from .observation import Observation, ChattingObservation import asyncio from src.plugins.moods.moods import MoodManager from src.plugins.models.utils_model import LLMRequest from src.config.config import global_config import time from typing import Optional, List, Dict, Callable import traceback import enum from src.common.logger import get_module_logger, LogConfig, SUB_HEARTFLOW_STYLE_CONFIG # noqa: E402 from src.individuality.individuality import Individuality import random from ..plugins.utils.prompt_builder import Prompt, global_prompt_manager from src.plugins.chat.message import MessageRecv from src.plugins.chat.chat_stream import chat_manager import math from src.plugins.heartFC_chat.heartFC_chat import HeartFChatting from src.plugins.heartFC_chat.normal_chat import NormalChat from src.do_tool.tool_use import ToolUser from src.heart_flow.mai_state_manager import MaiStateInfo from src.plugins.utils.json_utils import safe_json_dumps, normalize_llm_response, process_llm_tool_calls # 定义常量 (从 interest.py 移动过来) MAX_INTEREST = 15.0 subheartflow_config = LogConfig( # 使用海马体专用样式 console_format=SUB_HEARTFLOW_STYLE_CONFIG["console_format"], file_format=SUB_HEARTFLOW_STYLE_CONFIG["file_format"], ) logger = get_module_logger("subheartflow", config=subheartflow_config) interest_log_config = LogConfig( console_format=SUB_HEARTFLOW_STYLE_CONFIG["console_format"], file_format=SUB_HEARTFLOW_STYLE_CONFIG["file_format"], ) interest_logger = get_module_logger("InterestChatting", config=interest_log_config) def init_prompt(): prompt = "" # prompt += f"麦麦的总体想法是:{self.main_heartflow_info}\n\n" prompt += "{extra_info}\n" # prompt += "{prompt_schedule}\n" # prompt += "{relation_prompt_all}\n" prompt += "{prompt_personality}\n" prompt += "刚刚你的想法是:\n我是{bot_name},我想,{current_thinking_info}\n" prompt += "-----------------------------------\n" prompt += "现在是{time_now},你正在上网,和qq群里的网友们聊天,群里正在聊的话题是:\n{chat_observe_info}\n" prompt += "\n你现在{mood_info}\n" # prompt += "你注意到{sender_name}刚刚说:{message_txt}\n" prompt += "现在请你根据刚刚的想法继续思考,思考时可以想想如何对群聊内容进行回复,要不要对群里的话题进行回复,关注新话题,可以适当转换话题,大家正在说的话才是聊天的主题。\n" prompt += "回复的要求是:平淡一些,简短一些,说中文,如果你要回复,最好只回复一个人的一个话题\n" prompt += "请注意不要输出多余内容(包括前后缀,冒号和引号,括号, 表情,等),不要带有括号和动作描写。不要回复自己的发言,尽量不要说你说过的话。\n" prompt += "现在请你先{hf_do_next},不要分点输出,生成内心想法,文字不要浮夸" prompt += "在输出完想法后,请你思考应该使用什么工具。如果你需要做某件事,来对消息和你的回复进行处理,请使用工具。\n" Prompt(prompt, "sub_heartflow_prompt_before") class ChatState(enum.Enum): ABSENT = "没在看群" CHAT = "随便水群" FOCUSED = "激情水群" class ChatStateInfo: def __init__(self): self.chat_status: ChatState = ChatState.ABSENT self.current_state_time = 120 self.mood_manager = MoodManager() self.mood = self.mood_manager.get_prompt() base_reply_probability = 0.05 probability_increase_rate_per_second = 0.08 max_reply_probability = 1 class InterestChatting: def __init__( self, decay_rate=global_config.default_decay_rate_per_second, max_interest=MAX_INTEREST, trigger_threshold=global_config.reply_trigger_threshold, base_reply_probability=base_reply_probability, increase_rate=probability_increase_rate_per_second, decay_factor=global_config.probability_decay_factor_per_second, max_probability=max_reply_probability, state_change_callback: