import asyncio from collections import defaultdict from datetime import datetime, timedelta from typing import Any from src.common.database.api.query import QueryBuilder from src.common.database.compatibility import db_get, db_query from src.common.database.core.models import LLMUsage, Messages, OnlineTime from src.common.logger import get_logger from src.manager.async_task_manager import AsyncTask from src.manager.local_store_manager import local_storage logger = get_logger("maibot_statistic") # 统计查询的批次大小 STAT_BATCH_SIZE = 2000 # 内存优化:单次统计最大处理记录数(防止极端情况) STAT_MAX_RECORDS = 100000 # 彻底异步化:删除原同步包装器 _sync_db_get,所有数据库访问统一使用 await db_get。 from .report_generator import HTMLReportGenerator from .statistic_keys import * class OnlineTimeRecordTask(AsyncTask): """在线时间记录任务""" def __init__(self): super().__init__(task_name="Online Time Record Task", run_interval=60) self.record_id: int | None = None """记录ID""" async def run(self): # sourcery skip: use-named-expression try: current_time = datetime.now() extended_end_time = current_time + timedelta(minutes=1) if self.record_id: # 如果有记录,则更新结束时间 updated_rows = await db_query( model_class=OnlineTime, query_type="update", filters={"id": self.record_id}, data={"end_timestamp": extended_end_time}, ) if updated_rows == 0: # Record might have been deleted or ID is stale, try to find/create self.record_id = None if not self.record_id: # 查找最近一分钟内的记录 recent_threshold = current_time - timedelta(minutes=1) recent_records = await db_get( model_class=OnlineTime, filters={"end_timestamp": {"$gte": recent_threshold}}, order_by="-end_timestamp", limit=1, single_result=True, ) if recent_records: # 找到近期记录,更新它 record_to_use = recent_records[0] if isinstance(recent_records, list) else recent_records self.record_id = record_to_use.get("id") if self.record_id: await db_query( model_class=OnlineTime, query_type="update", filters={"id": self.record_id}, data={"end_timestamp": extended_end_time}, ) else: # 创建新记录 new_record = await db_query( model_class=OnlineTime, query_type="create", data={ "timestamp": str(current_time), "duration": 5, # 初始时长为5分钟 "start_timestamp": current_time, "end_timestamp": extended_end_time, }, ) if new_record: record_to_use = new_record[0] if isinstance(new_record, list) else new_record self.record_id = record_to_use.get("id") except Exception as e: logger.error(f"在线时间记录失败,错误信息:{e}") def _format_online_time(online_seconds: int) -> str: """ 格式化在线时间 :param online_seconds: 在线时间(秒) :return: 格式化后的在线时间字符串 """ total_online_time = timedelta(seconds=online_seconds) days = total_online_time.days hours = total_online_time.seconds // 3600 minutes = (total_online_time.seconds // 60) % 60 seconds = total_online_time.seconds % 60 if days > 0: # 如果在线时间超过1天,则格式化为"X天X小时X分钟" return f"{total_online_time.days}天{hours}小时{minutes}分钟{seconds}秒" elif hours > 0: # 如果在线时间超过1小时,则格式化为"X小时X分钟X秒" return f"{hours}小时{minutes}分钟{seconds}秒" else: # 其他情况格式化为"X分钟X秒" return f"{minutes}分钟{seconds}秒" class StatisticOutputTask(AsyncTask): """统计输出任务""" SEP_LINE = "-" * 84 def __init__(self, record_file_path: str = "mofox_bot_statistics.html"): # 延迟300秒启动,运行间隔300秒 super().__init__(task_name="Statistics Data Output Task", wait_before_start=600, run_interval=900) self.name_mapping: dict[str, tuple[str, float]] = {} """ 联系人/群聊名称映射 {聊天ID: (联系人/群聊名称, 记录时间(timestamp))} 注:设计记录时间的目的是方便更新名称,使联系人/群聊名称保持最新 """ self.record_file_path: str = record_file_path """ 记录文件路径 """ now = datetime.now() deploy_time_ts = local_storage.get("deploy_time") if deploy_time_ts: # 如果存在部署时间,则使用该时间作为全量统计的起始时间 deploy_time = datetime.fromtimestamp(deploy_time_ts) # type: ignore else: # 否则,使用最大时间范围,并记录部署时间为当前时间 deploy_time = datetime(2000, 1, 1) local_storage["deploy_time"] = now.timestamp() self.stat_period: list[tuple[str, timedelta, str]] = [ ("all_time", now - deploy_time, "自部署以来"), # 必须保留"all_time" ("last_7_days", timedelta(days=7), "最近7天"), ("last_24_hours", timedelta(days=1), "最近24小时"), ("last_3_hours", timedelta(hours=3), "最近3小时"), ("last_hour", timedelta(hours=1), "最近1小时"), ] """ 统计时间段 [(统计名称, 统计时间段, 统计描述), ...] """ def _statistic_console_output(self, stats: dict[str, Any], now: datetime): """ 输出统计数据到控制台 :param stats: 统计数据 :param now: 基准当前时间 """ # 输出最近一小时的统计数据 output = [ self.SEP_LINE, f" 最近1小时的统计数据 (自{now.strftime('%Y-%m-%d %H:%M:%S')}开始,详细信息见文件:{self.record_file_path})", self.SEP_LINE, self._format_total_stat(stats["last_hour"]), "", self._format_model_classified_stat(stats["last_hour"]), "", self._format_chat_stat(stats["last_hour"]), self.SEP_LINE, "", ] logger.info("\n" + "\n".join(output)) @staticmethod async def _yield_control(iteration: int, interval: int = 200) -> None: """ 在长时间运行的循环中定期让出控制权,以防止阻塞事件循环 :param iteration: 当前迭代次数 :param interval: 每隔多少次迭代让出一次控制权 """ if iteration % interval == 0: await asyncio.sleep(0) async def run(self): """ 完全异步后台运行统计输出 使用此方法可以让统计任务完全非阻塞 """ async def _async_collect_and_output(): try: now = datetime.now() logger.info("(后台) 正在收集统计数据(异步)...") stats = await self._collect_all_statistics(now) self._statistic_console_output(stats, now) # 使用新的 HTMLReportGenerator 生成报告 chart_data = await self._collect_chart_data(stats) deploy_time = datetime.fromtimestamp(float(local_storage.get("deploy_time", now.timestamp()))) # type: ignore report_generator = HTMLReportGenerator( name_mapping=self.name_mapping, stat_period=self.stat_period, deploy_time=deploy_time, ) await report_generator.generate_report(stats, chart_data, now, self.record_file_path) logger.info("统计数据后台输出完成") except Exception as e: logger.exception(f"后台统计数据输出过程中发生异常:{e}") # 创建后台任务,立即返回 asyncio.create_task(_async_collect_and_output()) # noqa: RUF006 # -- 以下为统计数据收集方法 -- @staticmethod async def _collect_model_request_for_period(collect_period: list[tuple[str, datetime]]) -> dict[str, Any]: """ 收集指定时间段的LLM请求统计数据 :param collect_period: 统计时间段 """ if not collect_period: return {} # 排序-按照时间段开始时间降序排列(最晚的时间段在前) collect_period.sort(key=lambda x: x[1], reverse=True) stats = { period_key: { TOTAL_REQ_CNT: 0, REQ_CNT_BY_TYPE: defaultdict(int), REQ_CNT_BY_USER: defaultdict(int), REQ_CNT_BY_MODEL: defaultdict(int), REQ_CNT_BY_MODULE: defaultdict(int), REQ_CNT_BY_PROVIDER: defaultdict(int), # New IN_TOK_BY_TYPE: defaultdict(int), IN_TOK_BY_USER: defaultdict(int), IN_TOK_BY_MODEL: defaultdict(int), IN_TOK_BY_MODULE: defaultdict(int), OUT_TOK_BY_TYPE: defaultdict(int), OUT_TOK_BY_USER: defaultdict(int), OUT_TOK_BY_MODEL: defaultdict(int), OUT_TOK_BY_MODULE: defaultdict(int), TOTAL_TOK_BY_TYPE: defaultdict(int), TOTAL_TOK_BY_USER: defaultdict(int), TOTAL_TOK_BY_MODEL: defaultdict(int), TOTAL_TOK_BY_MODULE: defaultdict(int), TOTAL_TOK_BY_PROVIDER: defaultdict(int), # New TOTAL_COST: 0.0, COST_BY_TYPE: defaultdict(float), COST_BY_USER: defaultdict(float), COST_BY_MODEL: defaultdict(float), COST_BY_MODULE: defaultdict(float), COST_BY_PROVIDER: defaultdict(float), # New TIME_COST_BY_TYPE: defaultdict(list), TIME_COST_BY_USER: defaultdict(list), TIME_COST_BY_MODEL: defaultdict(list), TIME_COST_BY_MODULE: defaultdict(list), TIME_COST_BY_PROVIDER: defaultdict(list), # New AVG_TIME_COST_BY_TYPE: defaultdict(float), AVG_TIME_COST_BY_USER: defaultdict(float), AVG_TIME_COST_BY_MODEL: defaultdict(float), AVG_TIME_COST_BY_MODULE: defaultdict(float), STD_TIME_COST_BY_TYPE: defaultdict(float), STD_TIME_COST_BY_USER: defaultdict(float), STD_TIME_COST_BY_MODEL: defaultdict(float), STD_TIME_COST_BY_MODULE: defaultdict(float), AVG_TIME_COST_BY_PROVIDER: defaultdict(float), STD_TIME_COST_BY_PROVIDER: defaultdict(float), # New calculated fields TPS_BY_MODEL: defaultdict(float), COST_PER_KTOK_BY_MODEL: defaultdict(float), AVG_TOK_BY_MODEL: defaultdict(float), TPS_BY_PROVIDER: defaultdict(float), COST_PER_KTOK_BY_PROVIDER: defaultdict(float), # Chart data PIE_CHART_COST_BY_PROVIDER: {}, PIE_CHART_REQ_BY_PROVIDER: {}, PIE_CHART_COST_BY_MODULE: {}, BAR_CHART_COST_BY_MODEL: {}, BAR_CHART_REQ_BY_MODEL: {}, BAR_CHART_TOKEN_COMPARISON: {}, SCATTER_CHART_RESPONSE_TIME: {}, RADAR_CHART_MODEL_EFFICIENCY: {}, HEATMAP_CHAT_ACTIVITY: {}, DOUGHNUT_CHART_PROVIDER_REQUESTS: {}, LINE_CHART_COST_TREND: {}, BAR_CHART_AVG_RESPONSE_TIME: {}, } for period_key, _ in collect_period } # 以最早的时间戳为起始时间获取记录 # 🔧 