Merge afc branch into dev, prioritizing afc changes and migrating database async modifications from dev

This commit is contained in:
Windpicker-owo
2025-09-27 23:37:40 +08:00
138 changed files with 12183 additions and 5968 deletions

View File

@@ -0,0 +1,125 @@
# 亲和力聊天处理器插件
## 概述
这是一个内置的chatter插件实现了基于亲和力流的智能聊天处理器具有兴趣度评分和人物关系构建功能。
## 功能特性
- **智能兴趣度评分**: 自动识别和评估用户兴趣话题
- **人物关系系统**: 根据互动历史建立和维持用户关系
- **多聊天类型支持**: 支持私聊和群聊场景
- **插件化架构**: 完全集成到插件系统中
## 组件架构
### BaseChatter (抽象基类)
- 位置: `src/plugin_system/base/base_chatter.py`
- 功能: 定义所有chatter组件的基础接口
- 必须实现的方法: `execute(context: StreamContext) -> dict`
### ChatterManager (管理器)
- 位置: `src/chat/chatter_manager.py`
- 功能: 管理和调度所有chatter组件
- 特性: 自动从插件系统注册和发现chatter组件
### AffinityChatter (具体实现)
- 位置: `src/plugins/built_in/chatter/affinity_chatter.py`
- 功能: 亲和力流聊天处理器的具体实现
- 支持的聊天类型: PRIVATE, GROUP
## 使用方法
### 1. 基本使用
```python
from src.chat.chatter_manager import ChatterManager
from src.chat.planner_actions.action_manager import ChatterActionManager
# 初始化
action_manager = ChatterActionManager()
chatter_manager = ChatterManager(action_manager)
# 处理消息流
result = await chatter_manager.process_stream_context(stream_id, context)
```
### 2. 创建自定义Chatter
```python
from src.plugin_system.base.base_chatter import BaseChatter
from src.plugin_system.base.component_types import ChatType, ComponentType
from src.plugin_system.base.component_types import ChatterInfo
class CustomChatter(BaseChatter):
chat_types = [ChatType.PRIVATE] # 只支持私聊
async def execute(self, context: StreamContext) -> dict:
# 实现你的聊天逻辑
return {"success": True, "message": "处理完成"}
# 在插件中注册
async def on_load(self):
chatter_info = ChatterInfo(
name="custom_chatter",
component_type=ComponentType.CHATTER,
description="自定义聊天处理器",
enabled=True,
plugin_name=self.name,
chat_type_allow=ChatType.PRIVATE
)
ComponentRegistry.register_component(
component_info=chatter_info,
component_class=CustomChatter
)
```
## 配置
### 插件配置文件
- 位置: `src/plugins/built_in/chatter/_manifest.json`
- 包含插件信息和组件配置
### 聊天类型
- `PRIVATE`: 私聊
- `GROUP`: 群聊
- `ALL`: 所有类型
## 核心概念
### 1. 兴趣值系统
- 自动识别同类话题
- 兴趣值会根据聊天频率增减
- 支持新话题的自动学习
### 2. 人物关系系统
- 根据互动质量建立关系分
- 不同关系分对应不同的回复风格
- 支持情感化的交流
### 3. 执行流程
1. 接收StreamContext
2. 使用ActionPlanner进行规划
3. 执行相应的Action
4. 返回处理结果
## 扩展开发
### 添加新的Chatter类型
1. 继承BaseChatter类
2. 实现execute方法
3. 在插件中注册组件
4. 配置支持的聊天类型
### 集成现有功能
- 使用ActionPlanner进行动作规划
- 通过ActionManager执行动作
- 利用现有的记忆和知识系统
## 注意事项
1. 所有chatter组件必须实现`execute`方法
2. 插件注册时需要指定支持的聊天类型
3. 组件名称不能包含点号(.)
4. 确保在插件卸载时正确清理资源

View File

@@ -0,0 +1,7 @@
"""
亲和力聊天处理器插件
"""
from .plugin import AffinityChatterPlugin
__all__ = ["AffinityChatterPlugin"]

