Merge branch 'dev' of https://github.com/MaiM-with-u/MaiBot into dev
This commit is contained in:
@@ -93,8 +93,7 @@ class ActionPlanner:
|
||||
max_tokens=1500,
|
||||
request_type="action_planning",
|
||||
)
|
||||
self.personality_info = Individuality.get_instance().get_prompt(type="personality", x_person=2, level=3)
|
||||
self.identity_detail_info = Individuality.get_instance().get_prompt(type="identity", x_person=2, level=2)
|
||||
self.personality_info = Individuality.get_instance().get_prompt(x_person=2, level=3)
|
||||
self.name = global_config.BOT_NICKNAME
|
||||
self.private_name = private_name
|
||||
self.chat_observer = ChatObserver.get_instance(stream_id, private_name)
|
||||
@@ -244,21 +243,7 @@ class ActionPlanner:
|
||||
chat_history_text = "处理聊天记录时出错。\n"
|
||||
|
||||
# 构建 Persona 文本 (persona_text)
|
||||
# (这部分逻辑不变)
|
||||
identity_details_only = self.identity_detail_info
|
||||
identity_addon = ""
|
||||
if isinstance(identity_details_only, str):
|
||||
pronouns = ["你", "我", "他"]
|
||||
for p in pronouns:
|
||||
if identity_details_only.startswith(p):
|
||||
identity_details_only = identity_details_only[len(p) :]
|
||||
break
|
||||
if identity_details_only.endswith("。"):
|
||||
identity_details_only = identity_details_only[:-1]
|
||||
cleaned_details = identity_details_only.strip(",, ")
|
||||
if cleaned_details:
|
||||
identity_addon = f"并且{cleaned_details}"
|
||||
persona_text = f"你的名字是{self.name},{self.personality_info}{identity_addon}。"
|
||||
persona_text = f"你的名字是{self.name},{self.personality_info}。"
|
||||
|
||||
# 构建行动历史和上一次行动结果 (action_history_summary, last_action_context)
|
||||
# (这部分逻辑不变)
|
||||
|
||||
@@ -368,6 +368,15 @@ class Conversation:
|
||||
self.conversation_info.last_successful_reply_action = "send_new_message"
|
||||
action_successful = True # 标记动作成功
|
||||
|
||||
elif need_replan:
|
||||
# 打回动作决策
|
||||
logger.warning(
|
||||
f"[私聊][{self.private_name}]经过 {reply_attempt_count} 次尝试,追问回复决定打回动作决策。打回原因: {check_reason}"
|
||||
)
|
||||
conversation_info.done_action[action_index].update(
|
||||
{"status": "recall", "final_reason": f"追问尝试{reply_attempt_count}次后打回: {check_reason}"}
|
||||
)
|
||||
|
||||
else:
|
||||
# 追问失败
|
||||
logger.warning(
|
||||
@@ -463,6 +472,15 @@ class Conversation:
|
||||
self.conversation_info.last_successful_reply_action = "direct_reply"
|
||||
action_successful = True # 标记动作成功
|
||||
|
||||
elif need_replan:
|
||||
# 打回动作决策
|
||||
logger.warning(
|
||||
f"[私聊][{self.private_name}]经过 {reply_attempt_count} 次尝试,首次回复决定打回动作决策。打回原因: {check_reason}"
|
||||
)
|
||||
conversation_info.done_action[action_index].update(
|
||||
{"status": "recall", "final_reason": f"首次回复尝试{reply_attempt_count}次后打回: {check_reason}"}
|
||||
)
|
||||
|
||||
else:
|
||||
# 首次回复失败
|
||||
logger.warning(
|
||||
|
||||
@@ -23,8 +23,7 @@ class GoalAnalyzer:
|
||||
