from collections import defaultdict from datetime import datetime, timedelta from typing import Any, Dict, Tuple, List from src.common.logger import get_module_logger from src.manager.async_task_manager import AsyncTask from ...common.database.database import db # This db is the Peewee database instance from ...common.database.database_model import OnlineTime, LLMUsage, Messages # Import the Peewee model from src.manager.local_store_manager import local_storage logger = get_module_logger("maibot_statistic") # 统计数据的键 TOTAL_REQ_CNT = "total_requests" TOTAL_COST = "total_cost" REQ_CNT_BY_TYPE = "requests_by_type" REQ_CNT_BY_USER = "requests_by_user" REQ_CNT_BY_MODEL = "requests_by_model" IN_TOK_BY_TYPE = "in_tokens_by_type" IN_TOK_BY_USER = "in_tokens_by_user" IN_TOK_BY_MODEL = "in_tokens_by_model" OUT_TOK_BY_TYPE = "out_tokens_by_type" OUT_TOK_BY_USER = "out_tokens_by_user" OUT_TOK_BY_MODEL = "out_tokens_by_model" TOTAL_TOK_BY_TYPE = "tokens_by_type" TOTAL_TOK_BY_USER = "tokens_by_user" TOTAL_TOK_BY_MODEL = "tokens_by_model" COST_BY_TYPE = "costs_by_type" COST_BY_USER = "costs_by_user" COST_BY_MODEL = "costs_by_model" ONLINE_TIME = "online_time" TOTAL_MSG_CNT = "total_messages" MSG_CNT_BY_CHAT = "messages_by_chat" class OnlineTimeRecordTask(AsyncTask): """在线时间记录任务""" def __init__(self): super().__init__(task_name="Online Time Record Task", run_interval=60) self.record_id: int | None = None # Changed to int for Peewee's default ID """记录ID""" self._init_database() # 初始化数据库 @staticmethod def _init_database(): """初始化数据库""" with db.atomic(): # Use atomic operations for schema changes OnlineTime.create_table(safe=True) # Creates table if it doesn't exist, Peewee handles indexes from model async def run(self): try: current_time = datetime.now() extended_end_time = current_time + timedelta(minutes=1) if self.record_id: # 如果有记录,则更新结束时间 query = OnlineTime.update(end_timestamp=extended_end_time).where(OnlineTime.id == self.record_id) updated_rows = query.execute() if updated_rows == 0: # Record might have been deleted or ID is stale, try to find/create self.record_id = None # Reset record_id to trigger find/create logic below if not self.record_id: # Check again if record_id was reset or initially None # 如果没有记录,检查一分钟以内是否已有记录 # Look for a record whose end_timestamp is recent enough to be considered ongoing recent_record = ( OnlineTime.select() .where(OnlineTime.end_timestamp >= (current_time - timedelta(minutes=1))) .order_by(OnlineTime.end_timestamp.desc()) .first() ) if recent_record: # 如果有记录,则更新结束时间 self.record_id = recent_record.id recent_record.end_timestamp = extended_end_time recent_record.save() else: # 若没有记录,则插入新的在线时间记录 new_record = OnlineTime.create( timestamp=current_time.timestamp(), # 添加此行 start_timestamp=current_time, end_timestamp=extended_end_time, duration=5, # 初始时长为5分钟 ) self.record_id = new_record.id except Exception as e: logger.error(f"在线时间记录失败,错误信息:{e}") def _format_online_time(online_seconds: int) -> str: """ 格式化在线时间 :param online_seconds: 在线时间(秒) :return: 格式化后的在线时间字符串 """ total_oneline_time = timedelta(seconds=online_seconds) days = total_oneline_time.days hours = total_oneline_time.seconds // 3600 minutes = (total_oneline_time.seconds // 60) % 60 seconds = total_oneline_time.seconds % 60 if days > 0: # 如果在线时间超过1天,则格式化为"X天X小时X分钟" return f"{total_oneline_time.days}天{hours}小时{minutes}分钟{seconds}秒" elif hours > 0: # 如果在线时间超过1小时,则格式化为"X小时X分钟X秒" return f"{hours}小时{minutes}分钟{seconds}秒" else: # 其他情况格式化为"X分钟X秒" return f"{minutes}分钟{seconds}秒" class StatisticOutputTask(AsyncTask): """统计输出任务""" SEP_LINE = "-" * 84 def __init__(self, record_file_path: str = "maibot_statistics.html"): # 延迟300秒启动,运行间隔300秒 super().