from collections import defaultdict from datetime import datetime, timedelta from typing import Any, Dict, Tuple, List import asyncio import concurrent.futures import json import os import glob from src.common.logger import get_logger from src.manager.async_task_manager import AsyncTask from ...common.database.database import db # This db is the Peewee database instance from ...common.database.database_model import OnlineTime, LLMUsage, Messages # Import the Peewee model from src.manager.local_store_manager import local_storage logger = get_logger("maibot_statistic") # 统计数据的键 TOTAL_REQ_CNT = "total_requests" TOTAL_COST = "total_cost" REQ_CNT_BY_TYPE = "requests_by_type" REQ_CNT_BY_USER = "requests_by_user" REQ_CNT_BY_MODEL = "requests_by_model" REQ_CNT_BY_MODULE = "requests_by_module" IN_TOK_BY_TYPE = "in_tokens_by_type" IN_TOK_BY_USER = "in_tokens_by_user" IN_TOK_BY_MODEL = "in_tokens_by_model" IN_TOK_BY_MODULE = "in_tokens_by_module" OUT_TOK_BY_TYPE = "out_tokens_by_type" OUT_TOK_BY_USER = "out_tokens_by_user" OUT_TOK_BY_MODEL = "out_tokens_by_model" OUT_TOK_BY_MODULE = "out_tokens_by_module" TOTAL_TOK_BY_TYPE = "tokens_by_type" TOTAL_TOK_BY_USER = "tokens_by_user" TOTAL_TOK_BY_MODEL = "tokens_by_model" TOTAL_TOK_BY_MODULE = "tokens_by_module" COST_BY_TYPE = "costs_by_type" COST_BY_USER = "costs_by_user" COST_BY_MODEL = "costs_by_model" COST_BY_MODULE = "costs_by_module" ONLINE_TIME = "online_time" TOTAL_MSG_CNT = "total_messages" MSG_CNT_BY_CHAT = "messages_by_chat" # Focus统计数据的键 FOCUS_TOTAL_CYCLES = "focus_total_cycles" FOCUS_AVG_TIMES_BY_STAGE = "focus_avg_times_by_stage" FOCUS_ACTION_RATIOS = "focus_action_ratios" FOCUS_CYCLE_CNT_BY_CHAT = "focus_cycle_count_by_chat" FOCUS_CYCLE_CNT_BY_ACTION = "focus_cycle_count_by_action" FOCUS_AVG_TIMES_BY_CHAT_ACTION = "focus_avg_times_by_chat_action" FOCUS_AVG_TIMES_BY_ACTION = "focus_avg_times_by_action" FOCUS_TOTAL_TIME_BY_CHAT = "focus_total_time_by_chat" FOCUS_TOTAL_TIME_BY_ACTION = "focus_total_time_by_action" FOCUS_CYCLE_CNT_BY_VERSION = "focus_cycle_count_by_version" FOCUS_ACTION_RATIOS_BY_VERSION = "focus_action_ratios_by_version" FOCUS_AVG_TIMES_BY_VERSION = "focus_avg_times_by_version" class OnlineTimeRecordTask(AsyncTask): """在线时间记录任务""" def __init__(self): super().__init__(task_name="Online Time Record Task", run_interval=60) self.record_id: int | None = None # Changed to int for Peewee's default ID """记录ID""" self._init_database() # 初始化数据库 @staticmethod def _init_database(): """初始化数据库""" with db.atomic(): # Use atomic operations for schema changes OnlineTime.create_table(safe=True) # Creates table if it doesn't exist, Peewee handles indexes from model async def run(self): try: current_time = datetime.now() extended_end_time = current_time + timedelta(minutes=1) if self.record_id: # 如果有记录,则更新结束时间 query = OnlineTime.update(end_timestamp=extended_end_time).where(OnlineTime.id == self.record_id) updated_rows = query.execute() if updated_rows == 0: # Record might have been deleted or ID is stale, try to find/create self.record_id = None # Reset record_id to trigger find/create logic below if not self.record_id: # Check again if record_id was reset or initially None # 如果没有记录,检查一分钟以内是否已有记录 # Look for a record whose end_timestamp is recent enough to be considered ongoing recent_record = ( OnlineTime.select() .where(OnlineTime.end_timestamp >= (current_time - timedelta(minutes=1))) .order_by(OnlineTime.end_timestamp.desc()) .first() ) if recent_record: # 如果有记录,则更新结束时间 self.record_id = recent_record.id recent_record.end_timestamp = extended_end_time recent_record.save() else: # 若没有记录,则插入新的在线时间记录 new_record = OnlineTime.create( timestamp=current_time.timestamp(), # 添加此行 start_timestamp=current_time, end_timestamp=extended_end_time, duration=5, # 初始时长为5分钟 ) self.record_id = new_record.id except Exception as e: logger.error(f"在线时间记录失败,错误信息:{e}") def _format_online_time(online_seconds: int) -> str: """ 格式化在线时间 :param online_seconds: 在线时间(秒) :return: 格式化后的在线时间字符串 """ total_oneline_time = timedelta(seconds=online_seconds) days = total_oneline_time.days hours = total_oneline_time.seconds // 3600 minutes = (total_oneline_time.seconds // 60) % 60 seconds = total_oneline_time.seconds % 60 if days > 0: # 如果在线时间超过1天,则格式化为"X天X小时X分钟" return f"{total_oneline_time.days}天{hours}小时{minutes}分钟{seconds}秒" elif hours > 0: # 如果在线时间超过1小时,则格式化为"X小时X分钟X秒" return f"{hours}小时{minutes}分钟{seconds}秒" else: # 其他情况格式化为"X分钟X秒" return f"{minutes}分钟{seconds}秒" class StatisticOutputTask(AsyncTask): """统计输出任务""" SEP_LINE = "-" * 84 def __init__(self, record_file_path: str = "maibot_statistics.html"): # 延迟300秒启动,运行间隔300秒 super().__init__(task_name="Statistics Data Output Task", wait_before_start=0, run_interval=300) self.name_mapping: Dict[str, Tuple[str, float]] = {} """ 联系人/群聊名称映射 {聊天ID: (联系人/群聊名称, 记录时间(timestamp))} 注:设计记录时间的目的是方便更新名称,使联系人/群聊名称保持最新 """ self.record_file_path: str = record_file_path """ 记录文件路径 """ now = datetime.now() if "deploy_time" in local_storage: # 如果存在部署时间,则使用该时间作为全量统计的起始时间 deploy_time = datetime.fromtimestamp(local_storage["deploy_time"]) else: # 否则,使用最大时间范围,并记录部署时间为当前时间 deploy_time = datetime(2000, 1, 1) local_storage["deploy_time"] = now.timestamp() self.stat_period: List[Tuple[str, timedelta, str]] = [ ("all_time", now - deploy_time, "自部署以来"), # 必须保留"all_time" ("last_7_days", timedelta(days=7), "最近7天"), ("last_24_hours", timedelta(days=1), "最近24小时"), ("last_3_hours", timedelta(hours=3), "最近3小时"), ("last_hour", timedelta(hours=1), "最近1小时"), ] """ 统计时间段 [(统计名称, 统计时间段, 统计描述), ...] """ def _statistic_console_output(self, stats: Dict[str, Any], now: datetime): """ 输出统计数据到控制台 :param stats: 统计数据 :param now: 基准当前时间 """ # 输出最近一小时的统计数据 output = [ self.SEP_LINE, f" 最近1小时的统计数据 (自{now.strftime('%Y-%m-%d %H:%M:%S')}开始,详细信息见文件:{self.record_file_path})", self.SEP_LINE, self._format_total_stat(stats["last_hour"]), "", self._format_model_classified_stat(stats["last_hour"]), "", self._format_chat_stat(stats["last_hour"]), "", self._format_focus_stat(stats["last_hour"]), self.SEP_LINE, "", ] logger.info("\n" + "\n".join(output)) async def run(self): try: now = datetime.now() # 使用线程池并行执行耗时操作 loop = asyncio.get_event_loop() # 在线程池中并行执行数据收集和之前的HTML生成(如果存在) with concurrent.futures.ThreadPoolExecutor() as executor: logger.info("正在收集统计数据...") # 数据收集任务 collect_task = loop.run_in_executor(executor, self._collect_all_statistics, now) # 等待数据收集完成 stats = await collect_task logger.info("统计数据收集完成") # 并行执行控制台输出和HTML报告生成 console_task = loop.run_in_executor(executor, self._statistic_console_output, stats, now) html_task = loop.run_in_executor(executor, self._generate_html_report, stats, now) # 等待两个输出任务完成 await asyncio.gather(console_task, html_task) logger.info("统计数据输出完成") except Exception as e: logger.exception(f"输出统计数据过程中发生异常,错误信息:{e}") async def run_async_background(self): """ 备选方案:完全异步后台运行统计输出 使用此方法可以让统计任务完全非阻塞 """ async def _async_collect_and_output(): try: import concurrent.futures now = datetime.now() loop = asyncio.get_event_loop() with