model=global_config.llm_normal, temperature=0.7, max_tokens=1000, request_type="conversation_goal"
|
||||
)
|
||||
|
||||
self.personality_info = Individuality.get_instance().get_prompt(type="personality", x_person=2, level=3)
|
||||
self.identity_detail_info = Individuality.get_instance().get_prompt(type="identity", x_person=2, level=2)
|
||||
self.personality_info = Individuality.get_instance().get_prompt(x_person=2, level=3)
|
||||
self.name = global_config.BOT_NICKNAME
|
||||
self.nick_name = global_config.BOT_ALIAS_NAMES
|
||||
self.private_name = private_name
|
||||
@@ -79,21 +78,7 @@ class GoalAnalyzer:
|
||||
|
||||
# await observation_info.clear_unprocessed_messages()
|
||||
|
||||
identity_details_only = self.identity_detail_info
|
||||
identity_addon = ""
|
||||
if isinstance(identity_details_only, str):
|
||||
pronouns = ["你", "我", "他"]
|
||||
for p in pronouns:
|
||||
if identity_details_only.startswith(p):
|
||||
identity_details_only = identity_details_only[len(p) :]
|
||||
break
|
||||
if identity_details_only.endswith("。"):
|
||||
identity_details_only = identity_details_only[:-1]
|
||||
cleaned_details = identity_details_only.strip(",, ")
|
||||
if cleaned_details:
|
||||
identity_addon = f"并且{cleaned_details}"
|
||||
|
||||
persona_text = f"你的名字是{self.name},{self.personality_info}{identity_addon}。"
|
||||
persona_text = f"你的名字是{self.name},{self.personality_info}。"
|
||||
# 构建action历史文本
|
||||
action_history_list = conversation_info.done_action
|
||||
action_history_text = "你之前做的事情是:"
|
||||
@@ -241,21 +226,8 @@ class GoalAnalyzer:
|
||||
timestamp_mode="relative",
|
||||
read_mark=0.0,
|
||||
)
|
||||
identity_details_only = self.identity_detail_info
|
||||
identity_addon = ""
|
||||
if isinstance(identity_details_only, str):
|
||||
pronouns = ["你", "我", "他"]
|
||||
for p in pronouns:
|
||||
if identity_details_only.startswith(p):
|
||||
identity_details_only = identity_details_only[len(p) :]
|
||||
break
|
||||
if identity_details_only.endswith("。"):
|
||||
identity_details_only = identity_details_only[:-1]
|
||||
cleaned_details = identity_details_only.strip(",, ")
|
||||
if cleaned_details:
|
||||
identity_addon = f"并且{cleaned_details}"
|
||||
|
||||
persona_text = f"你的名字是{self.name},{self.personality_info}{identity_addon}。"
|
||||
persona_text = f"你的名字是{self.name},{self.personality_info}。"
|
||||
# ===> Persona 文本构建结束 <===
|
||||
|
||||
# --- 修改 Prompt 字符串,使用 persona_text ---
|
||||
|
||||
@@ -55,9 +55,9 @@ class ReplyChecker:
|
||||
)
|
||||
return (
|
||||
False,
|
||||
"回复内容与你上一条发言完全相同,请修改,可以选择深入话题或寻找其它话题或等待",
|
||||
False,
|
||||
) # 不合适,无需重新规划
|
||||
"被逻辑检查拒绝:回复内容与你上一条发言完全相同,可以选择深入话题或寻找其它话题或等待",
|
||||
True,
|
||||
) # 不合适,需要返回至决策层
|
||||
# 2. 相似度检查 (如果精确匹配未通过)
|
||||
import difflib # 导入 difflib 库
|
||||
|
||||
@@ -73,8 +73,8 @@ class ReplyChecker:
|
||||
)
|
||||
return (
|
||||
False,
|
||||
f"拒绝发送:回复内容与你上一条发言高度相似 (相似度 {similarity_ratio:.2f}),请修改,可以选择深入话题或寻找其它话题或等待。",