View File

@@ -0,0 +1,23 @@
{
"manifest_version": 1,
"name": "affinity_chatter",
"display_name": "Affinity Flow Chatter",
"description": "Built-in chatter plugin for affinity flow with interest scoring and relationship building",
"version": "1.0.0",
"author": "MoFox",
"plugin_class": "AffinityChatterPlugin",
"enabled": true,
"is_built_in": true,
"components": [
{
"name": "affinity_chatter",
"type": "chatter",
"description": "Affinity flow chatter with intelligent interest scoring and relationship building",
"enabled": true,
"chat_type_allow": ["all"]
}
],
"host_application": { "min_version": "0.8.0" },
"keywords": ["chatter", "affinity", "conversation"],
"categories": ["Chat", "AI"]
}

View File

@@ -0,0 +1,236 @@
"""
亲和力聊天处理器
基于现有的AffinityFlowChatter重构为插件化组件
"""
import asyncio
import time
import traceback
from datetime import datetime
from typing import Dict, Any
from src.plugin_system.base.base_chatter import BaseChatter
from src.plugin_system.base.component_types import ChatType
from src.common.data_models.message_manager_data_model import StreamContext
from src.plugins.built_in.affinity_flow_chatter.planner import ChatterActionPlanner
from src.chat.planner_actions.action_manager import ChatterActionManager
from src.common.logger import get_logger
from src.chat.express.expression_learner import expression_learner_manager
logger = get_logger("affinity_chatter")
# 定义颜色
SOFT_GREEN = "\033[38;5;118m" # 一个更柔和的绿色
RESET_COLOR = "\033[0m"
class AffinityChatter(BaseChatter):
"""亲和力聊天处理器"""
chatter_name: str = "AffinityChatter"
chatter_description: str = "基于亲和力模型的智能聊天处理器,支持多种聊天类型"
chat_types: list[ChatType] = [ChatType.ALL] # 支持所有聊天类型
def __init__(self, stream_id: str, action_manager: ChatterActionManager):
"""
初始化亲和力聊天处理器
Args:
stream_id: 聊天流ID
planner: 动作规划器
action_manager: 动作管理器
"""
super().__init__(stream_id, action_manager)
self.planner = ChatterActionPlanner(stream_id, action_manager)
# 处理器统计
self.stats = {
"messages_processed": 0,
"plans_created": 0,
"actions_executed": 0,
"successful_executions": 0,
"failed_executions": 0,
}
self.last_activity_time = time.time()
async def execute(self, context: StreamContext) -> dict:
"""
处理StreamContext对象
Args:
context: StreamContext对象包含聊天流的所有消息信息
Returns:
处理结果字典
"""
try:
# 触发表达学习
learner = expression_learner_manager.get_expression_learner(self.stream_id)
asyncio.create_task(learner.trigger_learning_for_chat())
unread_messages = context.get_unread_messages()
# 使用增强版规划器处理消息
actions, target_message = await self.planner.plan(context=context)
self.stats["plans_created"] += 1
# 执行动作(如果规划器返回了动作)
execution_result = {"executed_count": len(actions) if actions else 0}
if actions:
logger.debug(f"聊天流 {self.stream_id} 生成了 {len(actions)} 个动作")
# 更新统计
self.stats["messages_processed"] += 1
self.stats["actions_executed"] += execution_result.get("executed_count", 0)
self.stats["successful_executions"] += 1
self.last_activity_time = time.time()
result = {
"success": True,
"stream_id": self.stream_id,
"plan_created": True,
"actions_count": len(actions) if actions else 0,
"has_target_message": target_message is not None,
"unread_messages_processed": len(unread_messages),
**execution_result,
}
logger.debug(
f"聊天流 {self.stream_id} StreamContext处理成功: 动作数={result['actions_count']}, 未读消息={result['unread_messages_processed']}"
)
return result
except Exception as e:
logger.error(f"亲和力聊天处理器 {self.stream_id} 处理StreamContext时出错: {e}\n{traceback.format_exc()}")
self.stats["failed_executions"] += 1
self.last_activity_time = time.time()
return {
"success": False,
"stream_id": self.stream_id,
"error_message": str(e),
"executed_count": 0,
}
def get_stats(self) -> Dict[str, Any]:
"""
获取处理器统计信息
Returns:
统计信息字典
"""
return self.stats.copy()
def get_planner_stats(self) -> Dict[str, Any]:
"""
获取规划器统计信息
Returns:
规划器统计信息字典
"""
return self.planner.get_planner_stats()
def get_interest_scoring_stats(self) -> Dict[str, Any]:
"""
获取兴趣度评分统计信息
Returns:
兴趣度评分统计信息字典
"""
return self.planner.get_interest_scoring_stats()
def get_relationship_stats(self) -> Dict[str, Any]:
"""
获取用户关系统计信息
Returns:
用户关系统计信息字典
"""
return self.planner.get_relationship_stats()
def get_current_mood_state(self) -> str:
"""
获取当前聊天的情绪状态
Returns:
当前情绪状态描述
"""
return self.planner.get_current_mood_state()
def get_mood_stats(self) -> Dict[str, Any]:
"""
获取情绪状态统计信息
Returns:
情绪状态统计信息字典
"""
return self.planner.get_mood_stats()
def get_user_relationship(self, user_id: str) -> float:
"""
获取用户关系分
Args:
user_id: 用户ID
Returns:
用户关系分 (0.0-1.0)
"""
return self.planner.get_user_relationship(user_id)
def update_interest_keywords(self, new_keywords: dict):
"""
更新兴趣关键词
Args:
new_keywords: 新的兴趣关键词字典
"""
self.planner.update_interest_keywords(new_keywords)
logger.info(f"聊天流 {self.stream_id} 已更新兴趣关键词: {list(new_keywords.keys())}")
def reset_stats(self):
"""重置统计信息"""
self.stats = {
"messages_processed": 0,
"plans_created": 0,
"actions_executed": 0,
"successful_executions": 0,
"failed_executions": 0,
}
def is_active(self, max_inactive_minutes: int = 60) -> bool:
"""
检查处理器是否活跃
Args:
max_inactive_minutes: 最大不活跃分钟数
Returns:
是否活跃
"""
current_time = time.time()
max_inactive_seconds = max_inactive_minutes * 60
return (current_time - self.last_activity_time) < max_inactive_seconds
def get_activity_time(self) -> float:
"""
获取最后活动时间
Returns:
最后活动时间戳
"""
return self.last_activity_time
def __str__(self) -> str:
"""字符串表示"""
return f"AffinityChatter(stream_id={self.stream_id}, messages={self.stats['messages_processed']})"
def __repr__(self) -> str:
"""详细字符串表示"""
return (
f"AffinityChatter(stream_id={self.stream_id}, "
f"messages_processed={self.stats['messages_processed']}, "
f"plans_created={self.stats['plans_created']}, "
f"last_activity={datetime.fromtimestamp(self.last_activity_time)})"
)