内存优化:使用分批查询代替全量加载 query_start_time = collect_period[-1][1] query_builder = ( QueryBuilder(LLMUsage) .no_cache() .filter(timestamp__gte=query_start_time) .order_by("-timestamp") ) total_processed = 0 async for batch in query_builder.iter_batches(batch_size=STAT_BATCH_SIZE, as_dict=True): for record in batch: if total_processed >= STAT_MAX_RECORDS: logger.warning(f"统计处理记录数达到上限 {STAT_MAX_RECORDS},跳过剩余记录") break if not isinstance(record, dict): continue record_timestamp = record.get("timestamp") if isinstance(record_timestamp, str): record_timestamp = datetime.fromisoformat(record_timestamp) if not record_timestamp: continue for period_idx, (_, period_start) in enumerate(collect_period): if record_timestamp >= period_start: for period_key, _ in collect_period[period_idx:]: stats[period_key][TOTAL_REQ_CNT] += 1 request_type = record.get("request_type") or "unknown" user_id = record.get("user_id") or "unknown" model_name = record.get("model_name") or "unknown" provider_name = record.get("model_api_provider") or "unknown" # 提取模块名:如果请求类型包含".",取第一个"."之前的部分 module_name = request_type.split(".")[0] if "." in request_type else request_type stats[period_key][REQ_CNT_BY_TYPE][request_type] += 1 stats[period_key][REQ_CNT_BY_USER][user_id] += 1 stats[period_key][REQ_CNT_BY_MODEL][model_name] += 1 stats[period_key][REQ_CNT_BY_MODULE][module_name] += 1 stats[period_key][REQ_CNT_BY_PROVIDER][provider_name] += 1 # 确保 tokens 是 int 类型 try: prompt_tokens = int(record.get("prompt_tokens") or 0) except (ValueError, TypeError): prompt_tokens = 0 try: completion_tokens = int(record.get("completion_tokens") or 0) except (ValueError, TypeError): completion_tokens = 0 total_tokens = prompt_tokens + completion_tokens stats[period_key][IN_TOK_BY_TYPE][request_type] += prompt_tokens stats[period_key][IN_TOK_BY_USER][user_id] += prompt_tokens stats[period_key][IN_TOK_BY_MODEL][model_name] += prompt_tokens stats[period_key][IN_TOK_BY_MODULE][module_name] += prompt_tokens stats[period_key][OUT_TOK_BY_TYPE][request_type] += completion_tokens stats[period_key][OUT_TOK_BY_USER][user_id] += completion_tokens stats[period_key][OUT_TOK_BY_MODEL][model_name] += completion_tokens stats[period_key][OUT_TOK_BY_MODULE][module_name] += completion_tokens stats[period_key][TOTAL_TOK_BY_TYPE][request_type] += total_tokens stats[period_key][TOTAL_TOK_BY_USER][user_id] += total_tokens stats[period_key][TOTAL_TOK_BY_MODEL][model_name] += total_tokens stats[period_key][TOTAL_TOK_BY_MODULE][module_name] += total_tokens stats[period_key][TOTAL_TOK_BY_PROVIDER][provider_name] += total_tokens # 确保 cost 是 float 类型 cost = record.get("cost") or 0.0 try: cost = float(cost) if cost else 0.0 except (ValueError, TypeError): cost = 0.0 stats[period_key][TOTAL_COST] += cost stats[period_key][COST_BY_TYPE][request_type] += cost stats[period_key][COST_BY_USER][user_id] += cost stats[period_key][COST_BY_MODEL][model_name] += cost stats[period_key][COST_BY_MODULE][module_name] += cost stats[period_key][COST_BY_PROVIDER][provider_name] += cost # 收集time_cost数据,确保 time_cost 是 float 类型 time_cost = record.get("time_cost") or 0.0 try: time_cost = float(time_cost) if time_cost else 0.0 except (ValueError, TypeError): time_cost = 0.0 if time_cost > 0: # 只记录有效的time_cost stats[period_key][TIME_COST_BY_TYPE][request_type].append(time_cost) stats[period_key][TIME_COST_BY_USER][user_id].append(time_cost) stats[period_key][TIME_COST_BY_MODEL][model_name].append(time_cost) stats[period_key][TIME_COST_BY_MODULE][module_name].append(time_cost) stats[period_key][TIME_COST_BY_PROVIDER][provider_name].append(time_cost) break total_processed += 1 if total_processed % 500 == 0: await StatisticOutputTask._yield_control(total_processed, interval=1) # 检查是否达到上限 if total_processed >= STAT_MAX_RECORDS: break # 每批处理完后让出控制权 await asyncio.sleep(0) # -- 计算派生指标 -- for period_key, period_stats in stats.items(): # 计算模型相关指标 for model_idx, (model_name, req_count) in enumerate(period_stats[REQ_CNT_BY_MODEL].items(), 1): total_tok = period_stats[TOTAL_TOK_BY_MODEL][model_name] or 0 total_cost = period_stats[COST_BY_MODEL][model_name] or 