import time import random from typing import Dict, Any, Tuple from src.common.logger import get_logger from src.plugin_system.apis import send_api, message_api, database_api from src.person_info.person_info import get_person_info_manager from .hfc_context import HfcContext # 导入反注入系统 # 日志记录器 logger = get_logger("hfc") anti_injector_logger = get_logger("anti_injector") class ResponseHandler: """ 响应处理器类,负责生成和发送机器人的回复。 """ def __init__(self, context: HfcContext): """ 初始化响应处理器 Args: context: HFC聊天上下文对象 功能说明: - 负责生成和发送机器人的回复 - 处理回复的格式化和发送逻辑 - 管理回复状态和日志记录 """ self.context = context async def generate_and_send_reply( self, response_set, reply_to_str, loop_start_time, action_message, cycle_timers: Dict[str, float], thinking_id, plan_result, ) -> Tuple[Dict[str, Any], str, Dict[str, float]]: """ 生成并发送回复的主方法 Args: response_set: 生成的回复内容集合 reply_to_str: 回复目标字符串 loop_start_time: 循环开始时间 action_message: 动作消息数据 cycle_timers: 循环计时器 thinking_id: 思考ID plan_result: 规划结果 Returns: tuple: (循环信息, 回复文本, 计时器信息) 功能说明: - 发送生成的回复内容 - 存储动作信息到数据库 - 构建并返回完整的循环信息 - 用于上级方法的状态跟踪 """ reply_text = await self.send_response(response_set, loop_start_time, action_message) person_info_manager = get_person_info_manager() # 获取平台信息 platform = "default" if self.context.chat_stream: platform = ( action_message.get("chat_info_platform") or action_message.get("user_platform") or self.context.chat_stream.platform ) # 获取用户信息并生成回复提示 user_id = action_message.get("user_id", "") person_id = person_info_manager.get_person_id(platform, user_id) person_name = await person_info_manager.get_value(person_id, "person_name") action_prompt_display = f"你对{person_name}进行了回复:{reply_text}" # 存储动作信息到数据库 await database_api.store_action_info( chat_stream=self.context.chat_stream, action_build_into_prompt=False, action_prompt_display=action_prompt_display, action_done=True, thinking_id=thinking_id, action_data={"reply_text": reply_text, "reply_to": reply_to_str}, action_name="reply", ) # 构建循环信息 loop_info: Dict[str, Any] = { "loop_plan_info": { "action_result": plan_result.get("action_result", {}), }, "loop_action_info": { "action_taken": True, "reply_text": reply_text, "command": "", "taken_time": time.time(), }, } return loop_info, reply_text, cycle_timers async def send_response(self, reply_set, thinking_start_time, message_data) -> str: """ 发送回复内容的具体实现 Args: reply_set: 回复内容集合,包含多个回复段 reply_to: 回复目标 thinking_start_time: 思考开始时间 message_data: 消息数据 Returns: str: 完整的回复文本 功能说明: - 检查是否有新消息需要回复 - 处理主动思考的"沉默"决定 - 根据消息数量决定是否添加回复引用 - 逐段发送回复内容,支持打字效果 - 正确处理元组格式的回复段 """ current_time = time.time() # 计算新消息数量 new_message_count = await message_api.count_new_messages( chat_id=self.context.stream_id, start_time=thinking_start_time, end_time=current_time ) # 根据新消息数量决定是否需要引用回复 need_reply = new_message_count >= random.randint(2, 4) reply_text = "" is_proactive_thinking = (message_data.get("message_type") == "proactive_thinking") if message_data else True first_replied = False for reply_seg in reply_set: # 调试日志:验证reply_seg的格式 logger.debug(f"Processing reply_seg type: {type(reply_seg)}, content: {reply_seg}") # 修正:正确处理元组格式 (格式为: (type, content)) if isinstance(reply_seg, tuple) and len(reply_seg) >= 2: _, data = reply_seg else: # 向下兼容:如果已经是字符串,则直接使用 data = str(reply_seg) if isinstance(data, list): data = "".join(map(str, data)) reply_text += data # 如果是主动思考且内容为“沉默”,则不发送 if is_proactive_thinking and data.strip() == "沉默": logger.info(f"{self.context.log_prefix} 主动思考决定保持沉默,不发送消息") continue # 发送第一段回复 if not first_replied: await send_api.text_to_stream( text=data, stream_id=self.context.stream_id, reply_to_message=message_data, set_reply=need_reply, typing=False, ) first_replied = True else: # 发送后续回复 sent_message = await send_api.text_to_stream( text=data, stream_id=self.context.stream_id, reply_to_message=None, set_reply=False, typing=True, ) return reply_text