|
||||
False,
|
||||
f"被逻辑检查拒绝:回复内容与你上一条发言高度相似 (相似度 {similarity_ratio:.2f}),可以选择深入话题或寻找其它话题或等待。",
|
||||
True,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
@@ -83,37 +83,37 @@ class ReplyChecker:
|
||||
logger.error(f"[私聊][{self.private_name}]检查回复时出错: 类型={type(e)}, 值={e}")
|
||||
logger.error(f"[私聊][{self.private_name}]{traceback.format_exc()}") # 打印详细的回溯信息
|
||||
|
||||
prompt = f"""请检查以下回复或消息是否合适:
|
||||
prompt = f"""你是一个聊天逻辑检查器,请检查以下回复或消息是否合适:
|
||||
|
||||
当前对话目标:{goal}
|
||||
最新的对话记录:
|
||||
{chat_history_text}
|
||||
|
||||
待检查的回复:
|
||||
待检查的消息:
|
||||
{reply}
|
||||
|
||||
请结合聊天记录检查以下几点:
|
||||
1. 回复是否依然符合当前对话目标和实现方式
|
||||
2. 回复是否与最新的对话记录保持一致性
|
||||
3. 回复是否重复发言,或重复表达同质内容(尤其是只是换一种方式表达了相同的含义)
|
||||
4. 回复是否包含违规内容(例如血腥暴力,政治敏感等)
|
||||
5. 回复是否以你的角度发言,不要把"你"说的话当做对方说的话,这是你自己说的话(不要自己回复自己的消息)
|
||||
6. 回复是否通俗易懂
|
||||
7. 回复是否有些多余,例如在对方没有回复的情况下,依然连续多次“消息轰炸”(尤其是已经连续发送3条信息的情况,这很可能不合理,需要着重判断)
|
||||
8. 回复是否使用了完全没必要的修辞
|
||||
9. 回复是否逻辑通顺
|
||||
10. 回复是否太过冗长了(通常私聊的每条消息长度在20字以内,除非特殊情况)
|
||||
11. 在连续多次发送消息的情况下,当前回复是否衔接自然,会不会显得奇怪(例如连续两条消息中部分内容重叠)
|
||||
1. 这条消息是否依然符合当前对话目标和实现方式
|
||||
2. 这条消息是否与最新的对话记录保持一致性
|
||||
3. 是否存在重复发言,或重复表达同质内容(尤其是只是换一种方式表达了相同的含义)
|
||||
4. 这条消息是否包含违规内容(例如血腥暴力,政治敏感等)
|
||||
5. 这条消息是否以发送者的角度发言(不要让发送者自己回复自己的消息)
|
||||
6. 这条消息是否通俗易懂
|
||||
7. 这条消息是否有些多余,例如在对方没有回复的情况下,依然连续多次“消息轰炸”(尤其是已经连续发送3条信息的情况,这很可能不合理,需要着重判断)
|
||||
8. 这条消息是否使用了完全没必要的修辞
|
||||
9. 这条消息是否逻辑通顺
|
||||
10. 这条消息是否太过冗长了(通常私聊的每条消息长度在20字以内,除非特殊情况)
|
||||
11. 在连续多次发送消息的情况下,这条消息是否衔接自然,会不会显得奇怪(例如连续两条消息中部分内容重叠)
|
||||
|
||||
请以JSON格式输出,包含以下字段:
|
||||
1. suitable: 是否合适 (true/false)
|
||||
2. reason: 原因说明
|
||||
3. need_replan: 是否需要重新规划对话目标 (true/false),当发现当前对话目标不再适合时设为true
|
||||
3. need_replan: 是否需要重新决策 (true/false),当你认为此时已经不适合发消息,需要规划其它行动时,设为true
|
||||
|
||||
输出格式示例:
|
||||
{{
|
||||
"suitable": true,
|
||||
"reason": "回复符合要求,内容得体",
|
||||
"reason": "回复符合要求,虽然有可能略微偏离目标,但是整体内容流畅得体",
|
||||
"need_replan": false
|
||||
}}
|
||||
|
||||
|
||||
@@ -68,8 +68,7 @@ class ReplyGenerator:
|
||||
max_tokens=300,
|
||||
request_type="reply_generation",
|
||||
)
|
||||
self.personality_info = Individuality.get_instance().get_prompt(type="personality", x_person=2, level=3)
|
||||
self.identity_detail_info = Individuality.get_instance().get_prompt(type="identity", x_person=2, level=2)
|
||||
self.personality_info = Individuality.get_instance().get_prompt(x_person=2, level=3)
|
||||
self.name = global_config.BOT_NICKNAME
|
||||
self.private_name = private_name
|
||||
self.chat_observer = ChatObserver.get_instance(stream_id, private_name)
|
||||
@@ -130,20 +129,7 @@ class ReplyGenerator:
|
||||
chat_history_text = "还没有聊天记录。"
|
||||
|
||||
# 构建 Persona 文本 (persona_text)
|
||||
identity_details_only = self.identity_detail_info
|
||||
identity_addon = ""
|
||||
if isinstance(identity_details_only, str):
|
||||
pronouns = ["你", "我", "他"]
|
||||