0 time_costs = period_stats[TIME_COST_BY_MODEL][model_name] or [] total_time_cost = sum(time_costs) # TPS if total_time_cost > 0: period_stats[TPS_BY_MODEL][model_name] = round(total_tok / total_time_cost, 2) # Cost per 1K Tokens if total_tok > 0: period_stats[COST_PER_KTOK_BY_MODEL][model_name] = round((total_cost / total_tok) * 1000, 4) # Avg Tokens per Request period_stats[AVG_TOK_BY_MODEL][model_name] = round(total_tok / req_count) if req_count > 0 else 0 await StatisticOutputTask._yield_control(model_idx, interval=100) # 计算供应商相关指标 for provider_idx, (provider_name, req_count) in enumerate(period_stats[REQ_CNT_BY_PROVIDER].items(), 1): total_tok = period_stats[TOTAL_TOK_BY_PROVIDER][provider_name] total_cost = period_stats[COST_BY_PROVIDER][provider_name] time_costs = period_stats[TIME_COST_BY_PROVIDER][provider_name] total_time_cost = sum(time_costs) # TPS if total_time_cost > 0: period_stats[TPS_BY_PROVIDER][provider_name] = round(total_tok / total_time_cost, 2) # Cost per 1K Tokens if total_tok > 0: period_stats[COST_PER_KTOK_BY_PROVIDER][provider_name] = round((total_cost / total_tok) * 1000, 4) await StatisticOutputTask._yield_control(provider_idx, interval=100) # 计算平均耗时和标准差 for category_key, items in [ (REQ_CNT_BY_USER, "user"), (REQ_CNT_BY_MODEL, "model"), (REQ_CNT_BY_MODULE, "module"), (REQ_CNT_BY_PROVIDER, "provider"), ]: time_cost_key = f"time_costs_by_{items.lower()}" avg_key = f"avg_time_costs_by_{items.lower()}" std_key = f"std_time_costs_by_{items.lower()}" for idx, item_name in enumerate(period_stats[category_key], 1): time_costs = period_stats[time_cost_key][item_name] if time_costs: avg_time = sum(time_costs) / len(time_costs) period_stats[avg_key][item_name] = round(avg_time, 3) if len(time_costs) > 1: variance = sum((x - avg_time) ** 2 for x in time_costs) / len(time_costs) period_stats[std_key][item_name] = round(variance**0.5, 3) else: period_stats[std_key][item_name] = 0.0 else: period_stats[avg_key][item_name] = 0.0 period_stats[std_key][item_name] = 0.0 await StatisticOutputTask._yield_control(idx, interval=200) # 准备图表数据 # 按供应商花费饼图 provider_costs = period_stats[COST_BY_PROVIDER] if provider_costs: sorted_providers = sorted(provider_costs.items(), key=lambda item: item[1], reverse=True) period_stats[PIE_CHART_COST_BY_PROVIDER] = { "labels": [item[0] for item in sorted_providers], "data": [round(item[1], 4) for item in sorted_providers], } # 按模块花费饼图 module_costs = period_stats[COST_BY_MODULE] if module_costs: sorted_modules = sorted(module_costs.items(), key=lambda item: item[1], reverse=True) period_stats[PIE_CHART_COST_BY_MODULE] = { "labels": [item[0] for item in sorted_modules], "data": [round(item[1], 4) for item in sorted_modules], } # 按模型花费条形图 model_costs = period_stats[COST_BY_MODEL] if model_costs: sorted_models = sorted(model_costs.items(), key=lambda item: item[1], reverse=True) period_stats[BAR_CHART_COST_BY_MODEL] = { "labels": [item[0] for item in sorted_models], "data": [round(item[1], 4) for item in sorted_models], } # 1. Token输入输出对比条形图 model_names = list(period_stats[REQ_CNT_BY_MODEL].keys()) if model_names: period_stats[BAR_CHART_TOKEN_COMPARISON] = { "labels": model_names, "input_tokens": [period_stats[IN_TOK_BY_MODEL].get(m, 0) for m in model_names], "output_tokens": [period_stats[OUT_TOK_BY_MODEL].get(m, 0) for m in model_names], } # 2. 响应时间分布散点图数据(限制数据点以提高加载速度) scatter_data = [] max_points_per_model = 50 # 每个模型最多50个点 for model_name, time_costs in period_stats[TIME_COST_BY_MODEL].items(): # 如果数据点太多,进行采样 if len(time_costs) > max_points_per_model: step = len(time_costs) // max_points_per_model sampled_costs = time_costs[::step][:max_points_per_model] else: sampled_costs = time_costs for idx, time_cost in enumerate(sampled_costs): scatter_data.append({ "model": model_name, "x": idx, "y": round(time_cost, 3), "tokens": period_stats[TOTAL_TOK_BY_MODEL].get(model_name, 0) // len(time_costs) if time_costs else 0 }) period_stats[SCATTER_CHART_RESPONSE_TIME] = scatter_data # 3. 