Optional[Callable[[ChatState], None]] = None, ): self.interest_level: float = 0.0 self.last_update_time: float = time.time() self.decay_rate_per_second: float = decay_rate self.max_interest: float = max_interest self.last_interaction_time: float = self.last_update_time self.trigger_threshold: float = trigger_threshold self.base_reply_probability: float = base_reply_probability self.probability_increase_rate: float = increase_rate self.probability_decay_factor: float = decay_factor self.max_reply_probability: float = max_probability self.current_reply_probability: float = 0.0 self.is_above_threshold: bool = False self.update_task: Optional[asyncio.Task] = None self._stop_event = asyncio.Event() self.interest_dict: Dict[str, tuple[MessageRecv, float, bool]] = {} self.update_interval = 1.0 self.start_updates(self.update_interval) # 初始化时启动后台更新任务 self.above_threshold = False self.start_hfc_probability = 0.0 def add_interest_dict(self, message: MessageRecv, interest_value: float, is_mentioned: bool): self.interest_dict[message.message_info.message_id] = (message, interest_value, is_mentioned) self.last_interaction_time = time.time() async def _calculate_decay(self): """计算兴趣值的衰减 参数: current_time: 当前时间戳 处理逻辑: 1. 计算时间差 2. 处理各种异常情况(负值/零值) 3. 正常计算衰减 4. 更新最后更新时间 """ # 处理极小兴趣值情况 if self.interest_level < 1e-9: self.interest_level = 0.0 return # 异常情况处理 if self.decay_rate_per_second <= 0: interest_logger.warning(f"衰减率({self.decay_rate_per_second})无效,重置兴趣值为0") self.interest_level = 0.0 return # 正常衰减计算 try: decay_factor = math.pow(self.decay_rate_per_second, self.update_interval) self.interest_level *= decay_factor except ValueError as e: interest_logger.error( f"衰减计算错误: {e} 参数: 衰减率={self.decay_rate_per_second} 时间差={self.update_interval} 当前兴趣={self.interest_level}" ) self.interest_level = 0.0 async def _update_reply_probability(self): self.above_threshold = self.interest_level >= self.trigger_threshold if self.above_threshold: self.start_hfc_probability += 0.1 else: if self.start_hfc_probability != 0: self.start_hfc_probability -= 0.1 async def increase_interest(self, current_time: float, value: float): self.interest_level += value self.interest_level = min(self.interest_level, self.max_interest) async def decrease_interest(self, current_time: float, value: float): self.interest_level -= value self.interest_level = max(self.interest_level, 0.0) async def get_interest(self) -> float: return self.interest_level async def get_state(self) -> dict: interest = self.interest_level # 直接使用属性值 return { "interest_level": round(interest, 2), "start_hfc_probability": round(self.start_hfc_probability, 4), "is_above_threshold": self.is_above_threshold, } async def should_evaluate_reply(self) -> bool: if self.current_reply_probability > 0: trigger = random.random() < self.current_reply_probability return trigger else: return False # --- 新增后台更新任务相关方法 --- async def _run_update_loop(self, update_interval: float = 1.0): """后台循环,定期更新兴趣和回复概率。""" while not self._stop_event.is_set(): try: if self.interest_level != 0: await self._calculate_decay() await self._update_reply_probability() # 等待下一个周期或停止事件 await asyncio.wait_for(self._stop_event.wait(), timeout=update_interval) except asyncio.TimeoutError: # 