for p in pronouns:
|
||||
if identity_details_only.startswith(p):
|
||||
identity_details_only = identity_details_only[len(p) :]
|
||||
break
|
||||
if identity_details_only.endswith("。"):
|
||||
identity_details_only = identity_details_only[:-1]
|
||||
cleaned_details = identity_details_only.strip(",, ")
|
||||
if cleaned_details:
|
||||
identity_addon = f"并且{cleaned_details}"
|
||||
persona_text = f"你的名字是{self.name},{self.personality_info}{identity_addon}。"
|
||||
persona_text = f"你的名字是{self.name},{self.personality_info}。"
|
||||
|
||||
# --- 选择 Prompt ---
|
||||
if action_type == "send_new_message":
|
||||
|
||||
@@ -360,6 +360,7 @@ class EmojiManager:
|
||||
return
|
||||
|
||||
total_count = len(self.emoji_objects)
|
||||
self.emoji_num = total_count
|
||||
removed_count = 0
|
||||
# 使用列表复制进行遍历,因为我们会在遍历过程中修改列表
|
||||
for emoji in self.emoji_objects[:]:
|
||||
@@ -376,10 +377,22 @@ class EmojiManager:
|
||||
removed_count += 1
|
||||
continue
|
||||
|
||||
if emoji.description == None:
|
||||
logger.warning(f"[检查] 表情包文件已被删除: {emoji.path}")
|
||||
# 执行表情包对象的删除方法
|
||||
await emoji.delete()
|
||||
# 从列表中移除该对象
|
||||
self.emoji_objects.remove(emoji)
|
||||
# 更新计数
|
||||
self.emoji_num -= 1
|
||||
removed_count += 1
|
||||
continue
|
||||
|
||||
except Exception as item_error:
|
||||
logger.error(f"[错误] 处理表情包记录时出错: {str(item_error)}")
|
||||
continue
|
||||
|
||||
await self.clean_unused_emojis(EMOJI_REGISTED_DIR, self.emoji_objects)
|
||||
# 输出清理结果
|
||||
if removed_count > 0:
|
||||
logger.success(f"[清理] 已清理 {removed_count} 个失效的表情包记录")
|
||||
@@ -749,7 +762,7 @@ class EmojiManager:
|
||||
await new_emoji.initialize_hash_format()
|
||||
emoji_base64 = image_path_to_base64(os.path.join(EMOJI_DIR, filename))
|
||||
description, emotions = await self.build_emoji_description(emoji_base64)
|
||||
if description == "":
|
||||
if description == "" or description == None:
|
||||
return False
|
||||
new_emoji.description = description
|
||||
new_emoji.emotion = emotions
|
||||
@@ -817,6 +830,26 @@ class EmojiManager:
|
||||
|
||||
logger.success("[清理] 临时文件清理完成")
|
||||
|
||||
async def clean_unused_emojis(self, emoji_dir, emoji_objects):
|
||||
"""清理未使用的表情包文件
|
||||
遍历指定文件夹中的所有文件,删除未在emoji_objects列表中的文件
|
||||
"""
|
||||
# 获取所有表情包路径
|
||||
emoji_paths = {emoji.path for emoji in emoji_objects}
|
||||
|
||||
# 遍历文件夹中的所有文件
|
||||
for file_name in os.listdir(emoji_dir):
|
||||
file_path = os.path.join(emoji_dir, file_name)
|
||||
|
||||
# 检查文件是否在表情包路径列表中
|
||||
if file_path not in emoji_paths:
|
||||
try:
|
||||
# 删除未在表情包列表中的文件
|
||||
os.remove(file_path)
|
||||
logger.info(f"[清理] 删除未使用的表情包文件: {file_path}")
|
||||
except Exception as e:
|
||||
logger.error(f"[错误] 删除文件时出错: {str(e)}")
|
||||
|
||||
|
||||
# 创建全局单例
|
||||
emoji_manager = EmojiManager()
|
||||
|
||||
@@ -5,7 +5,7 @@ from ...individuality.individuality import Individuality
|
||||