模型效率雷达图 if model_names: # 取前5个最常用的模型 top_models = sorted(period_stats[REQ_CNT_BY_MODEL].items(), key=lambda x: x[1], reverse=True)[:5] radar_data = [] for model_name, _ in top_models: # 归一化各项指标到0-100 req_count = period_stats[REQ_CNT_BY_MODEL].get(model_name, 0) tps = period_stats[TPS_BY_MODEL].get(model_name, 0) avg_time = period_stats[AVG_TIME_COST_BY_MODEL].get(model_name, 0) cost_per_ktok = period_stats[COST_PER_KTOK_BY_MODEL].get(model_name, 0) avg_tokens = period_stats[AVG_TOK_BY_MODEL].get(model_name, 0) # 简单的归一化(反向归一化时间和成本,值越小越好) max_req = max([period_stats[REQ_CNT_BY_MODEL].get(m[0], 1) for m in top_models]) max_tps = max([period_stats[TPS_BY_MODEL].get(m[0], 1) for m in top_models]) max_time = max([period_stats[AVG_TIME_COST_BY_MODEL].get(m[0], 0.1) for m in top_models]) max_cost = max([period_stats[COST_PER_KTOK_BY_MODEL].get(m[0], 0.001) for m in top_models]) max_tokens = max([period_stats[AVG_TOK_BY_MODEL].get(m[0], 1) for m in top_models]) radar_data.append({ "model": model_name, "metrics": [ round((req_count / max_req) * 100, 2) if max_req > 0 else 0, # 请求量 round((tps / max_tps) * 100, 2) if max_tps > 0 else 0, # TPS round((1 - avg_time / max_time) * 100, 2) if max_time > 0 else 100, # 速度(反向) round((1 - cost_per_ktok / max_cost) * 100, 2) if max_cost > 0 else 100, # 成本效益(反向) round((avg_tokens / max_tokens) * 100, 2) if max_tokens > 0 else 0, # Token容量 ] }) period_stats[RADAR_CHART_MODEL_EFFICIENCY] = { "labels": ["请求量", "TPS", "响应速度", "成本效益", "Token容量"], "datasets": radar_data } # 4. 供应商请求占比环形图 provider_requests = period_stats[REQ_CNT_BY_PROVIDER] if provider_requests: sorted_provider_reqs = sorted(provider_requests.items(), key=lambda item: item[1], reverse=True) period_stats[DOUGHNUT_CHART_PROVIDER_REQUESTS] = { "labels": [item[0] for item in sorted_provider_reqs], "data": [item[1] for item in sorted_provider_reqs], } # 5. 平均响应时间条形图 if model_names: sorted_by_time = sorted( [(m, period_stats[AVG_TIME_COST_BY_MODEL].get(m, 0)) for m in model_names], key=lambda x: x[1], reverse=True ) period_stats[BAR_CHART_AVG_RESPONSE_TIME] = { "labels": [item[0] for item in sorted_by_time], "data": [round(item[1], 3) for item in sorted_by_time], } return stats @staticmethod async def _collect_online_time_for_period( collect_period: list[tuple[str, datetime]], now: datetime ) -> dict[str, Any]: """ 收集指定时间段的在线时间统计数据 :param collect_period: 统计时间段 """ if not collect_period: return {} collect_period.sort(key=lambda x: x[1], reverse=True) stats = { period_key: { ONLINE_TIME: 0.0, } for period_key, _ in collect_period } query_start_time = collect_period[-1][1] # 🔧 内存优化:使用分批查询 query_builder = ( QueryBuilder(OnlineTime) .no_cache() .filter(end_timestamp__gte=query_start_time) .order_by("-end_timestamp") ) async for batch in query_builder.iter_batches(batch_size=STAT_BATCH_SIZE, as_dict=True): for record in batch: if not isinstance(record, dict): continue record_end_timestamp = record.get("end_timestamp") if isinstance(record_end_timestamp, str): record_end_timestamp = datetime.fromisoformat(record_end_timestamp) record_start_timestamp = record.get("start_timestamp") if isinstance(record_start_timestamp, str): record_start_timestamp = datetime.fromisoformat(record_start_timestamp) if not record_end_timestamp or not record_start_timestamp: continue for boundary_idx, (_, period_boundary_start) in enumerate(collect_period): if record_end_timestamp >= period_boundary_start: # Calculate effective end time for this record in relation to 'now' effective_end_time = min(record_end_timestamp, now) for period_key, current_period_start_time in collect_period[boundary_idx:]: # Determine the portion of the record that falls within this specific statistical period overlap_start = max(record_start_timestamp, current_period_start_time) overlap_end = effective_end_time # Already capped by 'now' and record's own end if overlap_end > overlap_start: stats[period_key][ONLINE_TIME] += (overlap_end - overlap_start).total_seconds() break # 每批处理完后让出控制权 await asyncio.sleep(0) return stats async def _collect_message_count_for_period(self, collect_period: list[tuple[str, datetime]]) -> dict[str, Any]: """ 收集指定时间段的消息统计数据 :param collect_period: 统计时间段 """ if not collect_period: return {} collect_period.sort(key=lambda x: x[1], reverse=True) stats = { period_key: { TOTAL_MSG_CNT: 0, MSG_CNT_BY_CHAT: defaultdict(int), } for period_key, _ in collect_period } query_start_timestamp = collect_period[-1][1].timestamp() # Messages.time is a DoubleField (timestamp) # 🔧 内存优化:使用分批查询 query_builder = ( QueryBuilder(Messages) .no_cache() .filter(time__gte=query_start_timestamp) .order_by("-time") ) total_processed = 0 async for batch in query_builder.iter_batches(batch_size=STAT_BATCH_SIZE, as_dict=True): for message in batch: if total_processed >= STAT_MAX_RECORDS: logger.warning(f"消息统计处理记录数达到上限 {STAT_MAX_RECORDS},跳过剩余记录") break if not isinstance(message, dict): continue message_time_ts = message.get("time") # This is a float timestamp if not message_time_ts: continue chat_id = None chat_name = None # Logic based on SQLAlchemy model structure, aiming to replicate original intent if message.get("chat_info_group_id"): chat_id = f"g{message['chat_info_group_id']}" chat_name = message.get("chat_info_group_name") or f"群{message['chat_info_group_id']}" elif message.get("user_id"): # Fallback to sender's info for chat_id if not a group_info based chat # This uses the message SENDER's ID as per original logic's fallback chat_id = f"u{message['user_id']}" # SENDER's user_id chat_name = message.get("user_nickname") # SENDER's nickname else: # If neither group_id nor sender_id is available for chat identification continue if not chat_id: # Should not happen if above logic is correct continue # Update name_mapping if chat_name: if chat_id in self.name_mapping: if chat_name != self.name_mapping[chat_id][0] and message_time_ts > self.name_mapping[chat_id][1]: self.name_mapping[chat_id] = (chat_name, message_time_ts) else: self.name_mapping[chat_id] = (chat_name, message_time_ts) for period_idx, (_, period_start_dt) in enumerate(collect_period): if message_time_ts >= period_start_dt.timestamp(): for period_key, _ in collect_period[period_idx:]: stats[period_key][TOTAL_MSG_CNT] += 1 stats[period_key][MSG_CNT_BY_CHAT][chat_id] += 1 break total_processed += 1 if total_processed % 500 == 0: await StatisticOutputTask._yield_control(total_processed, interval=1) # 检查是否达到上限 if total_processed >= STAT_MAX_RECORDS: break # 每批处理完后让出控制权 await asyncio.sleep(0) return stats async def _collect_all_statistics(self, now: datetime) -> dict[str, dict[str, Any]]: """ 收集各时间段的统计数据 :param now: 基准当前时间 """ last_all_time_stat = None if "last_full_statistics" in local_storage: # 如果存在上次完整统计数据,则使用该数据进行增量统计 last_stat: dict[str, Any] = local_storage["last_full_statistics"] # 上次完整统计数据 # type: ignore self.name_mapping = last_stat["name_mapping"] # 上次完整统计数据的名称映射 last_all_time_stat = last_stat["stat_data"] # 上次完整统计的统计数据 last_stat_timestamp = datetime.fromtimestamp(last_stat["timestamp"]) # 上次完整统计数据的时间戳 self.stat_period = [item for item in self.stat_period if item[0] != "all_time"] # 删除"所有时间"的统计时段 self.stat_period.append(("all_time", now - last_stat_timestamp, "自部署以来的")) stat_start_timestamp = [(period[0], now - period[1]) for period in self.stat_period] stat = {item[0]: {} for item in self.stat_period} model_req_stat, online_time_stat, message_count_stat = await asyncio.gather( self._collect_model_request_for_period(stat_start_timestamp), self._collect_online_time_for_period(stat_start_timestamp, now), self._collect_message_count_for_period(stat_start_timestamp), ) # 统计数据合并 # 合并三类统计数据 for period_key, _ in stat_start_timestamp: stat[period_key].update(model_req_stat.get(period_key, {})) stat[period_key].update(online_time_stat.get(period_key, {})) stat[period_key].update(message_count_stat.get(period_key, {})) if last_all_time_stat: # 若存在上次完整统计数据,则将其与当前统计数据合并 for key, val in last_all_time_stat.items(): # If a key from old stats is not in the current period's stats, it means no new data was generated. # In this case, we carry over the old data. if key not in stat["all_time"]: stat["all_time"][key] = val continue # If the key exists in both, we merge. if isinstance(val, dict): # It's