concurrent.futures.ThreadPoolExecutor() as executor: logger.info("正在后台收集统计数据...") # 创建后台任务,不等待完成 collect_task = asyncio.create_task( loop.run_in_executor(executor, self._collect_all_statistics, now) ) stats = await collect_task logger.info("统计数据收集完成") # 创建并发的输出任务 output_tasks = [ asyncio.create_task(loop.run_in_executor(executor, self._statistic_console_output, stats, now)), asyncio.create_task(loop.run_in_executor(executor, self._generate_html_report, stats, now)), ] # 等待所有输出任务完成 await asyncio.gather(*output_tasks) logger.info("统计数据后台输出完成") except Exception as e: logger.exception(f"后台统计数据输出过程中发生异常:{e}") # 创建后台任务,立即返回 asyncio.create_task(_async_collect_and_output()) # -- 以下为统计数据收集方法 -- @staticmethod def _collect_model_request_for_period(collect_period: List[Tuple[str, datetime]]) -> Dict[str, Any]: """ 收集指定时间段的LLM请求统计数据 :param collect_period: 统计时间段 """ if not collect_period: return {} # 排序-按照时间段开始时间降序排列(最晚的时间段在前) collect_period.sort(key=lambda x: x[1], reverse=True) stats = { period_key: { TOTAL_REQ_CNT: 0, REQ_CNT_BY_TYPE: defaultdict(int), REQ_CNT_BY_USER: defaultdict(int), REQ_CNT_BY_MODEL: defaultdict(int), REQ_CNT_BY_MODULE: defaultdict(int), IN_TOK_BY_TYPE: defaultdict(int), IN_TOK_BY_USER: defaultdict(int), IN_TOK_BY_MODEL: defaultdict(int), IN_TOK_BY_MODULE: defaultdict(int), OUT_TOK_BY_TYPE: defaultdict(int), OUT_TOK_BY_USER: defaultdict(int), OUT_TOK_BY_MODEL: defaultdict(int), OUT_TOK_BY_MODULE: defaultdict(int), TOTAL_TOK_BY_TYPE: defaultdict(int), TOTAL_TOK_BY_USER: defaultdict(int), TOTAL_TOK_BY_MODEL: defaultdict(int), TOTAL_TOK_BY_MODULE: defaultdict(int), TOTAL_COST: 0.0, COST_BY_TYPE: defaultdict(float), COST_BY_USER: defaultdict(float), COST_BY_MODEL: defaultdict(float), COST_BY_MODULE: defaultdict(float), } for period_key, _ in collect_period } # 以最早的时间戳为起始时间获取记录 # Assuming LLMUsage.timestamp is a DateTimeField query_start_time = collect_period[-1][1] for record in LLMUsage.select().where(LLMUsage.timestamp >= query_start_time): record_timestamp = record.timestamp # This is already a datetime object for idx, (_, period_start) in enumerate(collect_period): if record_timestamp >= period_start: for period_key, _ in collect_period[idx:]: stats[period_key][TOTAL_REQ_CNT] += 1 request_type = record.request_type or "unknown" user_id = record.user_id or "unknown" # user_id is TextField, already string model_name = record.model_name or "unknown" # 提取模块名:如果请求类型包含".",取第一个"."之前的部分 module_name = request_type.split(".")[0] if "." in request_type else request_type stats[period_key][REQ_CNT_BY_TYPE][request_type] += 1 stats[period_key][REQ_CNT_BY_USER][user_id] += 1 stats[period_key][REQ_CNT_BY_MODEL][model_name] += 1 stats[period_key][REQ_CNT_BY_MODULE][module_name] += 1 prompt_tokens = record.prompt_tokens or 0 completion_tokens = record.completion_tokens or 0 total_tokens = prompt_tokens + completion_tokens stats[period_key][IN_TOK_BY_TYPE][request_type] += prompt_tokens stats[period_key][IN_TOK_BY_USER][user_id] += prompt_tokens stats[period_key][IN_TOK_BY_MODEL][model_name] += prompt_tokens stats[period_key][IN_TOK_BY_MODULE][module_name] += prompt_tokens stats[period_key][OUT_TOK_BY_TYPE][request_type] += completion_tokens stats[period_key][OUT_TOK_BY_USER][user_id] += completion_tokens stats[period_key][OUT_TOK_BY_MODEL][model_name] += completion_tokens stats[period_key][OUT_TOK_BY_MODULE][module_name] += completion_tokens stats[period_key][TOTAL_TOK_BY_TYPE][request_type] += total_tokens stats[period_key][TOTAL_TOK_BY_USER][user_id] += total_tokens