from src.plugins.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
from src.plugins.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
|
||||
from src.plugins.person_info.relationship_manager import relationship_manager
|
||||
from src.plugins.chat.utils import get_embedding, parse_text_timestamps
|
||||
from src.plugins.chat.utils import get_embedding
|
||||
import time
|
||||
from typing import Union, Optional
|
||||
from ...common.database import db
|
||||
|
||||
@@ -1353,11 +1353,11 @@ class ParahippocampalGyrus:
|
||||
if not memory_items:
|
||||
try:
|
||||
self.memory_graph.G.remove_node(node)
|
||||
node_changes["removed"].append(f"{node}(空节点)") # 标记为空节点移除
|
||||
node_changes["removed"].append(f"{node}(空节点)") # 标记为空节点移除
|
||||
logger.debug(f"[遗忘] 移除了空的节点: {node}")
|
||||
except nx.NetworkXError as e:
|
||||
logger.warning(f"[遗忘] 移除空节点 {node} 时发生错误(可能已被移除): {e}")
|
||||
continue # 处理下一个节点
|
||||
continue # 处理下一个节点
|
||||
|
||||
# --- 如果节点不为空,则执行原来的不活跃检查和随机移除逻辑 ---
|
||||
last_modified = node_data.get("last_modified", current_time)
|
||||
@@ -1373,15 +1373,15 @@ class ParahippocampalGyrus:
|
||||
memory_items.remove(removed_item)
|
||||
|
||||
# 条件3:检查移除后 memory_items 是否变空
|
||||
if memory_items: # 如果移除后列表不为空
|
||||
if memory_items: # 如果移除后列表不为空
|
||||
# self.memory_graph.G.nodes[node]["memory_items"] = memory_items # 直接修改列表即可
|
||||
self.memory_graph.G.nodes[node]["last_modified"] = current_time # 更新修改时间
|
||||
self.memory_graph.G.nodes[node]["last_modified"] = current_time # 更新修改时间
|
||||
node_changes["reduced"].append(f"{node} (数量: {current_count} -> {len(memory_items)})")
|
||||
else: # 如果移除后列表为空
|
||||
else: # 如果移除后列表为空
|
||||
# 尝试移除节点,处理可能的错误
|
||||
try:
|
||||
self.memory_graph.G.remove_node(node)
|
||||
node_changes["removed"].append(f"{node}(遗忘清空)") # 标记为遗忘清空
|
||||
node_changes["removed"].append(f"{node}(遗忘清空)") # 标记为遗忘清空
|
||||
logger.debug(f"[遗忘] 节点 {node} 因移除最后一项而被清空。")
|
||||
except nx.NetworkXError as e:
|
||||
logger.warning(f"[遗忘] 尝试移除节点 {node} 时发生错误(可能已被移除):{e}")
|
||||
@@ -1464,9 +1464,9 @@ class ParahippocampalGyrus:
|
||||
node_data = self.memory_graph.G.nodes[node]
|
||||
memory_items = node_data.get("memory_items", [])
|
||||
if not isinstance(memory_items, list) or len(memory_items) < 2:
|
||||
continue # 双重检查,理论上不会进入
|
||||
continue # 双重检查,理论上不会进入
|
||||
|
||||
items_copy = list(memory_items) # 创建副本以安全迭代和修改
|
||||
items_copy = list(memory_items) # 创建副本以安全迭代和修改
|
||||
|
||||
# 遍历所有记忆项组合
|
||||
for item1, item2 in combinations(items_copy, 2):
|
||||
@@ -1495,21 +1495,24 @@ class ParahippocampalGyrus:
|
||||
# 从原始列表中移除信息量较低的项
|
||||
try:
|
||||
memory_items.remove(item_to_remove)
|
||||
logger.info(f"[整合] 已合并节点 '{node}' 中的记忆,保留: '{item_to_keep[:60]}...', 移除: '{item_to_remove[:60]}...'" )
|
||||
logger.info(
|
||||
f"[整合] 已合并节点 '{node}' 中的记忆,保留: '{item_to_keep[:60]}...', 移除: '{item_to_remove[:60]}...'"