View File

@@ -0,0 +1,333 @@
"""
兴趣度评分系统
基于多维度评分机制,包括兴趣匹配度、用户关系分、提及度和时间因子
现在使用embedding计算智能兴趣匹配
"""
import traceback
from typing import Dict, List, Any
from src.common.data_models.database_data_model import DatabaseMessages
from src.common.data_models.info_data_model import InterestScore
from src.chat.interest_system import bot_interest_manager
from src.common.logger import get_logger
from src.config.config import global_config
from src.plugins.built_in.affinity_flow_chatter.relationship_tracker import ChatterRelationshipTracker
logger = get_logger("chatter_interest_scoring")
# 定义颜色
SOFT_BLUE = "\033[38;5;67m"
RESET_COLOR = "\033[0m"
class ChatterInterestScoringSystem:
"""兴趣度评分系统"""
def __init__(self):
# 智能兴趣匹配配置
self.use_smart_matching = True
# 从配置加载评分权重
affinity_config = global_config.affinity_flow
self.score_weights = {
"interest_match": affinity_config.keyword_match_weight, # 兴趣匹配度权重
"relationship": affinity_config.relationship_weight, # 关系分权重
"mentioned": affinity_config.mention_bot_weight, # 是否提及bot权重
}
# 评分阈值
self.reply_threshold = affinity_config.reply_action_interest_threshold # 回复动作兴趣阈值
self.mention_threshold = affinity_config.mention_bot_adjustment_threshold # 提及bot后的调整阈值
# 连续不回复概率提升
self.no_reply_count = 0
self.max_no_reply_count = affinity_config.max_no_reply_count
self.probability_boost_per_no_reply = (
affinity_config.no_reply_threshold_adjustment / affinity_config.max_no_reply_count
) # 每次不回复增加的概率
# 用户关系数据
self.user_relationships: Dict[str, float] = {} # user_id -> relationship_score
async def calculate_interest_scores(
self, messages: List[DatabaseMessages], bot_nickname: str
) -> List[InterestScore]:
"""计算消息的兴趣度评分"""
user_messages = [msg for msg in messages if str(msg.user_info.user_id) != str(global_config.bot.qq_account)]
if not user_messages:
return []
scores = []
for _, msg in enumerate(user_messages, 1):
score = await self._calculate_single_message_score(msg, bot_nickname)
scores.append(score)
return scores
async def _calculate_single_message_score(self, message: DatabaseMessages, bot_nickname: str) -> InterestScore:
"""计算单条消息的兴趣度评分"""
keywords = self._extract_keywords_from_database(message)
interest_match_score = await self._calculate_interest_match_score(message.processed_plain_text, keywords)
relationship_score = self._calculate_relationship_score(message.user_info.user_id)
mentioned_score = self._calculate_mentioned_score(message, bot_nickname)
total_score = (
interest_match_score * self.score_weights["interest_match"]
+ relationship_score * self.score_weights["relationship"]
+ mentioned_score * self.score_weights["mentioned"]
)
details = {
"interest_match": f"兴趣匹配: {interest_match_score:.3f}",
"relationship": f"关系: {relationship_score:.3f}",
"mentioned": f"提及: {mentioned_score:.3f}",
}
logger.debug(
f"消息得分详情: {total_score:.3f} (匹配: {interest_match_score:.2f}, 关系: {relationship_score:.2f}, 提及: {mentioned_score:.2f})"
)
return InterestScore(
message_id=message.message_id,
total_score=total_score,
interest_match_score=interest_match_score,
relationship_score=relationship_score,
mentioned_score=mentioned_score,
details=details,
)
async def _calculate_interest_match_score(self, content: str, keywords: List[str] = None) -> float:
"""计算兴趣匹配度 - 使用智能embedding匹配"""