stats[period_key][TOTAL_TOK_BY_MODEL][model_name] += total_tokens stats[period_key][TOTAL_TOK_BY_MODULE][module_name] += total_tokens cost = record.cost or 0.0 stats[period_key][TOTAL_COST] += cost stats[period_key][COST_BY_TYPE][request_type] += cost stats[period_key][COST_BY_USER][user_id] += cost stats[period_key][COST_BY_MODEL][model_name] += cost stats[period_key][COST_BY_MODULE][module_name] += cost break return stats @staticmethod def _collect_online_time_for_period(collect_period: List[Tuple[str, datetime]], now: datetime) -> Dict[str, Any]: """ 收集指定时间段的在线时间统计数据 :param collect_period: 统计时间段 """ if not collect_period: return {} collect_period.sort(key=lambda x: x[1], reverse=True) stats = { period_key: { ONLINE_TIME: 0.0, } for period_key, _ in collect_period } query_start_time = collect_period[-1][1] # Assuming OnlineTime.end_timestamp is a DateTimeField for record in OnlineTime.select().where(OnlineTime.end_timestamp >= query_start_time): # record.end_timestamp and record.start_timestamp are datetime objects record_end_timestamp = record.end_timestamp record_start_timestamp = record.start_timestamp for idx, (_, period_boundary_start) in enumerate(collect_period): if record_end_timestamp >= period_boundary_start: # Calculate effective end time for this record in relation to 'now' effective_end_time = min(record_end_timestamp, now) for period_key, current_period_start_time in collect_period[idx:]: # Determine the portion of the record that falls within this specific statistical period overlap_start = max(record_start_timestamp, current_period_start_time) overlap_end = effective_end_time # Already capped by 'now' and record's own end if overlap_end > overlap_start: stats[period_key][ONLINE_TIME] += (overlap_end - overlap_start).total_seconds() break return stats def _collect_message_count_for_period(self, collect_period: List[Tuple[str, datetime]]) -> Dict[str, Any]: """ 收集指定时间段的消息统计数据 :param collect_period: 统计时间段 """ if not collect_period: return {} collect_period.sort(key=lambda x: x[1], reverse=True) stats = { period_key: { TOTAL_MSG_CNT: 0, MSG_CNT_BY_CHAT: defaultdict(int), } for period_key, _ in collect_period } query_start_timestamp = collect_period[-1][1].timestamp() # Messages.time is a DoubleField (timestamp) for message in Messages.select().where(Messages.time >= query_start_timestamp): message_time_ts = message.time # This is a float timestamp chat_id = None chat_name = None # Logic based on Peewee model structure, aiming to replicate original intent if message.chat_info_group_id: chat_id = f"g{message.chat_info_group_id}" chat_name = message.chat_info_group_name or f"群{message.chat_info_group_id}" elif message.user_id: # Fallback to sender's info for chat_id if not a group_info based chat # This uses the message SENDER's ID as per original logic's fallback chat_id = f"u{message.user_id}" # SENDER's user_id chat_name = message.user_nickname # SENDER's nickname else: # If neither group_id nor sender_id is available for chat identification logger.warning( f"Message (PK: {message.id if hasattr(message, 'id') else 'N/A'}) lacks group_id and user_id for chat stats." ) continue if not chat_id: # Should not happen if above logic is correct continue # Update name_mapping if chat_id in self.name_mapping: if chat_name != self.name_mapping[chat_id][0] and message_time_ts > self.name_mapping[chat_id][1]: self.name_mapping[chat_id] = (chat_name, message_time_ts) else: self.name_mapping[chat_id] = (chat_name, message_time_ts) for