import asyncio import time import traceback import random # <-- 添加导入 from typing import List, Optional, Dict, Any, Deque, Callable, Coroutine from collections import deque from src.plugins.chat.message import MessageRecv, BaseMessageInfo, MessageThinking, MessageSending from src.plugins.chat.message import Seg # Local import needed after move from src.plugins.chat.chat_stream import ChatStream from src.plugins.chat.message import UserInfo from src.plugins.chat.chat_stream import chat_manager from src.common.logger import get_module_logger, LogConfig, PFC_STYLE_CONFIG # 引入 DEFAULT_CONFIG from src.plugins.models.utils_model import LLMRequest from src.config.config import global_config from src.plugins.chat.utils_image import image_path_to_base64 # Local import needed after move from src.plugins.utils.timer_calculator import Timer # <--- Import Timer from src.plugins.heartFC_chat.heartFC_generator import HeartFCGenerator from src.do_tool.tool_use import ToolUser from src.plugins.emoji_system.emoji_manager import emoji_manager from src.plugins.utils.json_utils import process_llm_tool_response # 导入新的JSON工具 from src.heart_flow.sub_mind import SubMind from src.heart_flow.observation import Observation from src.plugins.heartFC_chat.heartflow_prompt_builder import global_prompt_manager import contextlib from src.plugins.utils.chat_message_builder import num_new_messages_since from src.plugins.heartFC_chat.heartFC_Cycleinfo import CycleInfo from .heartFC_sender import HeartFCSender INITIAL_DURATION = 60.0 # 定义日志配置 (使用 loguru 格式) interest_log_config = LogConfig( console_format=PFC_STYLE_CONFIG["console_format"], # 使用默认控制台格式 file_format=PFC_STYLE_CONFIG["file_format"], # 使用默认文件格式 ) logger = get_module_logger("HeartFCLoop", config=interest_log_config) # Logger Name Changed # 默认动作定义 DEFAULT_ACTIONS = {"no_reply": "不回复", "text_reply": "文本回复, 可选附带表情", "emoji_reply": "仅表情回复"} class ActionManager: """动作管理器:控制每次决策可以使用的动作""" def __init__(self): # 初始化为默认动作集 self._available_actions: Dict[str, str] = DEFAULT_ACTIONS.copy() def get_available_actions(self) -> Dict[str, str]: """获取当前可用的动作集""" return self._available_actions def add_action(self, action_name: str, description: str) -> bool: """ 添加新的动作 参数: action_name: 动作名称 description: 动作描述 返回: bool: 是否添加成功 """ if action_name in self._available_actions: return False self._available_actions[action_name] = description return True def remove_action(self, action_name: str) -> bool: """ 移除指定动作 参数: action_name: 动作名称 返回: bool: 是否移除成功 """ if action_name not in self._available_actions: return False del self._available_actions[action_name] return True def clear_actions(self): """清空所有动作""" self._available_actions.clear() def reset_to_default(self): """重置为默认动作集""" self._available_actions = DEFAULT_ACTIONS.copy() def get_planner_tool_definition(self) -> List[Dict[str, Any]]: """获取当前动作集对应的规划器工具定义""" return [ { "type": "function", "function": { "name": "decide_reply_action", "description": "根据当前聊天内容和上下文,决定机器人是否应该回复以及如何回复。", "parameters": { "type": "object", "properties": { "action": { "type": "string", "enum": list(self._available_actions.keys()), "description": "决定采取的行动:" + ", ".join([f"'{k}'({v})" for k, v in self._available_actions.items()]), }, "reasoning": {"type": "string", "description": "做出此决定的简要理由。"}, "emoji_query": { "type": "string", "description": "如果行动是'emoji_reply',指定表情的主题或概念。如果行动是'text_reply'且希望在文本后追加表情,也在此指定表情主题。", }, }, "required": ["action", "reasoning"], }, }, } ] # 在文件开头添加自定义异常类 class HeartFCError(Exception): """麦麦聊天系统基础异常类""" pass class PlannerError(HeartFCError): """规划器异常""" pass class ReplierError(HeartFCError): """回复器异常""" pass class SenderError(HeartFCError): """发送器异常""" pass class HeartFChatting: """ 管理一个连续的Plan-Replier-Sender循环 用于在特定聊天流中生成回复。 其生命周期现在由其关联的 SubHeartflow 的 FOCUSED 状态控制。 """ CONSECUTIVE_NO_REPLY_THRESHOLD = 5 # 连续不回复的阈值 def __init__( self, chat_id: str, sub_mind: SubMind, observations: Observation, on_consecutive_no_reply_callback: Callable[[], Coroutine[None, None, None]], ): """ HeartFChatting 初始化函数 参数: chat_id: 聊天流唯一标识符(如stream_id) sub_mind: 关联的子思维 observations: 关联的观察列表 on_consecutive_no_reply_callback: 连续不回复达到阈值时调用的异步回调函数 """ # 基础属性 self.stream_id: str = chat_id # 聊天流ID self.chat_stream: Optional[ChatStream] = None # 关联的聊天流 self.sub_mind: SubMind = sub_mind # 关联的子思维 self.observations: List[Observation] = observations # 关联的观察列表,用于监控聊天流状态 self.on_consecutive_no_reply_callback = on_consecutive_no_reply_callback # 日志前缀 self.log_prefix: str = f"[{chat_manager.get_stream_name(chat_id) or chat_id}]" # 动作管理器 self.action_manager = ActionManager() # 初始化状态控制 self._initialized = False # 是否已初始化标志 self._processing_lock = asyncio.Lock() # 处理锁(确保单次Plan-Replier-Sender周期) # 依赖注入存储 self.gpt_instance = HeartFCGenerator() # 文本回复生成器 self.tool_user = ToolUser() # 工具使用实例 self.heart_fc_sender = HeartFCSender() # LLM规划器配置 self.planner_llm = LLMRequest( model=global_config.llm_plan, max_tokens=1000, request_type="action_planning", # 用于动作规划 ) # 循环控制内部状态 self._loop_active: bool = False # 循环是否正在运行 self._loop_task: Optional[asyncio.Task] = None # 主循环任务 # 添加循环信息管理相关的属性 self._cycle_counter = 0 self._cycle_history: Deque[CycleInfo] = deque(maxlen=10) # 保留最近10个循环的信息 self._current_cycle: Optional[CycleInfo] = None self._lian_xu_bu_hui_fu_ci_shu: int = 0 # <--- 新增:连续不回复计数器 self._shutting_down: bool = False # <--- 新增:关闭标志位 async def _initialize(self) -> bool: """ 懒初始化以使用提供的标识符解析chat_stream。 确保实例已准备好处理触发器。 """ if self._initialized: return True self.chat_stream = chat_manager.get_stream(self.stream_id) if not self.chat_stream: logger.error(f"{self.log_prefix} 获取ChatStream失败。") return False # 更新日志前缀(以防流名称发生变化) self.log_prefix = f"[{chat_manager.get_stream_name(self.stream_id) or self.stream_id}]" self._initialized = True logger.info(f"麦麦感觉到了,可以开始认真水群{self.log_prefix} ") return True async def start(self): """ 启动 HeartFChatting 的主循环。 注意:调用此方法前必须确保已经成功初始化。 """ logger.info(f"{self.log_prefix} 开始认真水群(HFC)...") await self._start_loop_if_needed() async def _start_loop_if_needed(self): """检查是否需要启动主循环,如果未激活则启动。""" # 如果循环已经激活,直接返回 if self._loop_active: return # 标记为活动状态,防止重复启动 self._loop_active = True # 检查是否已有任务在运行(理论上不应该,因为 _loop_active=False) if self._loop_task and not self._loop_task.done(): logger.warning(f"{self.log_prefix} 发现之前的循环任务仍在运行(不符合预期)。取消旧任务。") self._loop_task.cancel() try: # 等待旧任务确实被取消 await asyncio.wait_for(self._loop_task, timeout=0.5) except (asyncio.CancelledError, asyncio.TimeoutError): pass # 忽略取消或超时错误 self._loop_task = None # 清理旧任务引用 logger.info(f"{self.log_prefix} 启动认真水群(HFC)主循环...") # 创建新的循环任务 self._loop_task = asyncio.create_task(self._hfc_loop()) # 添加完成回调 self._loop_task.add_done_callback(self._handle_loop_completion) def _handle_loop_completion(self, task: asyncio.Task): """当 _hfc_loop 任务完成时执行的回调。""" try: exception = task.exception() if exception: logger.error(f"{self.log_prefix} HeartFChatting: 麦麦脱离了聊天(异常): {exception}") logger.error(traceback.format_exc()) # Log full traceback for exceptions else: # Loop completing normally now means it was cancelled/shutdown externally logger.info(f"{self.log_prefix} HeartFChatting: 麦麦脱离了聊天 (外部停止)") except asyncio.CancelledError: logger.info(f"{self.log_prefix} HeartFChatting: 麦麦脱离了聊天(任务取消)") finally: self._loop_active = False self._loop_task = None if self._processing_lock.locked(): logger.warning(f"{self.log_prefix} HeartFChatting: 处理锁在循环结束时仍被锁定,强制释放。") self._processing_lock.release() async def _hfc_loop(self): """主循环,持续进行计划并可能回复消息,直到被外部取消。""" try: while True: # 主循环 # --- 在循环开始处检查关闭标志 --- if self._shutting_down: logger.info(f"{self.log_prefix} 检测到关闭标志,退出 HFC 循环。") break # -------------------------------- # 创建新的循环信息 self._cycle_counter += 1 self._current_cycle = CycleInfo(self._cycle_counter) # 初始化周期状态 cycle_timers = {} loop_cycle_start_time = time.monotonic() # 执行规划和处理阶段 async with self._get_cycle_context() as acquired_lock: if not acquired_lock: # 如果未能获取锁(理论上不太可能,除非 shutdown 过程中释放了但又被抢了?) # 或者也可以在这里再次检查 self._shutting_down if self._shutting_down: break # 再次检查,确保退出 logger.warning(f"{self.log_prefix} 未能获取循环处理锁,跳过本次循环。") await asyncio.sleep(0.1) # 短暂等待避免空转 continue # 记录规划开始时间点 planner_start_db_time = time.time() # 主循环:思考->决策->执行 action_taken, thinking_id = await self._think_plan_execute_loop(cycle_timers, planner_start_db_time) # 更新循环信息 self._current_cycle.set_thinking_id(thinking_id) self._current_cycle.timers = cycle_timers # 防止循环过快消耗资源 await self._handle_cycle_delay(action_taken, loop_cycle_start_time, self.log_prefix) # 完成当前循环并保存历史 self._current_cycle.complete_cycle() self._cycle_history.append(self._current_cycle) # 记录循环信息和计时器结果 timer_strings = [] for name, elapsed in cycle_timers.items(): formatted_time = f"{elapsed * 1000:.2f}毫秒" if elapsed < 1 else f"{elapsed:.2f}秒" timer_strings.append(f"{name}: {formatted_time}") logger.debug( f"{self.log_prefix} 第 #{self._current_cycle.cycle_id}次思考完成," f"耗时: {self._current_cycle.end_time - self._current_cycle.start_time:.2f}秒, " f"动作: {self._current_cycle.action_type}" + (f"\n计时器详情: {'; '.join(timer_strings)}" if timer_strings else "") ) except asyncio.CancelledError: # 设置了关闭标志位后被取消是正常流程 if not self._shutting_down: logger.warning(f"{self.log_prefix} HeartFChatting: 麦麦的认真水群(HFC)循环意外被取消") else: logger.info(f"{self.log_prefix} HeartFChatting: 麦麦的认真水群(HFC)循环已取消 (正常关闭)") except Exception as e: logger.error(f"{self.log_prefix} HeartFChatting: 意外错误: {e}") logger.error(traceback.format_exc()) @contextlib.asynccontextmanager async def _get_cycle_context(self): """ 循环周期的上下文管理器 用于确保资源的正确获取和释放: 1. 获取处理锁 2. 执行操作 3. 释放锁 """ acquired = False try: await self._processing_lock.acquire() acquired = True yield acquired finally: if acquired and self._processing_lock.locked(): self._processing_lock.release() async def _check_new_messages(self, start_time: float) -> bool: """ 检查从指定时间点后是否有新消息 参数: start_time: 开始检查的时间点 返回: bool: 是否有新消息 """ try: new_msg_count = num_new_messages_since(self.stream_id, start_time) if new_msg_count > 0: logger.info(f"{self.log_prefix} 检测到{new_msg_count}条新消息") return True return False except Exception as e: logger.error(f"{self.log_prefix} 检查新消息时出错: {e}") return False async def _think_plan_execute_loop(self, cycle_timers: dict, planner_start_db_time: float) -> tuple[bool, str]: """执行规划阶段""" try: # think:思考 current_mind = await self._get_submind_thinking(cycle_timers) # 记录子思维思考内容 if self._current_cycle: self._current_cycle.set_response_info(sub_mind_thinking=current_mind) # plan:决策 with Timer("决策", cycle_timers): planner_result = await self._planner(current_mind, cycle_timers) action = planner_result.get("action", "error") reasoning = planner_result.get("reasoning", "未提供理由") self._current_cycle.set_action_info(action, reasoning, False) # 在获取规划结果后检查新消息 if await self._check_new_messages(planner_start_db_time): if random.random() < 0.3: logger.info(f"{self.log_prefix} 看到了新消息,麦麦决定重新观察和规划...") # 重新规划 with Timer("重新决策", cycle_timers): self._current_cycle.replanned = True planner_result = await self._planner(current_mind, cycle_timers, is_re_planned=True) logger.info(f"{self.log_prefix} 重新规划完成.") # 解析规划结果 action = planner_result.get("action", "error") reasoning = planner_result.get("reasoning", "未提供理由") # 更新循环信息 self._current_cycle.set_action_info(action, reasoning, True) # 处理LLM错误 if planner_result.get("llm_error"): logger.error(f"{self.log_prefix} LLM失败: {reasoning}") return False, "" # execute:执行 return await self._handle_action( action, reasoning, planner_result.get("emoji_query", ""), cycle_timers, planner_start_db_time ) except PlannerError as e: logger.error(f"{self.log_prefix} 规划错误: {e}") # 更新循环信息 self._current_cycle.set_action_info("error", str(e), False) return False, "" async def _handle_action( self, action: str, reasoning: str, emoji_query: str, cycle_timers: dict, planner_start_db_time: float ) -> tuple[bool, str]: """ 处理规划动作 参数: action: 动作类型 reasoning: 决策理由 emoji_query: 表情查询 cycle_timers: 计时器字典 planner_start_db_time: 规划开始时间 返回: tuple[bool, str]: (是否执行了动作, 思考消息ID) """ action_handlers = { "text_reply": self._handle_text_reply, "emoji_reply": self._handle_emoji_reply, "no_reply": self._handle_no_reply, } handler = action_handlers.get(action) if not handler: logger.warning(f"{self.log_prefix} 未知动作: {action}, 原因: {reasoning}") return False, "" try: if action == "text_reply": return await handler(reasoning, emoji_query, cycle_timers) elif action == "emoji_reply": return await handler(reasoning, emoji_query), "" else: # no_reply return await handler(reasoning, planner_start_db_time, cycle_timers), "" except HeartFCError as e: logger.error(f"{self.log_prefix} 处理{action}时出错: {e}") # 出错时也重置计数器 self._lian_xu_bu_hui_fu_ci_shu = 0 return False, "" async def _handle_text_reply(self, reasoning: str, emoji_query: str, cycle_timers: dict) -> tuple[bool, str]: """ 处理文本回复 工作流程: 1. 获取锚点消息 2. 创建思考消息 3. 生成回复 4. 发送消息 参数: reasoning: 回复原因 emoji_query: 表情查询 cycle_timers: 计时器字典 返回: tuple[bool, str]: (是否回复成功, 思考消息ID) """ # 重置连续不回复计数器 self._lian_xu_bu_hui_fu_ci_shu = 0 # 获取锚点消息 anchor_message = await self._get_anchor_message() if not anchor_message: raise PlannerError("无法获取锚点消息") # 创建思考消息 thinking_id = await self._create_thinking_message(anchor_message) if not thinking_id: raise PlannerError("无法创建思考消息") try: # 生成回复 with Timer("生成回复", cycle_timers): reply = await self._replier_work( anchor_message=anchor_message, thinking_id=thinking_id, reason=reasoning, ) if not reply: raise ReplierError("回复生成失败") # 发送消息 with Timer("发送消息", cycle_timers): await self._sender( thinking_id=thinking_id, anchor_message=anchor_message, response_set=reply, send_emoji=emoji_query, ) return True, thinking_id except (ReplierError, SenderError) as e: logger.error(f"{self.log_prefix} 回复失败: {e}") return True, thinking_id # 仍然返回thinking_id以便跟踪 async def _handle_emoji_reply(self, reasoning: str, emoji_query: str) -> bool: """ 处理表情回复 工作流程: 1. 获取锚点消息 2. 发送表情 参数: reasoning: 回复原因 emoji_query: 表情查询 返回: bool: 是否发送成功 """ logger.info(f"{self.log_prefix} 决定回复表情({emoji_query}): {reasoning}") try: anchor = await self._get_anchor_message() if not anchor: raise PlannerError("无法获取锚点消息") await self._handle_emoji(anchor, [], emoji_query) return True except Exception as e: logger.error(f"{self.log_prefix} 表情发送失败: {e}") return False async def _handle_no_reply(self, reasoning: str, planner_start_db_time: float, cycle_timers: dict) -> bool: """ 处理不回复的情况 工作流程: 1. 等待新消息、超时或关闭信号 2. 根据等待结果更新连续不回复计数 3. 如果达到阈值,触发回调 参数: reasoning: 不回复的原因 planner_start_db_time: 规划开始时间 cycle_timers: 计时器字典 返回: bool: 是否成功处理 """ logger.info(f"{self.log_prefix} 决定不回复: {reasoning}") observation = self.observations[0] if self.observations else None try: with Timer("等待新消息", cycle_timers): # 等待新消息、超时或关闭信号,并获取结果 await self._wait_for_new_message(observation, planner_start_db_time, self.log_prefix) if not self._shutting_down: self._lian_xu_bu_hui_fu_ci_shu += 1 logger.debug( f"{self.log_prefix} 连续不回复计数增加: {self._lian_xu_bu_hui_fu_ci_shu}/{self.CONSECUTIVE_NO_REPLY_THRESHOLD}" ) # 检查是否达到阈值 if self._lian_xu_bu_hui_fu_ci_shu >= self.CONSECUTIVE_NO_REPLY_THRESHOLD: logger.info( f"{self.log_prefix} 连续不回复达到阈值 ({self._lian_xu_bu_hui_fu_ci_shu}次),调用回调请求状态转换" ) # 调用回调。注意:这里不重置计数器,依赖回调函数成功改变状态来隐式重置上下文。 await self.on_consecutive_no_reply_callback() return True except asyncio.CancelledError: # 如果在等待过程中任务被取消(可能是因为 shutdown) logger.info(f"{self.log_prefix} 处理 'no_reply' 时等待被中断 (CancelledError)") # 让异常向上传播,由 _hfc_loop 的异常处理逻辑接管 raise except Exception as e: # 捕获调用管理器或其他地方可能发生的错误 logger.error(f"{self.log_prefix} 处理 'no_reply' 时发生错误: {e}") logger.error(traceback.format_exc()) # 发生意外错误时,可以选择是否重置计数器,这里选择不重置 return False # 表示动作未成功 async def _wait_for_new_message(self, observation, planner_start_db_time: float, log_prefix: str) -> bool: """ 等待新消息 或 检测到关闭信号 参数: observation: 观察实例 planner_start_db_time: 开始等待的时间 log_prefix: 日志前缀 返回: bool: 是否检测到新消息 (如果因关闭信号退出则返回 False) """ wait_start_time = time.monotonic() while True: # --- 在每次循环开始时检查关闭标志 --- if self._shutting_down: logger.info(f"{log_prefix} 等待新消息时检测到关闭信号,中断等待。") return False # 表示因为关闭而退出 # ----------------------------------- # 检查新消息 if await observation.has_new_messages_since(planner_start_db_time): logger.info(f"{log_prefix} 检测到新消息") return True # 检查超时 (放在检查新消息和关闭之后) if time.monotonic() - wait_start_time > 120: logger.warning(f"{log_prefix} 等待新消息超时(20秒)") return False try: # 短暂休眠,让其他任务有机会运行,并能更快响应取消或关闭 await asyncio.sleep(0.5) # 缩短休眠时间 except asyncio.CancelledError: # 如果在休眠时被取消,再次检查关闭标志 # 如果是正常关闭,则不需要警告 if not self._shutting_down: logger.warning(f"{log_prefix} _wait_for_new_message 的休眠被意外取消") # 无论如何,重新抛出异常,让上层处理 raise async def _log_cycle_timers(self, cycle_timers: dict, log_prefix: str): """记录循环周期的计时器结果""" if cycle_timers: timer_strings = [] for name, elapsed in cycle_timers.items(): formatted_time = f"{elapsed * 1000:.2f}毫秒" if elapsed < 1 else f"{elapsed:.2f}秒" timer_strings.append(f"{name}: {formatted_time}") if timer_strings: # 在记录前检查关闭标志 if not self._shutting_down: logger.debug(f"{log_prefix} 该次决策耗时: {'; '.join(timer_strings)}") async def _handle_cycle_delay(self, action_taken_this_cycle: bool, cycle_start_time: float, log_prefix: str): """处理循环延迟""" cycle_duration = time.monotonic() - cycle_start_time try: sleep_duration = 0.0 if not action_taken_this_cycle and cycle_duration < 1: sleep_duration = 1 - cycle_duration elif cycle_duration < 0.2: sleep_duration = 0.2 if sleep_duration > 0: await asyncio.sleep(sleep_duration) except asyncio.CancelledError: logger.info(f"{log_prefix} Sleep interrupted, loop likely cancelling.") raise async def _get_submind_thinking(self, cycle_timers: dict) -> str: """ 获取子思维的思考结果 返回: str: 思考结果,如果思考失败则返回错误信息 """ try: with Timer("观察", cycle_timers): observation = self.observations[0] await observation.observe() # 获取上一个循环的信息 last_cycle = self._cycle_history[-1] if self._cycle_history else None with Timer("思考", cycle_timers): # 获取上一个循环的动作 # 传递上一个循环的信息给 do_thinking_before_reply current_mind, _past_mind = await self.sub_mind.do_thinking_before_reply(last_cycle=last_cycle) return current_mind except Exception as e: logger.error(f"{self.log_prefix}[SubMind] 思考失败: {e}") logger.error(traceback.format_exc()) return "[思考时出错]" async def _planner(self, current_mind: str, cycle_timers: dict, is_re_planned: bool = False) -> Dict[str, Any]: """ 规划器 (Planner): 使用LLM根据上下文决定是否和如何回复。 参数: current_mind: 子思维的当前思考结果 """ logger.info(f"{self.log_prefix}[Planner] 开始{'重新' if is_re_planned else ''}执行规划器") # 获取观察信息 observation = self.observations[0] if is_re_planned: await observation.observe() observed_messages = observation.talking_message observed_messages_str = observation.talking_message_str # --- 使用 LLM 进行决策 --- # action = "no_reply" # 默认动作 emoji_query = "" # 默认表情查询 reasoning = "默认决策或获取决策失败" llm_error = False # LLM错误标志 try: # 构建提示词 if is_re_planned: replan_prompt = await self._build_replan_prompt( self._current_cycle.action_type, self._current_cycle.reasoning ) prompt = replan_prompt else: replan_prompt = "" prompt = await self._build_planner_prompt( observed_messages_str, current_mind, self.sub_mind.structured_info, replan_prompt ) payload = { "model": global_config.llm_plan["name"], "messages": [{"role": "user", "content": prompt}], "tools": self.action_manager.get_planner_tool_definition(), "tool_choice": {"type": "function", "function": {"name": "decide_reply_action"}}, } # 执行LLM请求 try: response = await self.planner_llm._execute_request( endpoint="/chat/completions", payload=payload, prompt=prompt ) except Exception as req_e: logger.error(f"{self.log_prefix}[Planner] LLM请求执行失败: {req_e}") return { "action": "error", "reasoning": f"LLM请求执行失败: {req_e}", "emoji_query": "", "current_mind": current_mind, "observed_messages": observed_messages, "llm_error": True, } # 处理LLM响应 with Timer("使用工具", cycle_timers): # 使用辅助函数处理工具调用响应 success, arguments, error_msg = process_llm_tool_response( response, expected_tool_name="decide_reply_action", log_prefix=f"{self.log_prefix}[Planner] " ) if success: # 提取决策参数 action = arguments.get("action", "no_reply") # 验证动作是否在可用动作集中 if action not in