if not content:
return 0.0
# 使用智能匹配embedding
if self.use_smart_matching and bot_interest_manager.is_initialized:
return await self._calculate_smart_interest_match(content, keywords)
else:
# 智能匹配未初始化,返回默认分数
return 0.3
async def _calculate_smart_interest_match(self, content: str, keywords: List[str] = None) -> float:
"""使用embedding计算智能兴趣匹配"""
try:
# 如果没有传入关键词,则提取
if not keywords:
keywords = self._extract_keywords_from_content(content)
# 使用机器人兴趣管理器计算匹配度
match_result = await bot_interest_manager.calculate_interest_match(content, keywords)
if match_result:
# 返回匹配分数,考虑置信度和匹配标签数量
affinity_config = global_config.affinity_flow
match_count_bonus = min(
len(match_result.matched_tags) * affinity_config.match_count_bonus, affinity_config.max_match_bonus
)
final_score = match_result.overall_score * 1.15 * match_result.confidence + match_count_bonus
return final_score
else:
return 0.0
except Exception as e:
logger.error(f"智能兴趣匹配计算失败: {e}")
return 0.0
def _extract_keywords_from_database(self, message: DatabaseMessages) -> List[str]:
"""从数据库消息中提取关键词"""
keywords = []
# 尝试从 key_words 字段提取存储的是JSON字符串
if message.key_words:
try:
import orjson
keywords = orjson.loads(message.key_words)
if not isinstance(keywords, list):
keywords = []
except (orjson.JSONDecodeError, TypeError):
keywords = []
# 如果没有 keywords尝试从 key_words_lite 提取
if not keywords and message.key_words_lite:
try:
import orjson
keywords = orjson.loads(message.key_words_lite)
if not isinstance(keywords, list):
keywords = []
except (orjson.JSONDecodeError, TypeError):
keywords = []
# 如果还是没有,从消息内容中提取(降级方案)
if not keywords:
keywords = self._extract_keywords_from_content(message.processed_plain_text)
return keywords[:15] # 返回前15个关键词
def _extract_keywords_from_content(self, content: str) -> List[str]:
"""从内容中提取关键词(降级方案)"""
import re
# 清理文本
content = re.sub(r"[^\w\s\u4e00-\u9fff]", " ", content) # 保留中文、英文、数字
words = content.split()
# 过滤和关键词提取
keywords = []
for word in words:
word = word.strip()
if (
len(word) >= 2 # 至少2个字符
and word.isalnum() # 字母数字
and not word.isdigit()
): # 不是纯数字
keywords.append(word.lower())
# 去重并限制数量
unique_keywords = list(set(keywords))
return unique_keywords[:10] # 返回前10个唯一关键词
def _calculate_relationship_score(self, user_id: str) -> float:
"""计算关系分 - 从数据库获取关系分"""
# 优先使用内存中的关系分
if user_id in self.user_relationships:
relationship_value = self.user_relationships[user_id]
return min(relationship_value, 1.0)
# 如果内存中没有,尝试从关系追踪器获取
if hasattr(self, "relationship_tracker") and self.relationship_tracker:
try:
relationship_score = self.relationship_tracker.get_user_relationship_score(user_id)
# 同时更新内存缓存
self.user_relationships[user_id] = relationship_score
return relationship_score
except Exception:
pass
else:
# 尝试从全局关系追踪器获取
try:
from .relationship_tracker import ChatterRelationshipTracker
global_tracker = ChatterRelationshipTracker()
if global_tracker:
relationship_score = global_tracker.get_user_relationship_score(user_id)
# 同时更新内存缓存
self.user_relationships[user_id] = relationship_score
return relationship_score
except Exception:
pass
# 默认新用户的基础分
return global_config.affinity_flow.base_relationship_score
def _calculate_mentioned_score(self, msg: DatabaseMessages, bot_nickname: str) -> float:
"""计算提及分数"""