正常超时,继续循环 continue except asyncio.CancelledError: interest_logger.info("InterestChatting 更新循环被取消。") break except Exception as e: interest_logger.error(f"InterestChatting 更新循环出错: {e}") interest_logger.error(traceback.format_exc()) # 防止错误导致CPU飙升,稍作等待 await asyncio.sleep(5) interest_logger.info("InterestChatting 更新循环已停止。") def start_updates(self, update_interval: float = 1.0): """启动后台更新任务""" if self.update_task is None or self.update_task.done(): self._stop_event.clear() self.update_task = asyncio.create_task(self._run_update_loop(update_interval)) interest_logger.debug("后台兴趣更新任务已创建并启动。") else: interest_logger.debug("后台兴趣更新任务已在运行中。") async def stop_updates(self): """停止后台更新任务""" if self.update_task and not self.update_task.done(): interest_logger.info("正在停止 InterestChatting 后台更新任务...") self._stop_event.set() # 发送停止信号 try: # 等待任务结束,设置超时 await asyncio.wait_for(self.update_task, timeout=5.0) interest_logger.info("InterestChatting 后台更新任务已成功停止。") except asyncio.TimeoutError: interest_logger.warning("停止 InterestChatting 后台任务超时,尝试取消...") self.update_task.cancel() try: await self.update_task # 等待取消完成 except asyncio.CancelledError: interest_logger.info("InterestChatting 后台更新任务已被取消。") except Exception as e: interest_logger.error(f"停止 InterestChatting 后台任务时发生异常: {e}") finally: self.update_task = None else: interest_logger.debug("InterestChatting 后台更新任务未运行或已完成。") # --- 结束 新增方法 --- class SubHeartflow: def __init__(self, subheartflow_id, mai_states: MaiStateInfo): """子心流初始化函数 Args: subheartflow_id: 子心流唯一标识符 parent_heartflow: 父级心流实例 """ # 基础属性 self.subheartflow_id = subheartflow_id self.chat_id = subheartflow_id self.mai_states = mai_states # 思维状态相关 self.current_mind = "什么也没想" # 当前想法 self.past_mind = [] # 历史想法记录 # 聊天状态管理 self.chat_state: ChatStateInfo = ChatStateInfo() # 该sub_heartflow的聊天状态信息 self.interest_chatting = InterestChatting( state_change_callback=self.set_chat_state ) # 该sub_heartflow的兴趣系统 # 活动状态管理 self.last_active_time = time.time() # 最后活跃时间 self.should_stop = False # 停止标志 self.task: Optional[asyncio.Task] = None # 后台任务 self.heart_fc_instance: Optional[HeartFChatting] = None # 该sub_heartflow的HeartFChatting实例 self.normal_chat_instance: Optional[NormalChat] = None # 该sub_heartflow的NormalChat实例 # 观察和知识系统 self.observations: List[ChattingObservation] = [] # 观察列表 self.running_knowledges = [] # 运行中的知识 # LLM模型配置 self.llm_model = LLMRequest( model=global_config.llm_sub_heartflow, temperature=global_config.llm_sub_heartflow["temp"], max_tokens=800, request_type="sub_heart_flow", ) self.log_prefix = chat_manager.get_stream_name(self.subheartflow_id) or self.subheartflow_id self.structured_info = {} async def add_time_current_state(self, add_time: float): self.current_state_time += add_time async def change_to_state_chat(self): self.current_state_time = 120 self._start_normal_chat() async def change_to_state_focused(self): self.current_state_time = 60 self._start_heart_fc_chat() async def _stop_normal_chat(self): """停止 NormalChat 的兴趣监控""" if self.normal_chat_instance: logger.info(f"{self.log_prefix} 停止 NormalChat 兴趣监控...") try: await self.normal_chat_instance.stop_chat() # 调用 stop_chat except Exception as e: logger.error(f"{self.log_prefix} 停止 NormalChat 监控任务时出错: {e}") logger.error(traceback.format_exc()) async def _start_normal_chat(self) -> bool: """启动 NormalChat 实例及其兴趣监控,确保 HeartFChatting 已停止""" await self._stop_heart_fc_chat() # 确保专注聊天已停止 log_prefix = self.log_prefix try: # 总是尝试创建或获取最新的 stream 和 interest_dict chat_stream = chat_manager.get_stream(self.chat_id) if not chat_stream: logger.error(f"{log_prefix} 无法获取 chat_stream,无法启动 NormalChat。") return False # 如果实例不存在或需要更新,则创建新实例 # if not self.normal_chat_instance: # 或者总是重新创建以获取最新的 interest_dict? self.normal_chat_instance = NormalChat(chat_stream=chat_stream, interest_dict=self.get_interest_dict()) logger.info(f"{log_prefix} 创建或更新 NormalChat 实例。") logger.info(f"{log_prefix} 启动 NormalChat 兴趣监控...") await self.normal_chat_instance.start_chat() # <--- 修正:调用 start_chat return True except Exception as e: logger.error(f"{log_prefix} 启动 NormalChat 时出错: {e}") logger.error(traceback.format_exc()) self.normal_chat_instance = None # 启动失败,清理实例 return False async def _stop_heart_fc_chat(self): """停止并清理 HeartFChatting 实例""" if self.heart_fc_instance: logger.info(f"{self.log_prefix} 关闭 HeartFChatting 实例...") try: await self.heart_fc_instance.shutdown() except Exception as e: logger.error(f"{self.log_prefix} 关闭 HeartFChatting 实例时出错: {e}") logger.error(traceback.format_exc()) finally: # 无论是否成功关闭,都清理引用 self.heart_fc_instance = None async def _start_heart_fc_chat(self) -> bool: """启动 HeartFChatting 实例,确保 NormalChat 已停止""" await self._stop_normal_chat() # 确保普通聊天监控已停止 self.clear_interest_dict() # 清理兴趣字典,准备专注聊天 log_prefix = self.log_prefix # 如果实例已存在,检查其循环任务状态 if self.heart_fc_instance: # 如果任务已完成或不存在,则尝试重新启动 if self.heart_fc_instance._loop_task is None or self.heart_fc_instance._loop_task.done(): logger.info(f"{log_prefix} HeartFChatting 实例存在但循环未运行,尝试启动...") try: await self.heart_fc_instance.start() # 启动循环 logger.info(f"{log_prefix} HeartFChatting 循环已启动。") return True except Exception as e: logger.error(f"{log_prefix} 尝试启动现有 HeartFChatting 循环时出错: {e}") logger.error(traceback.format_exc()) return False # 启动失败 else: # 任务正在运行 logger.debug(f"{log_prefix} HeartFChatting 已在运行中。") return True # 已经在运行 # 如果实例不存在,则创建并启动 logger.info(f"{log_prefix} 麦麦准备开始专注聊天 (创建新实例)...") try: self.heart_fc_instance = HeartFChatting( chat_id=self.chat_id, ) if await self.heart_fc_instance._initialize(): await self.heart_fc_instance.start() # 初始化成功后启动循环 logger.info(f"{log_prefix} 麦麦已成功进入专注聊天模式 (新实例已启动)。") return True else: logger.error(f"{log_prefix} HeartFChatting 初始化失败,无法进入专注模式。") self.heart_fc_instance = None # 初始化失败,清理实例 return False except Exception as e: logger.error(f"{log_prefix} 创建或启动 HeartFChatting 实例时出错: {e}") logger.error(traceback.format_exc()) self.heart_fc_instance = None # 创建或初始化异常,清理实例 return False async def set_chat_state(self, new_state: "ChatState", current_states_num: tuple = ()): """更新sub_heartflow的聊天状态,并管理 HeartFChatting 和 NormalChat 实例及任务""" current_state = self.chat_state.chat_status if current_state == new_state: # logger.trace(f"{self.log_prefix} 状态已为 {current_state.value}, 无需更改。") # 减少日志噪音 return log_prefix = self.log_prefix current_mai_state = self.mai_states.get_current_state() state_changed = False # 标记状态是否实际发生改变 # --- 状态转换逻辑 --- if new_state == ChatState.CHAT: normal_limit = current_mai_state.get_normal_chat_max_num() current_chat_count = current_states_num[1] if len(current_states_num) > 1 else 0 if current_chat_count >= normal_limit and current_state != ChatState.CHAT: logger.debug( f"{log_prefix} 无法从 {current_state.value} 转到 聊天。