|
||||
)
|
||||
merged_count += 1
|
||||
nodes_modified.add(node)
|
||||
node_data['last_modified'] = current_timestamp # 更新修改时间
|
||||
node_data["last_modified"] = current_timestamp # 更新修改时间
|
||||
_merged_in_this_node = True
|
||||
break # 每个节点每次检查只合并一对
|
||||
break # 每个节点每次检查只合并一对
|
||||
except ValueError:
|
||||
# 如果项已经被移除(例如,在之前的迭代中作为 item_to_keep),则跳过
|
||||
logger.warning(f"[整合] 尝试移除节点 '{node}' 中不存在的项 '{item_to_remove[:30]}...',可能已被合并。")
|
||||
logger.warning(
|
||||
f"[整合] 尝试移除节点 '{node}' 中不存在的项 '{item_to_remove[:30]}...',可能已被合并。"
|
||||
)
|
||||
continue
|
||||
# # 如果节点内发生了合并,更新节点数据 (这种方式不安全,会丢失其他属性)
|
||||
# # 如果节点内发生了合并,更新节点数据 (这种方式不安全,会丢失其他属性)
|
||||
# if merged_in_this_node:
|
||||
# self.memory_graph.G.nodes[node]["memory_items"] = memory_items
|
||||
|
||||
|
||||
if merged_count > 0:
|
||||
logger.info(f"[整合] 共合并了 {merged_count} 对相似记忆项,分布在 {len(nodes_modified)} 个节点中。")
|
||||
sync_start = time.time()
|
||||
@@ -1594,7 +1597,7 @@ class HippocampusManager:
|
||||
if not self._initialized:
|
||||
raise RuntimeError("HippocampusManager 尚未初始化,请先调用 initialize 方法")
|
||||
return await self._hippocampus.parahippocampal_gyrus.operation_forget_topic(percentage)
|
||||
|
||||
|
||||
async def consolidate_memory(self):
|
||||
"""整合记忆的公共接口"""
|
||||
if not self._initialized:
|
||||
|
||||
@@ -19,9 +19,9 @@ class MemoryConfig:
|
||||
memory_ban_words: List[str] # 记忆过滤词列表
|
||||
|
||||
# 新增:记忆整合相关配置
|
||||
consolidation_similarity_threshold: float # 相似度阈值
|
||||
consolidate_memory_percentage: float # 检查节点比例
|
||||
consolidate_memory_interval: int # 记忆整合间隔
|
||||
consolidation_similarity_threshold: float # 相似度阈值
|
||||
consolidate_memory_percentage: float # 检查节点比例
|
||||
consolidate_memory_interval: int # 记忆整合间隔
|
||||
|
||||
llm_topic_judge: str # 话题判断模型
|
||||
llm_summary_by_topic: str # 话题总结模型
|
||||
@@ -31,7 +31,9 @@ class MemoryConfig:
|
||||
"""从全局配置创建记忆系统配置"""
|
||||
# 使用 getattr 提供默认值,防止全局配置缺少这些项
|
||||
return cls(
|
||||
memory_build_distribution=getattr(global_config, "memory_build_distribution", (24, 12, 0.5, 168, 72, 0.5)), # 添加默认值
|
||||
memory_build_distribution=getattr(
|
||||
global_config, "memory_build_distribution", (24, 12, 0.5, 168, 72, 0.5)
|
||||
), # 添加默认值
|
||||
build_memory_sample_num=getattr(global_config, "build_memory_sample_num", 5),
|
||||
build_memory_sample_length=getattr(global_config, "build_memory_sample_length", 30),
|
||||
memory_compress_rate=getattr(global_config, "memory_compress_rate", 0.1),
|
||||
@@ -41,6 +43,8 @@ class MemoryConfig:
|
||||
consolidation_similarity_threshold=getattr(global_config, "consolidation_similarity_threshold", 0.7),
|
||||
consolidate_memory_percentage=getattr(global_config, "consolidate_memory_percentage", 0.01),
|
||||
consolidate_memory_interval=getattr(global_config, "consolidate_memory_interval", 1000),
|
||||
llm_topic_judge=getattr(global_config, "llm_topic_judge", "default_judge_model"), # 添加默认模型名
|
||||
llm_summary_by_topic=getattr(global_config, "llm_summary_by_topic", "default_summary_model"), # 添加默认模型名
|
||||
llm_topic_judge=getattr(global_config, "llm_topic_judge", "default_judge_model"), # 添加默认模型名
|
||||
llm_summary_by_topic=getattr(
|
||||
global_config, "llm_summary_by_topic", "default_summary_model"
|
||||
), # 添加默认模型名
|
||||
)
|
||||
|
||||
@@ -4,8 +4,8 @@ import math
|
||||
from bson.decimal128 import Decimal128
|
||||
from .person_info import person_info_manager
|
||||
import time
|
||||
import re
|
||||
import traceback
|
||||
# import re
|
||||
# import traceback
|
||||
|
||||
|
||||
logger = get_logger("relation")
|
||||
|
||||
Reference in New Issue
Block a user