idx, (_, period_start_dt) in enumerate(collect_period): if message_time_ts >= period_start_dt.timestamp(): for period_key, _ in collect_period[idx:]: stats[period_key][TOTAL_MSG_CNT] += 1 stats[period_key][MSG_CNT_BY_CHAT][chat_id] += 1 break return stats def _collect_focus_statistics_for_period(self, collect_period: List[Tuple[str, datetime]]) -> Dict[str, Any]: """ 收集指定时间段的Focus统计数据 :param collect_period: 统计时间段 """ if not collect_period: return {} collect_period.sort(key=lambda x: x[1], reverse=True) stats = { period_key: { FOCUS_TOTAL_CYCLES: 0, FOCUS_AVG_TIMES_BY_STAGE: defaultdict(list), FOCUS_ACTION_RATIOS: defaultdict(int), FOCUS_CYCLE_CNT_BY_CHAT: defaultdict(int), FOCUS_CYCLE_CNT_BY_ACTION: defaultdict(int), FOCUS_AVG_TIMES_BY_CHAT_ACTION: defaultdict(lambda: defaultdict(list)), FOCUS_AVG_TIMES_BY_ACTION: defaultdict(lambda: defaultdict(list)), "focus_exec_times_by_chat_action": defaultdict(lambda: defaultdict(list)), FOCUS_TOTAL_TIME_BY_CHAT: defaultdict(float), FOCUS_TOTAL_TIME_BY_ACTION: defaultdict(float), FOCUS_CYCLE_CNT_BY_VERSION: defaultdict(int), FOCUS_ACTION_RATIOS_BY_VERSION: defaultdict(lambda: defaultdict(int)), FOCUS_AVG_TIMES_BY_VERSION: defaultdict(lambda: defaultdict(list)), "focus_exec_times_by_version_action": defaultdict(lambda: defaultdict(list)), "focus_action_ratios_by_chat": defaultdict(lambda: defaultdict(int)), } for period_key, _ in collect_period } # 获取 log/hfc_loop 目录下的所有 json 文件 log_dir = "log/hfc_loop" if not os.path.exists(log_dir): logger.warning(f"Focus log directory {log_dir} does not exist") return stats json_files = glob.glob(os.path.join(log_dir, "*.json")) query_start_time = collect_period[-1][1] for json_file in json_files: try: # 从文件名解析时间戳 (格式: hash_version_date_time.json) filename = os.path.basename(json_file) name_parts = filename.replace('.json', '').split('_') if len(name_parts) >= 4: date_str = name_parts[-2] # YYYYMMDD time_str = name_parts[-1] # HHMMSS file_time_str = f"{date_str}_{time_str}" file_time = datetime.strptime(file_time_str, "%Y%m%d_%H%M%S") # 如果文件时间在查询范围内,则处理该文件 if file_time >= query_start_time: with open(json_file, 'r', encoding='utf-8') as f: cycles_data = json.load(f) self._process_focus_file_data(cycles_data, stats, collect_period, file_time) except Exception as e: logger.warning(f"Failed to process focus file {json_file}: {e}") continue # 计算平均值 self._calculate_focus_averages(stats) return stats def _process_focus_file_data(self, cycles_data: List[Dict], stats: Dict[str, Any], collect_period: List[Tuple[str, datetime]], file_time: datetime): """ 处理单个focus文件的数据 """ for cycle_data in cycles_data: try: # 解析时间戳 timestamp_str = cycle_data.get("timestamp", "") if timestamp_str: cycle_time = datetime.fromisoformat(timestamp_str.replace('Z', '+00:00')) else: cycle_time = file_time # 使用文件时间作为后备 chat_id = cycle_data.get("chat_id", "unknown") action_type = cycle_data.get("action_type", "unknown") total_time = cycle_data.get("total_time", 0.0) step_times = cycle_data.get("step_times", {}) version = cycle_data.get("version", "unknown") # 更新聊天ID名称映射 if chat_id not in self.name_mapping: # 尝试获取实际的聊天名称 display_name = self._get_chat_display_name_from_id(chat_id) self.name_mapping[chat_id] = (display_name, cycle_time.timestamp()) # 对每个时间段进行统计 for idx, (_, period_start) in enumerate(collect_period): if cycle_time >= period_start: for period_key, _ in collect_period[idx:]: stat = stats[period_key] # 基础统计 stat[FOCUS_TOTAL_CYCLES] += 1 