__init__(task_name="Statistics Data Output Task", wait_before_start=0, run_interval=300) self.name_mapping: Dict[str, Tuple[str, float]] = {} """ 联系人/群聊名称映射 {聊天ID: (联系人/群聊名称, 记录时间(timestamp))} 注:设计记录时间的目的是方便更新名称,使联系人/群聊名称保持最新 """ self.record_file_path: str = record_file_path """ 记录文件路径 """ now = datetime.now() if "deploy_time" in local_storage: # 如果存在部署时间,则使用该时间作为全量统计的起始时间 deploy_time = datetime.fromtimestamp(local_storage["deploy_time"]) else: # 否则,使用最大时间范围,并记录部署时间为当前时间 deploy_time = datetime(2000, 1, 1) local_storage["deploy_time"] = now.timestamp() self.stat_period: List[Tuple[str, timedelta, str]] = [ ("all_time", now - deploy_time, "自部署以来"), # 必须保留"all_time" ("last_7_days", timedelta(days=7), "最近7天"), ("last_24_hours", timedelta(days=1), "最近24小时"), ("last_hour", timedelta(hours=1), "最近1小时"), ] """ 统计时间段 [(统计名称, 统计时间段, 统计描述), ...] """ def _statistic_console_output(self, stats: Dict[str, Any], now: datetime): """ 输出统计数据到控制台 :param stats: 统计数据 :param now: 基准当前时间 """ # 输出最近一小时的统计数据 output = [ self.SEP_LINE, f" 最近1小时的统计数据 (自{now.strftime('%Y-%m-%d %H:%M:%S')}开始,详细信息见文件:{self.record_file_path})", self.SEP_LINE, self._format_total_stat(stats["last_hour"]), "", self._format_model_classified_stat(stats["last_hour"]), "", self._format_chat_stat(stats["last_hour"]), self.SEP_LINE, "", ] logger.info("\n" + "\n".join(output)) async def run(self): try: now = datetime.now() # 收集统计数据 stats = self._collect_all_statistics(now) # 输出统计数据到控制台 self._statistic_console_output(stats, now) # 输出统计数据到html文件 self._generate_html_report(stats, now) except Exception as e: logger.exception(f"输出统计数据过程中发生异常,错误信息:{e}") # -- 以下为统计数据收集方法 -- @staticmethod def _collect_model_request_for_period(collect_period: List[Tuple[str, datetime]]) -> Dict[str, Any]: """ 收集指定时间段的LLM请求统计数据 :param collect_period: 统计时间段 """ if not collect_period: return {} # 排序-按照时间段开始时间降序排列(最晚的时间段在前) collect_period.sort(key=lambda x: x[1], reverse=True) stats = { period_key: { TOTAL_REQ_CNT: 0, REQ_CNT_BY_TYPE: defaultdict(int), REQ_CNT_BY_USER: defaultdict(int), REQ_CNT_BY_MODEL: defaultdict(int), IN_TOK_BY_TYPE: defaultdict(int), IN_TOK_BY_USER: defaultdict(int), IN_TOK_BY_MODEL: defaultdict(int), OUT_TOK_BY_TYPE: defaultdict(int), OUT_TOK_BY_USER: defaultdict(int), OUT_TOK_BY_MODEL: defaultdict(int), TOTAL_TOK_BY_TYPE: defaultdict(int), TOTAL_TOK_BY_USER: defaultdict(int), TOTAL_TOK_BY_MODEL: defaultdict(int), TOTAL_COST: 0.0, COST_BY_TYPE: defaultdict(float), COST_BY_USER: defaultdict(float), COST_BY_MODEL: defaultdict(float), } for period_key, _ in collect_period } # 以最早的时间戳为起始时间获取记录 # Assuming LLMUsage.timestamp is a DateTimeField query_start_time = collect_period[-1][1] for record in LLMUsage.select().where(LLMUsage.timestamp >= query_start_time): record_timestamp = record.timestamp # This is already a datetime object for idx, (_, period_start) in enumerate(collect_period): if record_timestamp >= period_start: for period_key, _ in collect_period[idx:]: stats[period_key][TOTAL_REQ_CNT] += 1 request_type = record.request_type or "unknown" user_id = record.user_id or "unknown" # user_id is TextField, already string model_name = record.model_name or "unknown" stats[period_key][REQ_CNT_BY_TYPE][request_type] += 1 stats[period_key][REQ_CNT_BY_USER][user_id] += 1 stats[period_key][REQ_CNT_BY_MODEL][model_name] += 1 prompt_tokens = record.prompt_tokens or 0 completion_tokens = record.completion_tokens or 0 total_tokens = prompt_tokens + completion_tokens stats[period_key][IN_TOK_BY_TYPE][request_type] += prompt_tokens stats[period_key][IN_TOK_BY_USER][user_id] += prompt_tokens stats[period_key][IN_TOK_BY_MODEL][model_name] += prompt_tokens stats[period_key][OUT_TOK_BY_TYPE][request_type] += completion_tokens stats[period_key][OUT_TOK_BY_USER][user_id] += completion_tokens stats[period_key][OUT_TOK_BY_MODEL][model_name] += completion_tokens stats[period_key][TOTAL_TOK_BY_TYPE][request_type] += total_tokens stats[period_key][TOTAL_TOK_BY_USER][user_id] += total_tokens stats[period_key][TOTAL_TOK_BY_MODEL][model_name] += total_tokens cost = record.cost or 0.0 stats[period_key][TOTAL_COST] += cost stats[period_key][COST_BY_TYPE][request_type] += cost stats[period_key][COST_BY_USER][user_id] += cost stats[period_key][COST_BY_MODEL][model_name] += cost