if not msg.processed_plain_text:
return 0.0
# 检查是否被提及
bot_aliases = [bot_nickname] + global_config.bot.alias_names
is_mentioned = msg.is_mentioned or any(alias in msg.processed_plain_text for alias in bot_aliases if alias)
# 如果被提及或是私聊都视为提及了bot
if is_mentioned or not hasattr(msg, "chat_info_group_id"):
return global_config.affinity_flow.mention_bot_interest_score
return 0.0
def should_reply(self, score: InterestScore, message: "DatabaseMessages") -> bool:
"""判断是否应该回复"""
base_threshold = self.reply_threshold
# 如果被提及,降低阈值
if score.mentioned_score >= global_config.affinity_flow.mention_bot_adjustment_threshold:
base_threshold = self.mention_threshold
# 计算连续不回复的概率提升
probability_boost = min(self.no_reply_count * self.probability_boost_per_no_reply, 0.8)
effective_threshold = base_threshold - probability_boost
# 做出决策
should_reply = score.total_score >= effective_threshold
decision = "回复" if should_reply else "不回复"
logger.info(
f"{SOFT_BLUE}决策: {decision} (兴趣度: {score.total_score:.3f} / 阈值: {effective_threshold:.3f}){RESET_COLOR}"
)
return should_reply, score.total_score
def record_reply_action(self, did_reply: bool):
"""记录回复动作"""
old_count = self.no_reply_count
if did_reply:
self.no_reply_count = max(0, self.no_reply_count - global_config.affinity_flow.reply_cooldown_reduction)
action = "回复"
else:
self.no_reply_count += 1
action = "不回复"
# 限制最大计数
self.no_reply_count = min(self.no_reply_count, self.max_no_reply_count)
logger.info(f"动作: {action}, 连续不回复次数: {old_count} -> {self.no_reply_count}")
def update_user_relationship(self, user_id: str, relationship_change: float):
"""更新用户关系"""
old_score = self.user_relationships.get(
user_id, global_config.affinity_flow.base_relationship_score
) # 默认新用户分数
new_score = max(0.0, min(1.0, old_score + relationship_change))
self.user_relationships[user_id] = new_score
logger.info(f"用户关系: {user_id} | {old_score:.3f}{new_score:.3f}")
def get_user_relationship(self, user_id: str) -> float:
"""获取用户关系分"""
return self.user_relationships.get(user_id, 0.3)
def get_scoring_stats(self) -> Dict:
"""获取评分系统统计"""
return {
"no_reply_count": self.no_reply_count,
"max_no_reply_count": self.max_no_reply_count,
"reply_threshold": self.reply_threshold,
"mention_threshold": self.mention_threshold,
"user_relationships": len(self.user_relationships),
}
def reset_stats(self):
"""重置统计信息"""
self.no_reply_count = 0
logger.info("重置兴趣度评分系统统计")
async def initialize_smart_interests(self, personality_description: str, personality_id: str = "default"):
"""初始化智能兴趣系统"""
try:
logger.info("开始初始化智能兴趣系统...")
logger.info(f"人设ID: {personality_id}, 描述长度: {len(personality_description)}")
await bot_interest_manager.initialize(personality_description, personality_id)
logger.info("智能兴趣系统初始化完成。")
# 显示初始化后的统计信息
bot_interest_manager.get_interest_stats()
except Exception as e:
logger.error(f"初始化智能兴趣系统失败: {e}")
traceback.print_exc()
def get_matching_config(self) -> Dict[str, Any]:
"""获取匹配配置信息"""
return {
"use_smart_matching": self.use_smart_matching,
"smart_system_initialized": bot_interest_manager.is_initialized,
"smart_system_stats": bot_interest_manager.get_interest_stats()
if bot_interest_manager.is_initialized
else None,
}
# 创建全局兴趣评分系统实例
chatter_interest_scoring_system = ChatterInterestScoringSystem()