stat[FOCUS_ACTION_RATIOS][action_type] += 1 stat[FOCUS_CYCLE_CNT_BY_CHAT][chat_id] += 1 stat[FOCUS_CYCLE_CNT_BY_ACTION][action_type] += 1 stat["focus_action_ratios_by_chat"][chat_id][action_type] += 1 stat[FOCUS_TOTAL_TIME_BY_CHAT][chat_id] += total_time stat[FOCUS_TOTAL_TIME_BY_ACTION][action_type] += total_time # 版本统计 stat[FOCUS_CYCLE_CNT_BY_VERSION][version] += 1 stat[FOCUS_ACTION_RATIOS_BY_VERSION][version][action_type] += 1 # 阶段时间统计 for stage, time_val in step_times.items(): stat[FOCUS_AVG_TIMES_BY_STAGE][stage].append(time_val) stat[FOCUS_AVG_TIMES_BY_CHAT_ACTION][chat_id][stage].append(time_val) stat[FOCUS_AVG_TIMES_BY_ACTION][action_type][stage].append(time_val) stat[FOCUS_AVG_TIMES_BY_VERSION][version][stage].append(time_val) # 专门收集执行动作阶段的时间,按聊天流和action类型分组 if stage == "执行动作": stat["focus_exec_times_by_chat_action"][chat_id][action_type].append(time_val) # 按版本和action类型收集执行时间 stat["focus_exec_times_by_version_action"][version][action_type].append(time_val) break except Exception as e: logger.warning(f"Failed to process cycle data: {e}") continue def _calculate_focus_averages(self, stats: Dict[str, Any]): """ 计算Focus统计的平均值 """ for _period_key, stat in stats.items(): # 计算全局阶段平均时间 for stage, times in stat[FOCUS_AVG_TIMES_BY_STAGE].items(): if times: stat[FOCUS_AVG_TIMES_BY_STAGE][stage] = sum(times) / len(times) else: stat[FOCUS_AVG_TIMES_BY_STAGE][stage] = 0.0 # 计算按chat_id和action_type的阶段平均时间 for chat_id, stage_times in stat[FOCUS_AVG_TIMES_BY_CHAT_ACTION].items(): for stage, times in stage_times.items(): if times: stat[FOCUS_AVG_TIMES_BY_CHAT_ACTION][chat_id][stage] = sum(times) / len(times) else: stat[FOCUS_AVG_TIMES_BY_CHAT_ACTION][chat_id][stage] = 0.0 # 计算按action_type的阶段平均时间 for action_type, stage_times in stat[FOCUS_AVG_TIMES_BY_ACTION].items(): for stage, times in stage_times.items(): if times: stat[FOCUS_AVG_TIMES_BY_ACTION][action_type][stage] = sum(times) / len(times) else: stat[FOCUS_AVG_TIMES_BY_ACTION][action_type][stage] = 0.0 # 计算按聊天流和action类型的执行时间平均值 for chat_id, action_times in stat["focus_exec_times_by_chat_action"].items(): for action_type, times in action_times.items(): if times: stat["focus_exec_times_by_chat_action"][chat_id][action_type] = sum(times) / len(times) else: stat["focus_exec_times_by_chat_action"][chat_id][action_type] = 0.0 # 计算按版本的阶段平均时间 for version, stage_times in stat[FOCUS_AVG_TIMES_BY_VERSION].items(): for stage, times in stage_times.items(): if times: stat[FOCUS_AVG_TIMES_BY_VERSION][version][stage] = sum(times) / len(times) else: stat[FOCUS_AVG_TIMES_BY_VERSION][version][stage] = 0.0 # 计算按版本和action类型的执行时间平均值 for version, action_times in stat["focus_exec_times_by_version_action"].items(): for action_type, times in action_times.items(): if times: stat["focus_exec_times_by_version_action"][version][action_type] = sum(times) / len(times) else: stat["focus_exec_times_by_version_action"][version][action_type] = 0.0 def _collect_all_statistics(self, now: datetime) -> Dict[str, Dict[str, Any]]: """ 收集各时间段的统计数据 :param now: 基准当前时间 """ last_all_time_stat = None if "last_full_statistics" in local_storage: # 如果存在上次完整统计数据,则使用该数据进行增量统计 last_stat = local_storage["last_full_statistics"] # 上次完整统计数据 self.name_mapping = last_stat["name_mapping"] # 上次完整统计数据的名称映射 last_all_time_stat = last_stat["stat_data"] # 上次完整统计的统计数据 last_stat_timestamp = datetime.fromtimestamp(last_stat["timestamp"]) # 上次完整统计数据的时间戳 self.stat_period = [item for item in self.stat_period if item[0] != "all_time"] # 删除"所有时间"的统计时段 self.stat_period.append(("all_time", now - last_stat_timestamp, "自部署以来的")) stat_start_timestamp = [(period[0], now - period[1]) for period in self.stat_period] stat = {item[0]: {} for item in self.stat_period} model_req_stat = self._collect_model_request_for_period(stat_start_timestamp) online_time_stat = self._collect_online_time_for_period(stat_start_timestamp, now) message_count_stat = self._collect_message_count_for_period(stat_start_timestamp) focus_stat = self._collect_focus_statistics_for_period(stat_start_timestamp) # 统计数据合并 # 合并四类统计数据 for period_key, _ in stat_start_timestamp: stat[period_key].update(model_req_stat[period_key]) stat[period_key].update(online_time_stat[period_key]) stat[period_key].update(message_count_stat[period_key]) stat[period_key].update(focus_stat[period_key]) if last_all_time_stat: # 若存在上次完整统计数据,则将其与当前统计数据合并 for key, val in last_all_time_stat.items(): # 确保当前统计数据中存在该key if key not in stat["all_time"]: continue if isinstance(val, dict): # 是字典类型,则进行合并 for sub_key, sub_val in val.items(): # 普通的数值或字典合并 if sub_key in stat["all_time"][key]: # 检查是否为嵌套的字典类型(如版本统计) if isinstance(sub_val, dict) and isinstance(stat["all_time"][key][sub_key], dict): # 合并嵌套字典 for nested_key, nested_val in sub_val.items(): if nested_key in stat["all_time"][key][sub_key]: stat["all_time"][key][sub_key][nested_key] += nested_val else: stat["all_time"][key][sub_key][nested_key] = nested_val else: # 普通数值累加 stat["all_time"][key][sub_key] += sub_val else: stat["all_time"][key][sub_key] = sub_val else: # 直接合并 stat["all_time"][key] += val # 更新上次完整统计数据的时间戳 # 将所有defaultdict转换为普通dict以避免类型冲突 clean_stat_data = self._convert_defaultdict_to_dict(stat["all_time"]) local_storage["last_full_statistics"] = { "name_mapping": self.name_mapping, "stat_data": clean_stat_data, "timestamp": now.timestamp(), } return stat def _convert_defaultdict_to_dict(self, data): """递归转换defaultdict为普通dict""" if isinstance(data, defaultdict): # 转换defaultdict为普通dict result = {} for key, value in data.items(): result[key] = self._convert_defaultdict_to_dict(value) return result elif isinstance(data, dict): # 递归处理普通dict result = {} for key, value in data.items(): result[key] = self._convert_defaultdict_to_dict(value) return result else: # 其他类型直接返回 return data # -- 以下为统计数据格式化方法 -- @staticmethod def _format_total_stat(stats: Dict[str, Any]) -> str: """ 格式化总统计数据 """ output = [ f"总在线时间: {_format_online_time(stats[ONLINE_TIME])}", f"总消息数: {stats[TOTAL_MSG_CNT]}", f"总请求数: {stats[TOTAL_REQ_CNT]}", f"总花费: {stats[TOTAL_COST]:.4f}¥", "", ] return "\n".join(output) @staticmethod def _format_model_classified_stat(stats: Dict[str, Any]) -> str: """ 格式化按模型分类的统计数据 """ if stats[TOTAL_REQ_CNT] <= 0: return "" data_fmt = "{:<32} {:>10} {:>12} {:>12} {:>12} {:>9.4f}¥" output = [ "按模型分类统计:", " 模型名称 调用次数 输入Token 输出Token Token总量 累计花费", ] for model_name, count in sorted(stats[REQ_CNT_BY_MODEL].items()): name = f"{model_name[:29]}..." if len(model_name) > 32 else model_name in_tokens = stats[IN_TOK_BY_MODEL][model_name] out_tokens = stats[OUT_TOK_BY_MODEL][model_name] tokens = stats[TOTAL_TOK_BY_MODEL][model_name] cost = stats[COST_BY_MODEL][model_name] output.append(data_fmt.format(name, count, in_tokens, out_tokens, tokens, cost)) output.append("") return "\n".join(output) def _format_chat_stat(self, stats: Dict[str, Any]) -> str: """ 格式化聊天统计数据 """ if stats[TOTAL_MSG_CNT] <= 0: return "" output = ["聊天消息统计:", " 联系人/群组名称 消息数量"] output.extend( f"{self.name_mapping[chat_id][0][:32]:<32} {count:>10}" for chat_id, count