Windpicker-owo
|
e6a4f855a2
|
feat: 提升语义兴趣评分与拼写错误生成
- 为中文拼写生成器实现了背景预热功能,以提升首次使用时的性能。
- 更新了MessageStorageBatcher以支持可配置的提交批次大小和间隔,优化数据库写入性能。
- 增强版数据集生成器,对样本规模设置硬性限制并提升采样效率。
- 将AutoTrainer中的最大样本数增加至1000,以优化训练数据利用率。
- 对亲和兴趣计算器进行了重构,以避免并发初始化并优化模型加载逻辑。
- 引入批量处理机制用于语义兴趣评分,以应对高频聊天场景。
- 更新了配置模板以反映新的评分参数,并移除了已弃用的兴趣阈值。
|
2025-12-12 14:11:36 +08:00 |
|
Windpicker-owo
|
9d01b81cef
|
feat: 通过FastScorer与批处理功能增强关联兴趣计算器
- 集成FastScorer用于优化评分,绕过sklearn以提升性能。
- 新增批量处理功能,以应对高频聊天场景。
- 实现了一个全局线程池以避免重复创建执行器。
- 将评分操作的超时时间缩短至2秒。
- 重构了ChatterActionPlanner以利用新的利息计算器。
- 引入了一个基准测试脚本,用于比较原始sklearn与FastScorer之间的性能差异。
开发了一款优化后的评分器,具备权重剪枝和异步评分等功能。
|
2025-12-12 12:14:21 +08:00 |
|
Windpicker-owo
|
e8bffe4a87
|
feat: 实现TF-IDF特征提取器和逻辑回归模型用于语义兴趣评分
- 新增了TfidfFeatureExtractor,用于字符级n-gram的TF-IDF向量化,适用于中文及多语言场景。
- 基于逻辑回归开发了语义兴趣模型,用于多类别兴趣标签(-1、0、1)的预测。
- 创建了在线推理的运行时评分器,实现消息兴趣评分的快速评估。
建立了模型训练、评估和数据集准备的全流程培训体系。
- 集成模型管理,支持热加载与个性化模型选择。
|
2025-12-11 21:28:27 +08:00 |
|