self.action_manager.get_available_actions(): logger.warning( f"{self.log_prefix}[Planner] LLM返回了未授权的动作: {action},使用默认动作no_reply" ) action = "no_reply" reasoning = f"LLM返回了未授权的动作: {action}" else: reasoning = arguments.get("reasoning", "未提供理由") emoji_query = arguments.get("emoji_query", "") # 记录决策结果 logger.debug( f"{self.log_prefix}[要做什么]\nPrompt:\n{prompt}\n\n决策结果: {action}, 理由: {reasoning}, 表情查询: '{emoji_query}'" ) else: # 处理工具调用失败 logger.warning(f"{self.log_prefix}[Planner] {error_msg}") action = "error" reasoning = error_msg llm_error = True except Exception as llm_e: logger.error(f"{self.log_prefix}[Planner] Planner LLM处理过程中出错: {llm_e}") logger.error(traceback.format_exc()) # 记录完整堆栈以便调试 action = "error" reasoning = f"LLM处理失败: {llm_e}" llm_error = True # --- 结束 LLM 决策 --- # return { "action": action, "reasoning": reasoning, "emoji_query": emoji_query, "current_mind": current_mind, "observed_messages": observed_messages, "llm_error": llm_error, } async def _get_anchor_message(self) -> Optional[MessageRecv]: """ 重构观察到的最后一条消息作为回复的锚点, 如果重构失败或观察为空,则创建一个占位符。 """ try: placeholder_id = f"mid_pf_{int(time.time() * 1000)}" placeholder_user = UserInfo( user_id="system_trigger", user_nickname="System Trigger", platform=self.chat_stream.platform ) placeholder_msg_info = BaseMessageInfo( message_id=placeholder_id, platform=self.chat_stream.platform, group_info=self.chat_stream.group_info, user_info=placeholder_user, time=time.time(), ) placeholder_msg_dict = { "message_info": placeholder_msg_info.to_dict(), "processed_plain_text": "[System Trigger Context]", "raw_message": "", "time": placeholder_msg_info.time, } anchor_message = MessageRecv(placeholder_msg_dict) anchor_message.update_chat_stream(self.chat_stream) logger.info( f"{self.log_prefix} Created placeholder anchor message: ID={anchor_message.message_info.message_id}" ) return anchor_message except Exception as e: logger.error(f"{self.log_prefix} Error getting/creating anchor message: {e}") logger.error(traceback.format_exc()) return None # --- 发送器 (Sender) --- # async def _sender( self, thinking_id: str, anchor_message: MessageRecv, response_set: List[str], send_emoji: str, # Emoji query decided by planner or tools ): """ 发送器 (Sender): 使用 HeartFCSender 实例发送生成的回复。 处理相关的操作,如发送表情和更新关系。 """ logger.info(f"{self.log_prefix}开始发送回复 (使用 HeartFCSender)") first_bot_msg: Optional[MessageSending] = None try: # _send_response_messages 现在将使用 self.sender 内部处理注册和发送 # 它需要负责创建 MessageThinking 和 MessageSending 对象 # 并调用 self.sender.register_thinking 和 self.sender.type_and_send_message first_bot_msg = await self._send_response_messages( anchor_message=anchor_message, response_set=response_set, thinking_id=thinking_id ) if first_bot_msg: # --- 处理关联表情(如果指定) --- # if send_emoji: logger.info(f"{self.log_prefix}正在发送关联表情: '{send_emoji}'") # 优先使用 first_bot_msg 作为锚点,否则回退到原始锚点 emoji_anchor = first_bot_msg await self._handle_emoji(emoji_anchor, response_set, send_emoji) else: # 如果 _send_response_messages 返回 None,表示在发送前就失败或没有消息可发送 logger.warning( f"{self.log_prefix}[Sender-{thinking_id}] 未能发送任何回复消息 (_send_response_messages 返回 None)。" ) # 这里可能不需要抛出异常,取决于 _send_response_messages 的具体实现 except Exception as e: # 异常现在由 type_and_send_message 内部处理日志,这里只记录发送流程失败 logger.error(f"{self.log_prefix}[Sender-{thinking_id}] 发送回复过程中遇到错误: {e}") # 思考状态应已在 type_and_send_message 的 finally 块中清理 # 可以选择重新抛出或根据业务逻辑处理 # raise RuntimeError(f"发送回复失败: {e}") from e async def shutdown(self): """优雅关闭HeartFChatting实例,取消活动循环任务""" logger.info(f"{self.log_prefix} 正在关闭HeartFChatting...") self._shutting_down = True # <-- 在开始关闭时设置标志位 # 取消循环任务 if self._loop_task and not self._loop_task.done(): logger.info(f"{self.log_prefix} 正在取消HeartFChatting循环任务") self._loop_task.cancel() try: await asyncio.wait_for(self._loop_task, timeout=1.0) logger.info(f"{self.log_prefix} HeartFChatting循环任务已取消") except (asyncio.CancelledError, asyncio.TimeoutError): pass except Exception as e: logger.error(f"{self.log_prefix} 取消循环任务出错: {e}") else: