import asyncio import os import time from typing import Tuple, Union import aiohttp import requests from src.common.logger import get_module_logger from src.common.tcp_connector import get_tcp_connector from rich.traceback import install install(extra_lines=3) logger = get_module_logger("offline_llm") class LLMRequestOff: def __init__(self, model_name="Pro/deepseek-ai/DeepSeek-V3", **kwargs): self.model_name = model_name self.params = kwargs self.api_key = os.getenv("SILICONFLOW_KEY") self.base_url = os.getenv("SILICONFLOW_BASE_URL") if not self.api_key or not self.base_url: raise ValueError("环境变量未正确加载:SILICONFLOW_KEY 或 SILICONFLOW_BASE_URL 未设置") # logger.info(f"API URL: {self.base_url}") # 使用 logger 记录 base_url def generate_response(self, prompt: str) -> Union[str, Tuple[str, str]]: """根据输入的提示生成模型的响应""" headers = {"Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json"} # 构建请求体 data = { "model": self.model_name, "messages": [{"role": "user", "content": prompt}], "temperature": 0.4, **self.params, } # 发送请求到完整的 chat/completions 端点 api_url = f"{self.base_url.rstrip('/')}/chat/completions" logger.info(f"Request URL: {api_url}") # 记录请求的 URL max_retries = 3 base_wait_time = 15 # 基础等待时间(秒) for retry in range(max_retries): try: response = requests.post(api_url, headers=headers, json=data) if response.status_code == 429: wait_time = base_wait_time * (2**retry) # 指数退避 logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...") time.sleep(wait_time) continue response.raise_for_status() # 检查其他响应状态 result = response.json() if "choices" in result and len(result["choices"]) > 0: content = result["choices"][0]["message"]["content"] reasoning_content = result["choices"][0]["message"].get("reasoning_content", "") return content, reasoning_content return "没有返回结果", "" except Exception as e: if retry < max_retries - 1: # 如果还有重试机会 wait_time = base_wait_time * (2**retry) logger.error(f"[回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}") time.sleep(wait_time) else: logger.error(f"请求失败: {str(e)}") return f"请求失败: {str(e)}", "" logger.error("达到最大重试次数,请求仍然失败") return "达到最大重试次数,请求仍然失败", "" async def generate_response_async(self, prompt: str) -> Union[str, Tuple[str, str]]: """异步方式根据输入的提示生成模型的响应""" headers = {"Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json"} # 构建请求体 data = { "model": self.model_name, "messages": [{"role": "user", "content": prompt}], "temperature": 0.5, **self.params, } # 发送请求到完整的 chat/completions 端点 api_url = f"{self.base_url.rstrip('/')}/chat/completions" logger.info(f"Request URL: {api_url}") # 记录请求的 URL max_retries = 3 base_wait_time = 15 async with aiohttp.ClientSession(connector=await get_tcp_connector()) as session: for retry in range(max_retries): try: async with session.post(api_url, headers=headers, json=data) as response: if response.status == 429: wait_time = base_wait_time * (2**retry) # 指数退避 logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...") await asyncio.sleep(wait_time) continue response.raise_for_status() # 检查其他响应状态 result = await response.json() if "choices" in result and len(result["choices"]) > 0: content = result["choices"][0]["message"]["content"] reasoning_content = result["choices"][0]["message"].get("reasoning_content", "") return content, reasoning_content return "没有返回结果", "" except Exception as e: if retry < max_retries - 1: # 如果还有重试机会 wait_time = base_wait_time * (2**retry) logger.error(f"[回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}") await asyncio.sleep(wait_time) else: logger.error(f"请求失败: {str(e)}") return f"请求失败: {str(e)}", "" logger.error("达到最大重试次数,请求仍然失败") return "达到最大重试次数,请求仍然失败", ""