a dictionary-like object (e.g., COST_BY_MODEL, TIME_COST_BY_TYPE) current_dict = stat["all_time"][key] for sub_key, sub_val in val.items(): if sub_key in current_dict: current_val = current_dict[sub_key] # 🔧 内存优化:处理压缩格式的 TIME_COST 数据 if isinstance(sub_val, dict) and "sum" in sub_val and "count" in sub_val: # 压缩格式合并 if isinstance(current_val, dict) and "sum" in current_val: # 两边都是压缩格式 current_dict[sub_key] = { "sum": current_val["sum"] + sub_val["sum"], "count": current_val["count"] + sub_val["count"], "sum_sq": current_val.get("sum_sq", 0) + sub_val.get("sum_sq", 0), } elif isinstance(current_val, list): # 当前是列表,历史是压缩格式:先压缩当前再合并 curr_sum = sum(current_val) if current_val else 0 curr_count = len(current_val) curr_sum_sq = sum(v * v for v in current_val) if current_val else 0 current_dict[sub_key] = { "sum": curr_sum + sub_val["sum"], "count": curr_count + sub_val["count"], "sum_sq": curr_sum_sq + sub_val.get("sum_sq", 0), } else: # 未知情况,保留历史值 current_dict[sub_key] = sub_val elif isinstance(sub_val, list): # 列表格式:extend(兼容旧数据,但新版不会产生这种情况) if isinstance(current_val, list): current_dict[sub_key] = current_val + sub_val else: current_dict[sub_key] = sub_val else: # 数值类型:直接相加 current_dict[sub_key] += sub_val else: current_dict[sub_key] = sub_val else: # It's a simple value (e.g., TOTAL_COST) stat["all_time"][key] += val # 更新上次完整统计数据的时间戳 # 🔧 内存优化:在保存前压缩 TIME_COST 列表为聚合数据,避免无限增长 compressed_stat_data = self._compress_time_cost_lists(stat["all_time"]) # 将所有defaultdict转换为普通dict以避免类型冲突 clean_stat_data = self._convert_defaultdict_to_dict(compressed_stat_data) local_storage["last_full_statistics"] = { "name_mapping": self.name_mapping, "stat_data": clean_stat_data, "timestamp": now.timestamp(), } return stat def _compress_time_cost_lists(self, data: dict[str, Any]) -> dict[str, Any]: """🔧 内存优化:将 TIME_COST_BY_* 的 list 压缩为聚合数据 原始格式: {"model_a": [1.2, 2.3, 3.4, ...]} (可能无限增长) 压缩格式: {"model_a": {"sum": 6.9, "count": 3, "sum_sq": 18.29}} 这样合并时只需要累加 sum/count/sum_sq,不会无限增长。 avg = sum / count std = sqrt(sum_sq / count - (sum / count)^2) """ # TIME_COST 相关的 key 前缀 time_cost_keys = [ TIME_COST_BY_TYPE, TIME_COST_BY_USER, TIME_COST_BY_MODEL, TIME_COST_BY_MODULE, TIME_COST_BY_PROVIDER ] result = dict(data) # 浅拷贝 for key in time_cost_keys: if key not in result: continue original = result[key] if not isinstance(original, dict): continue compressed = {} for sub_key, values in original.items(): if isinstance(values, list): # 原始列表格式,需要压缩 if values: total = sum(values) count = len(values) sum_sq = sum(v * v for v in values) compressed[sub_key] = {"sum": total, "count": count, "sum_sq": sum_sq} else: compressed[sub_key] = {"sum": 0.0, "count": 0, "sum_sq": 0.0} elif isinstance(values, dict) and "sum" in values and "count" in values: # 已经是压缩格式,直接保留 compressed[sub_key] = values else: # 未知格式,保留原值 compressed[sub_key] = values result[key] = compressed return result def _convert_defaultdict_to_dict(self, data): # sourcery skip: dict-comprehension, extract-duplicate-method, inline-immediately-returned-variable, merge-duplicate-blocks """递归转换defaultdict为普通dict""" if isinstance(data, defaultdict): # 转换defaultdict为普通dict result = {} for key, value in data.items(): result[key] = self._convert_defaultdict_to_dict(value) return result elif isinstance(data, dict): # 递归处理普通dict result = {} for key, value in data.items(): result[key] = self._convert_defaultdict_to_dict(value) return result else: # 其他类型直接返回 return data # -- 以下为统计数据格式化方法 -- @staticmethod def _format_total_stat(stats: dict[str, Any]) -> str: """ 格式化总统计数据 """ output = [ f"总在线时间: {_format_online_time(stats.get(ONLINE_TIME, 0))}", f"总消息数: {stats.get(TOTAL_MSG_CNT, 0)}", f"总请求数: {stats.get(TOTAL_REQ_CNT, 0)}", f"总花费: {stats.get(TOTAL_COST, 0.0):.4f}¥", "", ] return "\n".join(output) @staticmethod def _format_model_classified_stat(stats: dict[str, Any]) -> str: """ 格式化按模型分类的统计数据 """ if stats.get(TOTAL_REQ_CNT, 0) <= 0: return "" data_fmt = "{:<32} {:>10} {:>12} {:>12} {:>12} {:>9.4f}¥ {:>10} {:>10}" output = [ " 模型名称 调用次数 输入Token 输出Token Token总量 累计花费 平均耗时(秒) 标准差(秒)", ] for model_name, count