logger.info(f"{self.log_prefix} 没有活动的HeartFChatting循环任务") # 清理状态 self._loop_active = False self._loop_task = None if self._processing_lock.locked(): self._processing_lock.release() logger.warning(f"{self.log_prefix} 已释放处理锁") logger.info(f"{self.log_prefix} HeartFChatting关闭完成") async def _build_replan_prompt(self, action: str, reasoning: str) -> str: """构建 Replanner LLM 的提示词""" prompt = (await global_prompt_manager.get_prompt_async("replan_prompt")).format( action=action, reasoning=reasoning, ) # 在记录循环日志前检查关闭标志 if not self._shutting_down: self._current_cycle.complete_cycle() self._cycle_history.append(self._current_cycle) # 记录循环信息和计时器结果 timer_strings = [] for name, elapsed in self._current_cycle.timers.items(): formatted_time = f"{elapsed * 1000:.2f}毫秒" if elapsed < 1 else f"{elapsed:.2f}秒" timer_strings.append(f"{name}: {formatted_time}") logger.debug( f"{self.log_prefix} 第 #{self._current_cycle.cycle_id}次思考完成," f"耗时: {self._current_cycle.end_time - self._current_cycle.start_time:.2f}秒, " f"动作: {self._current_cycle.action_type}" + (f"\n计时器详情: {'; '.join(timer_strings)}" if timer_strings else "") ) return prompt async def _build_planner_prompt( self, observed_messages_str: str, current_mind: Optional[str], structured_info: Dict[str, Any], replan_prompt: str, ) -> str: """构建 Planner LLM 的提示词""" # 准备结构化信息块 structured_info_block = "" if structured_info: structured_info_block = f"以下是一些额外的信息:\n{structured_info}\n" # 准备聊天内容块 chat_content_block = "" if observed_messages_str: chat_content_block = "观察到的最新聊天内容如下:\n---\n" chat_content_block += observed_messages_str chat_content_block += "\n---" else: chat_content_block = "当前没有观察到新的聊天内容。\n" # 准备当前思维块 current_mind_block = "" if current_mind: current_mind_block = f"{current_mind}" else: current_mind_block = "[没有特别的想法]" # 获取提示词模板并填充数据 prompt = (await global_prompt_manager.get_prompt_async("planner_prompt")).format( bot_name=global_config.BOT_NICKNAME, structured_info_block=structured_info_block, chat_content_block=chat_content_block, current_mind_block=current_mind_block, replan=replan_prompt, ) return prompt # --- 回复器 (Replier) 的定义 --- # async def _replier_work( self, reason: str, anchor_message: MessageRecv, thinking_id: str, ) -> Optional[List[str]]: """ 回复器 (Replier): 核心逻辑用于生成回复。 """ response_set: Optional[List[str]] = None try: response_set = await self.gpt_instance.generate_response( structured_info=self.sub_mind.structured_info, current_mind_info=self.sub_mind.current_mind, reason=reason, message=anchor_message, # Pass anchor_message positionally (matches 'message' parameter) thinking_id=thinking_id, # Pass thinking_id positionally ) if not response_set: logger.warning(f"{self.log_prefix}[Replier-{thinking_id}] LLM生成了一个空回复集。") return None return response_set except Exception as e: logger.error(f"{self.log_prefix}[Replier-{thinking_id}] Unexpected error in replier_work: {e}") logger.error(traceback.format_exc()) return None # --- Methods moved from HeartFCController start --- async def _create_thinking_message(self, anchor_message: Optional[MessageRecv]) -> Optional[str]: """创建思考消息 (尝试锚定到 anchor_message)""" if not anchor_message or not anchor_message.chat_stream: logger.error(f"{self.log_prefix} 无法创建思考消息,缺少有效的锚点消息或聊天流。") return None chat = anchor_message.chat_stream messageinfo = anchor_message.message_info bot_user_info = UserInfo( user_id=global_config.BOT_QQ, user_nickname=global_config.BOT_NICKNAME, platform=messageinfo.platform, ) thinking_time_point = round(time.time(), 2) thinking_id = "mt" + str(thinking_time_point) thinking_message = MessageThinking( message_id=thinking_id, chat_stream=chat, bot_user_info=bot_user_info, reply=anchor_message, # 回复的是锚点消息 thinking_start_time=thinking_time_point, ) # Access MessageManager directly await self.heart_fc_sender.register_thinking(thinking_message) return thinking_id async def _send_response_messages( self, anchor_message: Optional[MessageRecv], response_set: List[str], thinking_id: str ) -> Optional[MessageSending]: """发送回复消息 (尝试锚定到 anchor_message),使用 HeartFCSender""" if not anchor_message or not anchor_message.chat_stream: logger.error(f"{self.log_prefix} 无法发送回复,缺少有效的锚点消息或聊天流。") return None chat = anchor_message.chat_stream chat_id = chat.stream_id stream_name = chat_manager.get_stream_name(chat_id) or chat_id # 获取流名称用于日志 # 检查思考过程是否仍在进行,并获取开始时间 thinking_start_time = await self.heart_fc_sender.get_thinking_start_time(chat_id, thinking_id) if thinking_start_time is None: logger.warning(f"[{stream_name}] {thinking_id} 思考过程未找到或已结束,无法发送回复。") return None # 记录锚点消息ID和回复文本(在发送前记录) self._current_cycle.set_response_info( response_text=response_set, anchor_message_id=anchor_message.message_info.message_id ) mark_head = False first_bot_msg: Optional[MessageSending] = None reply_message_ids = [] # 记录实际发送的消息ID bot_user_info = UserInfo( user_id=global_config.BOT_QQ, user_nickname=global_config.BOT_NICKNAME, platform=anchor_message.message_info.platform, ) for i, msg_text in enumerate(response_set): # 为每个消息片段生成唯一ID part_message_id = f"{thinking_id}_{i}" message_segment = Seg(type="text", data=msg_text) bot_message = MessageSending( message_id=part_message_id, # 使用片段的唯一ID chat_stream=chat, bot_user_info=bot_user_info, sender_info=anchor_message.message_info.user_info, message_segment=message_segment, reply=anchor_message, # 回复原始锚点 is_head=not mark_head, is_emoji=False, thinking_start_time=thinking_start_time, # 传递原始思考开始时间 ) try: if not mark_head: mark_head = True first_bot_msg = bot_message # 保存第一个成功发送的消息对象 await self.heart_fc_sender.type_and_send_message(bot_message, type=False) else: await self.heart_fc_sender.type_and_send_message(bot_message, type=True) reply_message_ids.append(part_message_id) # 记录我们生成的ID except Exception as e: logger.error( f"{self.log_prefix}[Sender-{thinking_id}] 发送回复片段 {i} ({part_message_id}) 时失败: {e}" ) # 这里可以选择是继续发送下一个片段还是中止 # 在尝试发送完所有片段后,完成原始的 thinking_id 状态 try: await self.heart_fc_sender.complete_thinking(chat_id, thinking_id) except Exception as e: logger.error(f"{self.log_prefix}[Sender-{thinking_id}] 完成思考状态 {thinking_id} 时出错: {e}") self._current_cycle.set_response_info( response_text=response_set, # 保留原始文本 anchor_message_id=anchor_message.message_info.message_id, # 保留锚点ID reply_message_ids=reply_message_ids, # 添加实际发送的ID列表 ) return first_bot_msg # 返回第一个成功发送的消息对象 async def _handle_emoji(self, anchor_message: Optional[MessageRecv], response_set: List[str], send_emoji: str = ""): """处理表情包 (尝试锚定到 anchor_message),使用 HeartFCSender""" if not anchor_message or not anchor_message.chat_stream: logger.error(f"{self.log_prefix} 无法处理表情包,缺少有效的锚点消息或聊天流。") return chat = anchor_message.chat_stream emoji_raw = await emoji_manager.get_emoji_for_text(send_emoji) if emoji_raw: emoji_path, description = emoji_raw emoji_cq = image_path_to_base64(emoji_path) thinking_time_point = round(time.time(), 2) # 用于唯一ID message_segment = Seg(type="emoji", data=emoji_cq) bot_user_info = UserInfo( user_id=global_config.BOT_QQ, user_nickname=global_config.BOT_NICKNAME, platform=anchor_message.message_info.platform, ) bot_message = MessageSending( message_id="me" + str(thinking_time_point), # 表情消息的唯一ID chat_stream=chat, bot_user_info=bot_user_info, sender_info=anchor_message.message_info.user_info, message_segment=message_segment, reply=anchor_message, # 回复原始锚点 is_head=False, # 表情通常不是头部消息 is_emoji=True, # 不需要 thinking_start_time ) try: await self.heart_fc_sender.send_and_store(bot_message) except Exception as e: logger.error(f"{self.log_prefix} 发送表情包 {bot_message.message_info.message_id} 时失败: {e}") def get_cycle_history(self, last_n: Optional[int] = None) -> List[Dict[str, Any]]: """获取循环历史记录 参数: last_n: 获取最近n个循环的信息,如果为None则获取所有历史记录 返回: List[Dict[str, Any]]: 循环历史记录列表 """ history = list(self._cycle_history) if last_n is not None: history = history[-last_n:] return [cycle.to_dict() for cycle in history] def get_last_cycle_info(self) -> Optional[Dict[str, Any]]: """获取最近一个循环的信息""" if self._cycle_history: return self._cycle_history[-1].to_dict() return None