原因:聊不过来了 ({current_chat_count}/{normal_limit})" ) return # 阻止状态转换 else: logger.debug(f"{log_prefix} 准备进入或保持 聊天 状态 ({current_chat_count}/{normal_limit})") if await self._start_normal_chat(): logger.info(f"{log_prefix} 成功进入或保持 NormalChat 状态。") state_changed = True else: logger.error(f"{log_prefix} 启动 NormalChat 失败,无法进入 CHAT 状态。") # 考虑是否需要回滚状态或采取其他措施 return # 启动失败,不改变状态 elif new_state == ChatState.FOCUSED: focused_limit = current_mai_state.get_focused_chat_max_num() current_focused_count = current_states_num[2] if len(current_states_num) > 2 else 0 if current_focused_count >= focused_limit and current_state != ChatState.FOCUSED: logger.debug( f"{log_prefix} 无法从 {current_state.value} 转到 专注。原因:聊不过来了 ({current_focused_count}/{focused_limit})" ) return # 阻止状态转换 else: logger.debug(f"{log_prefix} 准备进入或保持 专注聊天 状态 ({current_focused_count}/{focused_limit})") if await self._start_heart_fc_chat(): logger.info(f"{log_prefix} 成功进入或保持 HeartFChatting 状态。") state_changed = True else: logger.error(f"{log_prefix} 启动 HeartFChatting 失败,无法进入 FOCUSED 状态。") # 启动失败,状态回滚到之前的状态或ABSENT?这里保持不改变 return # 启动失败,不改变状态 elif new_state == ChatState.ABSENT: logger.info(f"{log_prefix} 进入 ABSENT 状态,停止所有聊天活动...") await self._stop_normal_chat() await self._stop_heart_fc_chat() state_changed = True # 总是可以成功转换到 ABSENT # --- 更新状态和最后活动时间 --- if state_changed: logger.info(f"{log_prefix} 麦麦的聊天状态从 {current_state.value} 变更为 {new_state.value}") self.chat_state.chat_status = new_state self.last_active_time = time.time() else: # 如果因为某些原因(如启动失败)没有成功改变状态,记录一下 logger.debug( f"{log_prefix} 尝试将状态从 {current_state.value} 变为 {new_state.value},但未成功或未执行更改。" ) async def subheartflow_start_working(self): """启动子心流的后台任务 功能说明: - 负责子心流的主要后台循环 - 每30秒检查一次停止标志 """ logger.info(f"{self.log_prefix} 子心流开始工作...") while not self.should_stop: await asyncio.sleep(30) # 30秒检查一次停止标志 logger.info(f"{self.log_prefix} 子心流后台任务已停止。") async def do_thinking_before_reply(self): """ 在回复前进行思考,生成内心想法并收集工具调用结果 返回: tuple: (current_mind, past_mind) 当前想法和过去的想法列表 """ # 更新活跃时间 self.last_active_time = time.time() # ---------- 1. 准备基础数据 ---------- # 获取现有想法和情绪状态 current_thinking_info = self.current_mind mood_info = self.chat_state.mood # 获取观察对象 observation = self._get_primary_observation() if not observation: logger.error(f"[{self.subheartflow_id}] 无法获取观察对象") self.update_current_mind("(我没看到任何聊天内容...)") return self.current_mind, self.past_mind # 获取观察内容 chat_observe_info = observation.get_observe_info() # ---------- 2. 准备工具和个性化数据 ---------- # 初始化工具 tool_instance = ToolUser() tools = tool_instance._define_tools() # 获取个性化信息 individuality = Individuality.get_instance() # 构建个性部分 prompt_personality = f"你的名字是{individuality.personality.bot_nickname},你" prompt_personality += individuality.personality.personality_core # 随机添加个性侧面 if individuality.personality.personality_sides: random_side = random.choice(individuality.personality.personality_sides) prompt_personality += f",{random_side}" # 随机添加身份细节 if individuality.identity.identity_detail: random_detail = random.choice(individuality.identity.identity_detail) prompt_personality += f",{random_detail}" # 获取当前时间 time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) # ---------- 3. 