in sorted(stats[MSG_CNT_BY_CHAT].items()) ) output.append("") return "\n".join(output) def _format_focus_stat(self, stats: Dict[str, Any]) -> str: """ 格式化Focus统计数据 """ if stats[FOCUS_TOTAL_CYCLES] <= 0: return "" output = [ "Focus系统统计:", f"总循环数: {stats[FOCUS_TOTAL_CYCLES]}", "" ] # 全局阶段平均时间 if stats[FOCUS_AVG_TIMES_BY_STAGE]: output.append("全局阶段平均时间:") for stage, avg_time in stats[FOCUS_AVG_TIMES_BY_STAGE].items(): output.append(f" {stage}: {avg_time:.3f}秒") output.append("") # Action类型比例 if stats[FOCUS_ACTION_RATIOS]: total_actions = sum(stats[FOCUS_ACTION_RATIOS].values()) output.append("Action类型分布:") for action_type, count in sorted(stats[FOCUS_ACTION_RATIOS].items()): ratio = (count / total_actions) * 100 if total_actions > 0 else 0 output.append(f" {action_type}: {count} ({ratio:.1f}%)") output.append("") # 按Chat统计(仅显示前10个) if stats[FOCUS_CYCLE_CNT_BY_CHAT]: output.append("按聊天流统计 (前10):") sorted_chats = sorted(stats[FOCUS_CYCLE_CNT_BY_CHAT].items(), key=lambda x: x[1], reverse=True)[:10] for chat_id, count in sorted_chats: chat_name = self.name_mapping.get(chat_id, (chat_id, 0))[0] output.append(f" {chat_name[:30]}: {count} 循环") output.append("") return "\n".join(output) def _get_chat_display_name_from_id(self, chat_id: str) -> str: """从chat_id获取显示名称""" try: # 首先尝试从chat_stream获取真实群组名称 from src.chat.message_receive.chat_stream import get_chat_manager chat_manager = get_chat_manager() if chat_id in chat_manager.streams: stream = chat_manager.streams[chat_id] if stream.group_info and hasattr(stream.group_info, 'group_name'): group_name = stream.group_info.group_name if group_name and group_name.strip(): return group_name.strip() elif stream.user_info and hasattr(stream.user_info, 'user_nickname'): user_name = stream.user_info.user_nickname if user_name and user_name.strip(): return user_name.strip() # 如果从chat_stream获取失败,尝试解析chat_id格式 if chat_id.startswith('g'): return f"群聊{chat_id[1:]}" elif chat_id.startswith('u'): return f"用户{chat_id[1:]}" else: return chat_id except Exception as e: logger.warning(f"获取聊天显示名称失败: {e}") return chat_id def _generate_html_report(self, stat: dict[str, Any], now: datetime): """ 生成HTML格式的统计报告 :param stat: 统计数据 :param now: 基准当前时间 :return: HTML格式的统计报告 """ tab_list = [ f'' for period in self.stat_period ] # 添加Focus统计、版本对比和图表选项卡 tab_list.append('') tab_list.append('') tab_list.append('') def _format_stat_data(stat_data: dict[str, Any], div_id: str, start_time: datetime) -> str: """ 格式化一个时间段的统计数据到html div块 :param stat_data: 统计数据 :param div_id: div的ID :param start_time: 统计时间段开始时间 """ # format总在线时间 # 按模型分类统计 model_rows = "\n".join( [ f"
统计时段: {start_time.strftime("%Y-%m-%d %H:%M:%S")} ~ {now.strftime("%Y-%m-%d %H:%M:%S")}
总在线时间: {_format_online_time(stat_data[ONLINE_TIME])}
总消息数: {stat_data[TOTAL_MSG_CNT]}
总请求数: {stat_data[TOTAL_REQ_CNT]}
总花费: {stat_data[TOTAL_COST]:.4f} ¥
| 模型名称 | 调用次数 | 输入Token | 输出Token | Token总量 | 累计花费 |
|---|
| 模块名称 | 调用次数 | 输入Token | 输出Token | Token总量 | 累计花费 |
|---|
| 请求类型 | 调用次数 | 输入Token | 输出Token | Token总量 | 累计花费 |
|---|
| 联系人/群组名称 | 消息数量 |
|---|
统计截止时间: {now.strftime("%Y-%m-%d %H:%M:%S")}
统计时段: {time_range}
总循环数: {stat_data.get(FOCUS_TOTAL_CYCLES, 0)}
| 阶段 | 平均时间 |
|---|
| Action类型 | 次数 | 占比 |
|---|
在指定时间段内未找到任何Focus循环数据。
请确保 log/hfc_loop/ 目录下存在相应的JSON文件。
数据来源: log/hfc_loop/ 目录下的JSON文件
统计内容: 各时间段的Focus循环性能分析
统计时段: {time_range}
包含版本: {len(all_versions)} 个版本
在指定时间段内未找到任何版本信息。
请确保 log/hfc_loop/ 目录下的JSON文件包含版本信息。
对比内容: 不同版本的Action类型分布和各阶段性能表现
数据来源: log/hfc_loop/ 目录下JSON文件中的version字段