in sorted(stats[REQ_CNT_BY_MODEL].items()): name = f"{model_name[:29]}..." if len(model_name) > 32 else model_name in_tokens = stats[IN_TOK_BY_MODEL][model_name] out_tokens = stats[OUT_TOK_BY_MODEL][model_name] tokens = stats[TOTAL_TOK_BY_MODEL][model_name] cost = stats[COST_BY_MODEL][model_name] avg_time_cost = stats[AVG_TIME_COST_BY_MODEL][model_name] std_time_cost = stats[STD_TIME_COST_BY_MODEL][model_name] output.append( data_fmt.format(name, count, in_tokens, out_tokens, tokens, cost, avg_time_cost, std_time_cost) ) output.append("") return "\n".join(output) def _format_chat_stat(self, stats: dict[str, Any]) -> str: """ 格式化聊天统计数据 """ if stats.get(TOTAL_MSG_CNT, 0) <= 0: return "" output = ["聊天消息统计:", " 联系人/群组名称 消息数量"] output.extend( f"{self.name_mapping.get(chat_id, (chat_id, 0))[0][:32]:<32} {count:>10}" for chat_id, count in sorted(stats.get(MSG_CNT_BY_CHAT, {}).items()) ) output.append("") return "\n".join(output) async def _collect_chart_data(self, stat: dict[str, Any]) -> dict: """生成图表数据 (异步)""" now = datetime.now() chart_data: dict[str, Any] = {} time_ranges = [ ("6h", 6, 10), ("12h", 12, 15), ("24h", 24, 15), ("48h", 48, 30), ] # 依次处理(数据量不大,避免复杂度;如需可改 gather) for range_key, hours, interval_minutes in time_ranges: chart_data[range_key] = await self._collect_interval_data(now, hours, interval_minutes) return chart_data async def _collect_interval_data(self, now: datetime, hours: int, interval_minutes: int) -> dict: start_time = now - timedelta(hours=hours) time_points: list[datetime] = [] current_time = start_time while current_time <= now: time_points.append(current_time) current_time += timedelta(minutes=interval_minutes) total_cost_data = [0.0] * len(time_points) cost_by_model: dict[str, list[float]] = {} cost_by_module: dict[str, list[float]] = {} message_by_chat: dict[str, list[int]] = {} time_labels = [t.strftime("%H:%M") for t in time_points] interval_seconds = interval_minutes * 60 # 🔧 内存优化:使用分批查询 LLMUsage llm_query_builder = ( QueryBuilder(LLMUsage) .no_cache() .filter(timestamp__gte=start_time) .order_by("-timestamp") ) async for batch in llm_query_builder.iter_batches(batch_size=STAT_BATCH_SIZE, as_dict=True): for record in batch: if not isinstance(record, dict) or not record.get("timestamp"): continue record_time = record["timestamp"] if isinstance(record_time, str): try: record_time = datetime.fromisoformat(record_time) except Exception: continue time_diff = (record_time - start_time).total_seconds() idx = int(time_diff // interval_seconds) if 0 <= idx < len(time_points): cost = record.get("cost") or 0.0 total_cost_data[idx] += cost model_name = record.get("model_name") or "unknown" if model_name not in cost_by_model: cost_by_model[model_name] = [0.0] * len(time_points) cost_by_model[model_name][idx] += cost request_type = record.get("request_type") or "unknown" module_name = request_type.split(".")[0] if "." in request_type else request_type if module_name not in cost_by_module: cost_by_module[module_name] = [0.0] * len(time_points) cost_by_module[module_name][idx] += cost await asyncio.sleep(0) # 🔧 内存优化:使用分批查询 Messages msg_query_builder = ( QueryBuilder(Messages) .no_cache() .filter(time__gte=start_time.timestamp()) .order_by("-time") ) async for batch in msg_query_builder.iter_batches(batch_size=STAT_BATCH_SIZE, as_dict=True): for msg in batch: if not isinstance(msg, dict) or not msg.get("time"): continue msg_ts = msg["time"] time_diff = msg_ts - start_time.timestamp() idx = int(time_diff // interval_seconds) if 0 <= idx < len(time_points): chat_id = None if msg.get("chat_info_group_id"): chat_id = f"g{msg['chat_info_group_id']}" elif msg.get("user_id"): chat_id = f"u{msg['user_id']}" if chat_id: chat_name = self.name_mapping.get(chat_id, (chat_id, 0))[0] if chat_name not in message_by_chat: message_by_chat[chat_name] = [0] * len(time_points) message_by_chat[chat_name][idx] += 1 await asyncio.sleep(0) return { "time_labels": time_labels, "total_cost_data": total_cost_data, "cost_by_model": cost_by_model, "cost_by_module": cost_by_module, "message_by_chat": message_by_chat, }