from typing import Tuple from src.common.logger import get_module_logger from ..models.utils_model import LLMRequest from ...config.config import global_config from .chat_observer import ChatObserver from .reply_checker import ReplyChecker from src.individuality.individuality import Individuality from .observation_info import ObservationInfo from .conversation_info import ConversationInfo logger = get_module_logger("reply_generator") class ReplyGenerator: """回复生成器""" def __init__(self, stream_id: str): self.llm = LLMRequest( model=global_config.llm_normal, temperature=global_config.llm_normal["temp"], max_tokens=300, request_type="reply_generation", ) self.personality_info = Individuality.get_instance().get_prompt(type="personality", x_person=2, level=2) self.name = global_config.BOT_NICKNAME self.chat_observer = ChatObserver.get_instance(stream_id) self.reply_checker = ReplyChecker(stream_id) async def generate(self, observation_info: ObservationInfo, conversation_info: ConversationInfo) -> str: """生成回复 Args: observation_info: 观察信息 conversation_info: 对话信息 Returns: str: 生成的回复 """ # 构建提示词 logger.debug(f"开始生成回复:当前目标: {conversation_info.goal_list}") # 构建对话目标 goals_str = "" if conversation_info.goal_list: for goal_reason in conversation_info.goal_list: # 处理字典或元组格式 if isinstance(goal_reason, tuple): # 假设元组的第一个元素是目标,第二个元素是原因 goal = goal_reason[0] reasoning = goal_reason[1] if len(goal_reason) > 1 else "没有明确原因" elif isinstance(goal_reason, dict): goal = goal_reason.get("goal") reasoning = goal_reason.get("reasoning", "没有明确原因") else: # 如果是其他类型,尝试转为字符串 goal = str(goal_reason) reasoning = "没有明确原因" goal_str = f"目标:{goal},产生该对话目标的原因:{reasoning}\n" goals_str += goal_str else: goal = "目前没有明确对话目标" reasoning = "目前没有明确对话目标,最好思考一个对话目标" goals_str = f"目标:{goal},产生该对话目标的原因:{reasoning}\n" # 获取聊天历史记录 chat_history_list = ( observation_info.chat_history[-20:] if len(observation_info.chat_history) >= 20 else observation_info.chat_history ) chat_history_text = "" for msg in chat_history_list: chat_history_text += f"{msg.get('detailed_plain_text', '')}\n" if observation_info.new_messages_count > 0: new_messages_list = observation_info.unprocessed_messages chat_history_text += f"有{observation_info.new_messages_count}条新消息:\n" for msg in new_messages_list: chat_history_text += f"{msg.get('detailed_plain_text', '')}\n" observation_info.clear_unprocessed_messages() personality_text = f"你的名字是{self.name},{self.personality_info}" # 构建action历史文本 action_history_list = ( conversation_info.done_action[-10:] if len(conversation_info.done_action) >= 10 else conversation_info.done_action ) action_history_text = "你之前做的事情是:" for action in action_history_list: if isinstance(action, dict): action_type = action.get("action") action_reason = action.get("reason") action_status = action.get("status") if action_status == "recall": action_history_text += ( f"原本打算:{action_type},但是因为有新消息,你发现这个行动不合适,所以你没做\n" ) elif action_status == "done": action_history_text += f"你之前做了:{action_type},原因:{action_reason}\n" elif isinstance(action, tuple): # 假设元组的格式是(action_type, action_reason, action_status) action_type = action[0] if len(action) > 0 else "未知行动" action_reason = action[1] if len(action) > 1 else "未知原因" action_status = action[2] if len(action) > 2 else "done" if action_status == "recall": action_history_text += ( f"原本打算:{action_type},但是因为有新消息,你发现这个行动不合适,所以你没做\n" ) elif action_status == "done": action_history_text += f"你之前做了:{action_type},原因:{action_reason}\n" prompt = f"""{personality_text}。现在你在参与一场QQ聊天,请根据以下信息生成回复: 当前对话目标:{goals_str} 最近的聊天记录: {chat_history_text} 请根据上述信息,以你的性格特征生成一个自然、得体的回复。回复应该: 1. 符合对话目标,以"你"的角度发言 2. 体现你的性格特征 3. 自然流畅,像正常聊天一样,简短 4. 适当利用相关知识,但不要生硬引用 请注意把握聊天内容,不要回复的太有条理,可以有个性。请分清"你"和对方说的话,不要把"你"说的话当做对方说的话,这是你自己说的话。 请你回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景,尽量不要说你说过的话 请你注意不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只输出回复内容。 不要输出多余内容(包括前后缀,冒号和引号,括号,表情包,at或 @等 )。 请直接输出回复内容,不需要任何额外格式。""" try: content, _ = await self.llm.generate_response_async(prompt) logger.info(f"生成的回复: {content}") # is_new = self.chat_observer.check() # logger.debug(f"再看一眼聊天记录,{'有' if is_new else '没有'}新消息") # 如果有新消息,重新生成回复 # if is_new: # logger.info("检测到新消息,重新生成回复") # return await self.generate( # goal, chat_history, knowledge_cache, # None, retry_count # ) return content except Exception as e: logger.error(f"生成回复时出错: {str(e)}") return "抱歉,我现在有点混乱,让我重新思考一下..." async def check_reply(self, reply: str, goal: str, retry_count: int = 0) -> Tuple[bool, str, bool]: """检查回复是否合适 Args: reply: 生成的回复 goal: 对话目标 retry_count: 当前重试次数 Returns: Tuple[bool, str, bool]: (是否合适, 原因, 是否需要重新规划) """ return await self.reply_checker.check(reply, goal, retry_count)