两条消息(最近: "{responses_for_prompt[0]}",第二近: "{responses_for_prompt[1]}"),请注意' elif consecutive_text_replies == 1: # 如果最近的一个活动是文本回复 cycle_info_block = f'你刚刚已经回复一条消息(内容: "{responses_for_prompt[0]}")' # 包装提示块,增加可读性,即使没有连续回复也给个标记 if cycle_info_block: # 模板中占位符是 {cycle_info_block},它期望包含"【近期回复历史】"的前缀 cycle_info_block = f"\n【近期回复历史】\n{cycle_info_block}\n" else: # 如果最近的活动循环不是文本回复,或者没有活动循环 cycle_info_block = "\n【近期回复历史】\n(最近没有连续文本回复)\n" individuality = Individuality.get_instance() # 模板中占位符是 {prompt_personality} prompt_personality = individuality.get_prompt(x_person=2, level=2) # --- 构建可用动作描述 (用于填充模板中的 {action_options_text}) --- action_options_text = "当前你可以选择的行动有:\n" action_keys = list(current_available_actions.keys()) for name in action_keys: desc = current_available_actions[name] action_options_text += f"- '{name}': {desc}\n" # --- 选择一个示例动作键 (用于填充模板中的 {example_action}) --- example_action_key = action_keys[0] if action_keys else "no_reply" # --- 获取提示词模板 --- planner_prompt_template = await global_prompt_manager.get_prompt_async("planner_prompt") # --- 填充模板 --- prompt = planner_prompt_template.format( bot_name=global_config.BOT_NICKNAME, prompt_personality=prompt_personality, structured_info_block=structured_info_block, chat_content_block=chat_content_block, current_mind_block=current_mind_block, replan="", # 暂时留空 replan 信息 cycle_info_block=cycle_info_block, action_options_text=action_options_text, # 传入可用动作描述 example_action=example_action_key # 传入示例动作键 ) return prompt except Exception as e: logger.error(f"{self.log_prefix}[Planner] 构建提示词时出错: {e}") logger.error(traceback.format_exc()) return "[构建 Planner Prompt 时出错]" # 返回错误提示,避免空字符串 # --- 回复器 (Replier) 的定义 --- # async def _replier_work( self, reason: str, anchor_message: MessageRecv, thinking_id: str, ) -> Optional[List[str]]: """ 回复器 (Replier): 核心逻辑,负责生成回复文本。 (已整合原 HeartFCGenerator 的功能) """ try: # 1. 获取情绪影响因子并调整模型温度 arousal_multiplier = MoodManager.get_instance().get_arousal_multiplier() current_temp = global_config.llm_normal["temp"] * arousal_multiplier self.model_normal.temperature = current_temp # 动态调整温度 # 2. 获取信息捕捉器 info_catcher = info_catcher_manager.get_info_catcher(thinking_id) # 3. 构建 Prompt with Timer("构建Prompt", {}): # 内部计时器,可选保留 prompt = await prompt_builder.build_prompt( build_mode="focus", reason=reason, current_mind_info=self.sub_mind.current_mind, structured_info=self.sub_mind.structured_info, message_txt="", # 似乎是固定的空字符串 sender_name="", # 似乎是固定的空字符串 chat_stream=anchor_message.chat_stream, ) # 4. 调用 LLM 生成回复 content = None reasoning_content = None model_name = "unknown_model" try: with Timer("LLM生成", {}): # 内部计时器,可选保留 content, reasoning_content, model_name = await self.model_normal.generate_response(prompt) # logger.info(f"{self.log_prefix}[Replier-{thinking_id}]\\nPrompt:\\n{prompt}\\n生成回复: {content}\\n") # 捕捉 LLM 输出信息 info_catcher.catch_after_llm_generated( prompt=prompt, response=content, reasoning_content=reasoning_content, model_name=model_name ) except Exception as llm_e: # 精简报错信息 logger.error(f"{self.log_prefix}[Replier-{thinking_id}] LLM 生成失败: {llm_e}") return None # LLM 调用失败则无法生成回复 # 5. 处理 LLM 响应 if not content: logger.warning(f"{self.log_prefix}[Replier-{thinking_id}] LLM 生成了空内容。") return None with Timer("处理响应", {}): # 内部计时器,可选保留 processed_response = process_llm_response(content) if not processed_response: logger.warning(f"{self.log_prefix}[Replier-{thinking_id}] 处理后的回复为空。") return None return processed_response except Exception as e: # 更通用的错误处理,精简信息 logger.error(f"{self.log_prefix}[Replier-{thinking_id}] 回复生成意外失败: {e}") # logger.error(traceback.format_exc()) # 可以取消注释这行以在调试时查看完整堆栈 return None # --- Methods moved from HeartFCController start --- async def _create_thinking_message(self, anchor_message: Optional[MessageRecv]) -> Optional[str]: """创建思考消息 (尝试锚定到 anchor_message)""" if not anchor_message or not anchor_message.chat_stream: logger.error(f"{self.log_prefix} 无法创建思考消息,缺少有效的锚点消息或聊天流。") return None chat = anchor_message.chat_stream messageinfo = anchor_message.message_info bot_user_info = UserInfo( user_id=global_config.BOT_QQ, user_nickname=global_config.BOT_NICKNAME, platform=messageinfo.platform, ) thinking_time_point = round(time.time(), 2) thinking_id = "mt" + str(thinking_time_point) thinking_message = MessageThinking( message_id=thinking_id, chat_stream=chat, bot_user_info=bot_user_info, reply=anchor_message, # 