break return stats @staticmethod def _collect_online_time_for_period(collect_period: List[Tuple[str, datetime]], now: datetime) -> Dict[str, Any]: """ 收集指定时间段的在线时间统计数据 :param collect_period: 统计时间段 """ if not collect_period: return {} collect_period.sort(key=lambda x: x[1], reverse=True) stats = { period_key: { ONLINE_TIME: 0.0, } for period_key, _ in collect_period } query_start_time = collect_period[-1][1] # Assuming OnlineTime.end_timestamp is a DateTimeField for record in OnlineTime.select().where(OnlineTime.end_timestamp >= query_start_time): # record.end_timestamp and record.start_timestamp are datetime objects record_end_timestamp = record.end_timestamp record_start_timestamp = record.start_timestamp for idx, (_, period_boundary_start) in enumerate(collect_period): if record_end_timestamp >= period_boundary_start: # Calculate effective end time for this record in relation to 'now' effective_end_time = min(record_end_timestamp, now) for period_key, current_period_start_time in collect_period[idx:]: # Determine the portion of the record that falls within this specific statistical period overlap_start = max(record_start_timestamp, current_period_start_time) overlap_end = effective_end_time # Already capped by 'now' and record's own end if overlap_end > overlap_start: stats[period_key][ONLINE_TIME] += (overlap_end - overlap_start).total_seconds() break return stats def _collect_message_count_for_period(self, collect_period: List[Tuple[str, datetime]]) -> Dict[str, Any]: """ 收集指定时间段的消息统计数据 :param collect_period: 统计时间段 """ if not collect_period: return {} collect_period.sort(key=lambda x: x[1], reverse=True) stats = { period_key: { TOTAL_MSG_CNT: 0, MSG_CNT_BY_CHAT: defaultdict(int), } for period_key, _ in collect_period } query_start_timestamp = collect_period[-1][1].timestamp() # Messages.time is a DoubleField (timestamp) for message in Messages.select().where(Messages.time >= query_start_timestamp): message_time_ts = message.time # This is a float timestamp chat_id = None chat_name = None # Logic based on Peewee model structure, aiming to replicate original intent if message.chat_info_group_id: chat_id = f"g{message.chat_info_group_id}" chat_name = message.chat_info_group_name or f"群{message.chat_info_group_id}" elif message.user_id: # Fallback to sender's info for chat_id if not a group_info based chat # This uses the message SENDER's ID as per original logic's fallback chat_id = f"u{message.user_id}" # SENDER's user_id chat_name = message.user_nickname # SENDER's nickname else: # If neither group_id nor sender_id is available for chat identification logger.warning( f"Message (PK: {message.id if hasattr(message, 'id') else 'N/A'}) lacks group_id and user_id for chat stats." ) continue if not chat_id: # Should not happen if above logic is correct continue # Update name_mapping if chat_id in self.name_mapping: if chat_name != self.name_mapping[chat_id][0] and message_time_ts > self.name_mapping[chat_id][1]: self.name_mapping[chat_id] = (chat_name, message_time_ts) else: self.name_mapping[chat_id] = (chat_name, message_time_ts) for idx, (_, period_start_dt) in enumerate(collect_period): if message_time_ts >= period_start_dt.timestamp(): for period_key, _ in collect_period[idx:]: stats[period_key][TOTAL_MSG_CNT] += 1 stats[period_key][MSG_CNT_BY_CHAT][chat_id] += 1 break return stats def _collect_all_statistics(self, now: datetime) -> Dict[str, Dict[str, Any]]: """ 收集各时间段的统计数据 :param now: 基准当前时间 """ last_all_time_stat = None if "last_full_statistics" in local_storage: # 如果存在上次完整统计数据,则使用该数据进行增量统计 last_stat = local_storage["last_full_statistics"] # 上次完整统计数据 self.name_mapping = last_stat["name_mapping"] # 上次完整统计数据的名称映射 last_all_time_stat = last_stat["stat_data"] # 上次完整统计的统计数据 last_stat_timestamp = datetime.fromtimestamp(last_stat["timestamp"]) # 上次完整统计数据的时间戳 self.stat_period = [item for item in self.stat_period if item[0] != "all_time"] # 删除"所有时间"的统计时段 