构建思考指导部分 ---------- # 创建本地随机数生成器,基于分钟数作为种子 local_random = random.Random() current_minute = int(time.strftime("%M")) local_random.seed(current_minute) # 思考指导选项和权重 hf_options = [ ("继续生成你在这个聊天中的想法,在原来想法的基础上继续思考", 0.7), ("生成你在这个聊天中的想法,在原来的想法上尝试新的话题", 0.1), ("生成你在这个聊天中的想法,不要太深入", 0.1), ("继续生成你在这个聊天中的想法,进行深入思考", 0.1), ] # 加权随机选择思考指导 hf_do_next = local_random.choices( [option[0] for option in hf_options], weights=[option[1] for option in hf_options], k=1 )[0] # ---------- 4. 构建最终提示词 ---------- # 获取提示词模板并填充数据 prompt = (await global_prompt_manager.get_prompt_async("sub_heartflow_prompt_before")).format( extra_info="", # 可以在这里添加额外信息 prompt_personality=prompt_personality, bot_name=individuality.personality.bot_nickname, current_thinking_info=current_thinking_info, time_now=time_now, chat_observe_info=chat_observe_info, mood_info=mood_info, hf_do_next=hf_do_next, ) logger.debug(f"[{self.subheartflow_id}] 心流思考提示词构建完成") # ---------- 5. 执行LLM请求并处理响应 ---------- content = "" # 初始化内容变量 reasoning_content = "" # 初始化推理内容变量 try: # 调用LLM生成响应 response = await self.llm_model.generate_response_tool_async(prompt=prompt, tools=tools) # 标准化响应格式 success, normalized_response, error_msg = normalize_llm_response( response, log_prefix=f"[{self.subheartflow_id}] " ) if not success: # 处理标准化失败情况 logger.warning(f"[{self.subheartflow_id}] {error_msg}") content = "LLM响应格式无法处理" else: # 从标准化响应中提取内容 if len(normalized_response) >= 2: content = normalized_response[0] _reasoning_content = normalized_response[1] if len(normalized_response) > 1 else "" # 处理可能的工具调用 if len(normalized_response) == 3: # 提取并验证工具调用 success, valid_tool_calls, error_msg = process_llm_tool_calls( normalized_response, log_prefix=f"[{self.subheartflow_id}] " ) if success and valid_tool_calls: # 记录工具调用信息 tool_calls_str = ", ".join( [call.get("function", {}).get("name", "未知工具") for call in valid_tool_calls] ) logger.info( f"[{self.subheartflow_id}] 模型请求调用{len(valid_tool_calls)}个工具: {tool_calls_str}" ) # 收集工具执行结果 await self._execute_tool_calls(valid_tool_calls, tool_instance) elif not success: logger.warning(f"[{self.subheartflow_id}] {error_msg}") except Exception as e: # 处理总体异常 logger.error(f"[{self.subheartflow_id}] 执行LLM请求或处理响应时出错: {e}") logger.error(traceback.format_exc()) content = "思考过程中出现错误" # 记录最终思考结果 logger.debug(f"[{self.subheartflow_id}] 心流思考结果:\n{content}\n") # 处理空响应情况 if not content: content = "(不知道该想些什么...)" logger.warning(f"[{self.subheartflow_id}] LLM返回空结果,思考失败。") # ---------- 6. 更新思考状态并返回结果 ---------- # 更新当前思考内容 self.update_current_mind(content) return self.current_mind, self.past_mind async def _execute_tool_calls(self, tool_calls, tool_instance): """ 执行一组工具调用并收集结果 参数: tool_calls: 工具调用列表 tool_instance: 工具使用器实例 """ tool_results = [] structured_info = {} # 动态生成键 # 执行所有工具调用 for tool_call in tool_calls: try: result = await tool_instance._execute_tool_call(tool_call) if result: tool_results.append(result) # 使用工具名称作为键 tool_name = result["name"] if tool_name not in structured_info: structured_info[tool_name] = [] structured_info[tool_name].append({"name": result["name"], "content": result["content"]}) except Exception as tool_e: logger.error(f"[{self.subheartflow_id}] 工具执行失败: {tool_e}") # 如果有工具结果,记录并更新结构化信息 if structured_info: logger.debug(f"工具调用收集到结构化信息: {safe_json_dumps(structured_info, ensure_ascii=False)}") self.structured_info = structured_info def update_current_mind(self, response): self.past_mind.append(self.current_mind) self.current_mind = response def add_observation(self, observation: Observation): for existing_obs in self.observations: if existing_obs.observe_id == observation.observe_id: return self.observations.append(observation) def remove_observation(self, observation: Observation): if observation in self.observations: self.observations.remove(observation) def get_all_observations(self) -> list[Observation]: return self.observations def clear_observations(self): self.observations.clear() def _get_primary_observation(self) -> Optional[ChattingObservation]: if self.observations and isinstance(self.observations[0], ChattingObservation): return self.observations[0] logger.warning(f"SubHeartflow {self.subheartflow_id} 没有找到有效的 ChattingObservation") return None async def get_interest_state(self) -> dict: return await self.interest_chatting.get_state() async def get_interest_level(self) -> float: return await self.interest_chatting.get_interest() async def should_evaluate_reply(self) -> bool: return await self.interest_chatting.should_evaluate_reply() async def add_interest_dict_entry(self, message: MessageRecv, interest_value: float, is_mentioned: bool): self.interest_chatting.add_interest_dict(message, interest_value, is_mentioned) def get_interest_dict(self) -> Dict[str, tuple[MessageRecv, float, bool]]: return self.interest_chatting.interest_dict def clear_interest_dict(self): self.interest_chatting.interest_dict.clear() async def get_full_state(self) -> dict: """获取子心流的完整状态,包括兴趣、思维和聊天状态。""" interest_state = await self.get_interest_state() return { "interest_state": interest_state, "current_mind": self.current_mind, "chat_state": self.chat_state.chat_status.value, "last_active_time": self.last_active_time, } async def shutdown(self): """安全地关闭子心流及其管理的任务""" if self.should_stop: logger.info(f"{self.log_prefix} 子心流已在关闭过程中。") return logger.info(f"{self.log_prefix} 开始关闭子心流...") self.should_stop = True # 标记为停止,让后台任务退出 # 使用新的停止方法 await self._stop_normal_chat() await self._stop_heart_fc_chat() # 停止兴趣更新任务 if self.interest_chatting: logger.info(f"{self.log_prefix} 停止兴趣系统后台任务...") await self.interest_chatting.stop_updates() # 取消可能存在的旧后台任务 (self.task) if self.task and not self.task.done(): logger.info(f"{self.log_prefix} 取消子心流主任务 (Shutdown)...") self.task.cancel() try: await asyncio.wait_for(self.task, timeout=1.0) # 给点时间响应取消 except asyncio.CancelledError: logger.info(f"{self.log_prefix} 子心流主任务已取消 (Shutdown)。") except asyncio.TimeoutError: logger.warning(f"{self.log_prefix} 等待子心流主任务取消超时 (Shutdown)。") except Exception as e: logger.error(f"{self.log_prefix} 等待子心流主任务取消时发生错误 (Shutdown): {e}") self.task = None # 清理任务引用 self.chat_state.chat_status = ChatState.ABSENT # 状态重置为不参与 logger.info(f"{self.log_prefix} 子心流关闭完成。") init_prompt()