回复的是锚点消息 thinking_start_time=thinking_time_point, ) # Access MessageManager directly await self.heart_fc_sender.register_thinking(thinking_message) return thinking_id async def _send_response_messages( self, anchor_message: Optional[MessageRecv], response_set: List[str], thinking_id: str ) -> Optional[MessageSending]: """发送回复消息 (尝试锚定到 anchor_message),使用 HeartFCSender""" if not anchor_message or not anchor_message.chat_stream: logger.error(f"{self.log_prefix} 无法发送回复,缺少有效的锚点消息或聊天流。") return None chat = anchor_message.chat_stream chat_id = chat.stream_id stream_name = chat_manager.get_stream_name(chat_id) or chat_id # 获取流名称用于日志 # 检查思考过程是否仍在进行,并获取开始时间 thinking_start_time = await self.heart_fc_sender.get_thinking_start_time(chat_id, thinking_id) if thinking_start_time is None: logger.warning(f"[{stream_name}] {thinking_id} 思考过程未找到或已结束,无法发送回复。") return None # 记录锚点消息ID和回复文本(在发送前记录) self._current_cycle.set_response_info( response_text=response_set, anchor_message_id=anchor_message.message_info.message_id ) mark_head = False first_bot_msg: Optional[MessageSending] = None reply_message_ids = [] # 记录实际发送的消息ID bot_user_info = UserInfo( user_id=global_config.BOT_QQ, user_nickname=global_config.BOT_NICKNAME, platform=anchor_message.message_info.platform, ) for i, msg_text in enumerate(response_set): # 为每个消息片段生成唯一ID part_message_id = f"{thinking_id}_{i}" message_segment = Seg(type="text", data=msg_text) bot_message = MessageSending( message_id=part_message_id, # 使用片段的唯一ID chat_stream=chat, bot_user_info=bot_user_info, sender_info=anchor_message.message_info.user_info, message_segment=message_segment, reply=anchor_message, # 回复原始锚点 is_head=not mark_head, is_emoji=False, thinking_start_time=thinking_start_time, # 传递原始思考开始时间 ) try: if not mark_head: mark_head = True first_bot_msg = bot_message # 保存第一个成功发送的消息对象 await self.heart_fc_sender.type_and_send_message(bot_message, type=False) else: await self.heart_fc_sender.type_and_send_message(bot_message, type=True) reply_message_ids.append(part_message_id) # 记录我们生成的ID except Exception as e: logger.error( f"{self.log_prefix}[Sender-{thinking_id}] 发送回复片段 {i} ({part_message_id}) 时失败: {e}" ) # 这里可以选择是继续发送下一个片段还是中止 # 在尝试发送完所有片段后,完成原始的 thinking_id 状态 try: await self.heart_fc_sender.complete_thinking(chat_id, thinking_id) except Exception as e: logger.error(f"{self.log_prefix}[Sender-{thinking_id}] 完成思考状态 {thinking_id} 时出错: {e}") self._current_cycle.set_response_info( response_text=response_set, # 保留原始文本 anchor_message_id=anchor_message.message_info.message_id, # 保留锚点ID reply_message_ids=reply_message_ids, # 添加实际发送的ID列表 ) return first_bot_msg # 返回第一个成功发送的消息对象 async def _handle_emoji(self, anchor_message: Optional[MessageRecv], response_set: List[str], send_emoji: str = ""): """处理表情包 (尝试锚定到 anchor_message),使用 HeartFCSender""" if not anchor_message or not anchor_message.chat_stream: logger.error(f"{self.log_prefix} 无法处理表情包,缺少有效的锚点消息或聊天流。") return chat = anchor_message.chat_stream emoji_raw = await emoji_manager.get_emoji_for_text(send_emoji) if emoji_raw: emoji_path, description = emoji_raw emoji_cq = image_path_to_base64(emoji_path) thinking_time_point = round(time.time(), 2) # 用于唯一ID message_segment = Seg(type="emoji", data=emoji_cq) bot_user_info = UserInfo( user_id=global_config.BOT_QQ, user_nickname=global_config.BOT_NICKNAME, platform=anchor_message.message_info.platform, ) bot_message = MessageSending( message_id="me" + str(thinking_time_point), # 表情消息的唯一ID chat_stream=chat, bot_user_info=bot_user_info, sender_info=anchor_message.message_info.user_info, message_segment=message_segment, reply=anchor_message, # 回复原始锚点 is_head=False, # 表情通常不是头部消息 is_emoji=True, # 不需要 thinking_start_time ) try: await self.heart_fc_sender.send_and_store(bot_message) except Exception as e: logger.error(f"{self.log_prefix} 发送表情包 {bot_message.message_info.message_id} 时失败: {e}") def get_cycle_history(self, last_n: Optional[int] = None) -> List[Dict[str, Any]]: """获取循环历史记录 参数: last_n: 获取最近n个循环的信息,如果为None则获取所有历史记录 返回: List[Dict[str, Any]]: 循环历史记录列表 """ history = list(self._cycle_history) if last_n is not None: history = history[-last_n:] return [cycle.to_dict() for cycle in history] def get_last_cycle_info(self) -> Optional[Dict[str, Any]]: """获取最近一个循环的信息""" if self._cycle_history: return self._cycle_history[-1].to_dict() return None