self.stat_period.append(("all_time", now - last_stat_timestamp, "自部署以来的")) stat_start_timestamp = [(period[0], now - period[1]) for period in self.stat_period] stat = {item[0]: {} for item in self.stat_period} model_req_stat = self._collect_model_request_for_period(stat_start_timestamp) online_time_stat = self._collect_online_time_for_period(stat_start_timestamp, now) message_count_stat = self._collect_message_count_for_period(stat_start_timestamp) # 统计数据合并 # 合并三类统计数据 for period_key, _ in stat_start_timestamp: stat[period_key].update(model_req_stat[period_key]) stat[period_key].update(online_time_stat[period_key]) stat[period_key].update(message_count_stat[period_key]) if last_all_time_stat: # 若存在上次完整统计数据,则将其与当前统计数据合并 for key, val in last_all_time_stat.items(): if isinstance(val, dict): # 是字典类型,则进行合并 for sub_key, sub_val in val.items(): stat["all_time"][key][sub_key] += sub_val else: # 直接合并 stat["all_time"][key] += val # 更新上次完整统计数据的时间戳 local_storage["last_full_statistics"] = { "name_mapping": self.name_mapping, "stat_data": stat["all_time"], "timestamp": now.timestamp(), } return stat # -- 以下为统计数据格式化方法 -- @staticmethod def _format_total_stat(stats: Dict[str, Any]) -> str: """ 格式化总统计数据 """ output = [ f"总在线时间: {_format_online_time(stats[ONLINE_TIME])}", f"总消息数: {stats[TOTAL_MSG_CNT]}", f"总请求数: {stats[TOTAL_REQ_CNT]}", f"总花费: {stats[TOTAL_COST]:.4f}¥", "", ] return "\n".join(output) @staticmethod def _format_model_classified_stat(stats: Dict[str, Any]) -> str: """ 格式化按模型分类的统计数据 """ if stats[TOTAL_REQ_CNT] <= 0: return "" data_fmt = "{:<32} {:>10} {:>12} {:>12} {:>12} {:>9.4f}¥" output = [ "按模型分类统计:", " 模型名称 调用次数 输入Token 输出Token Token总量 累计花费", ] for model_name, count in sorted(stats[REQ_CNT_BY_MODEL].items()): name = f"{model_name[:29]}..." if len(model_name) > 32 else model_name in_tokens = stats[IN_TOK_BY_MODEL][model_name] out_tokens = stats[OUT_TOK_BY_MODEL][model_name] tokens = stats[TOTAL_TOK_BY_MODEL][model_name] cost = stats[COST_BY_MODEL][model_name] output.append(data_fmt.format(name, count, in_tokens, out_tokens, tokens, cost)) output.append("") return "\n".join(output) def _format_chat_stat(self, stats: Dict[str, Any]) -> str: """ 格式化聊天统计数据 """ if stats[TOTAL_MSG_CNT] <= 0: return "" output = ["聊天消息统计:", " 联系人/群组名称 消息数量"] output.extend( f"{self.name_mapping[chat_id][0][:32]:<32} {count:>10}" for chat_id, count in sorted(stats[MSG_CNT_BY_CHAT].items()) ) output.append("") return "\n".join(output) def _generate_html_report(self, stat: dict[str, Any], now: datetime): """ 生成HTML格式的统计报告 :param stat: 统计数据 :param now: 基准当前时间 :return: HTML格式的统计报告 """ tab_list = [ f'' for period in self.stat_period ] def _format_stat_data(stat_data: dict[str, Any], div_id: str, start_time: datetime) -> str: """ 格式化一个时间段的统计数据到html div块 :param stat_data: 统计数据 :param div_id: div的ID :param start_time: 统计时间段开始时间 """ # format总在线时间 # 按模型分类统计 model_rows = "\n".join( [ f"" f"{model_name}" f"{count}" f"{stat_data[IN_TOK_BY_MODEL][model_name]}" f"{stat_data[OUT_TOK_BY_MODEL][model_name]}" f"{stat_data[TOTAL_TOK_BY_MODEL][model_name]}" f"{stat_data[COST_BY_MODEL][model_name]:.4f} ¥" f"" for model_name, count in sorted(stat_data[REQ_CNT_BY_MODEL].items()) ] ) # 按请求类型分类统计 type_rows = "\n".join( [ f"" f"{req_type}" f"{count}" f"{stat_data[IN_TOK_BY_TYPE][req_type]}" f"{stat_data[OUT_TOK_BY_TYPE][req_type]}" f"{stat_data[TOTAL_TOK_BY_TYPE][req_type]}" f"{stat_data[COST_BY_TYPE][req_type]:.4f} ¥" f"" for req_type, count in sorted(stat_data[REQ_CNT_BY_TYPE].items()) ] ) # 按用户分类统计 user_rows = "\n".join( [ f"" f"{user_id}" f"{count}" f"{stat_data[IN_TOK_BY_USER][user_id]}" f"{stat_data[OUT_TOK_BY_USER][user_id]}" f"{stat_data[TOTAL_TOK_BY_USER][user_id]}" f"{stat_data[COST_BY_USER][user_id]:.4f} ¥" f"" for user_id, count in sorted(stat_data[REQ_CNT_BY_USER].items()) ] ) # 聊天消息统计 chat_rows = "\n".join( [ f"{self.name_mapping[chat_id][0]}{count}" for chat_id, count in sorted(stat_data[MSG_CNT_BY_CHAT].items()) ] ) # 生成HTML return f"""

统计时段: {start_time.strftime("%Y-%m-%d %H:%M:%S")} ~ {now.strftime("%Y-%m-%d %H:%M:%S")}

总在线时间: {_format_online_time(stat_data[ONLINE_TIME])}

总消息数: {stat_data[TOTAL_MSG_CNT]}

总请求数: {stat_data[TOTAL_REQ_CNT]}

总花费: {stat_data[TOTAL_COST]:.4f} ¥

按模型分类统计

{model_rows}
模型名称调用次数输入Token输出TokenToken总量累计花费

按请求类型分类统计

{type_rows}
请求类型调用次数输入Token输出TokenToken总量累计花费

按用户分类统计

{user_rows}
用户名称调用次数输入Token输出TokenToken总量累计花费

聊天消息统计

{chat_rows}
联系人/群组名称消息数量
""" tab_content_list = [ _format_stat_data(stat[period[0]], period[0], now - period[1]) for period in self.stat_period if period[0] != "all_time" ] tab_content_list.append( _format_stat_data(stat["all_time"], "all_time", datetime.fromtimestamp(local_storage["deploy_time"])) ) joined_tab_list = "\n".join(tab_list) joined_tab_content = "\n".join(tab_content_list) html_template = ( """ MaiBot运行统计报告 """ + f"""

MaiBot运行统计报告

统计截止时间: {now.strftime("%Y-%m-%d %H:%M:%S")}

{joined_tab_list}
{joined_tab_content}
""" + """ """ ) with open(self.record_file_path, "w", encoding="utf-8") as f: f.write(html_template)