View File

@@ -0,0 +1,368 @@
"""
PlanExecutor: 接收 Plan 对象并执行其中的所有动作。
集成用户关系追踪机制,自动记录交互并更新关系。
"""
import asyncio
import time
from typing import Dict, List
from src.config.config import global_config
from src.chat.planner_actions.action_manager import ChatterActionManager
from src.common.data_models.info_data_model import Plan, ActionPlannerInfo
from src.common.logger import get_logger
logger = get_logger("plan_executor")
class ChatterPlanExecutor:
"""
增强版PlanExecutor集成用户关系追踪机制。
功能:
1. 执行Plan中的所有动作
2. 自动记录用户交互并添加到关系追踪
3. 分类执行回复动作和其他动作
4. 提供完整的执行统计和监控
"""
def __init__(self, action_manager: ChatterActionManager):
"""
初始化增强版PlanExecutor。
Args:
action_manager (ChatterActionManager): 用于实际执行各种动作的管理器实例。
"""
self.action_manager = action_manager
# 执行统计
self.execution_stats = {
"total_executed": 0,
"successful_executions": 0,
"failed_executions": 0,
"reply_executions": 0,
"other_action_executions": 0,
"execution_times": [],
}
# 用户关系追踪引用
self.relationship_tracker = None
def set_relationship_tracker(self, relationship_tracker):
"""设置关系追踪器"""
self.relationship_tracker = relationship_tracker
async def execute(self, plan: Plan) -> Dict[str, any]:
"""
遍历并执行Plan对象中`decided_actions`列表里的所有动作。
Args:
plan (Plan): 包含待执行动作列表的Plan对象。
Returns:
Dict[str, any]: 执行结果统计信息
"""
if not plan.decided_actions:
logger.info("没有需要执行的动作。")
return {"executed_count": 0, "results": []}
# 像hfc一样提前打印将要执行的动作
action_types = [action.action_type for action in plan.decided_actions]
logger.info(f"选择动作: {', '.join(action_types) if action_types else ''}")
execution_results = []
reply_actions = []
other_actions = []
# 分类动作:回复动作和其他动作
for action_info in plan.decided_actions:
if action_info.action_type in ["reply", "proactive_reply"]:
reply_actions.append(action_info)
else:
other_actions.append(action_info)
# 执行回复动作(优先执行)
if reply_actions:
reply_result = await self._execute_reply_actions(reply_actions, plan)
execution_results.extend(reply_result["results"])
self.execution_stats["reply_executions"] += len(reply_actions)
# 将其他动作放入后台任务执行,避免阻塞主流程
if other_actions:
asyncio.create_task(self._execute_other_actions(other_actions, plan))
logger.info(f"已将 {len(other_actions)} 个其他动作放入后台任务执行。")
# 注意:后台任务的结果不会立即计入本次返回的统计数据
# 更新总体统计
self.execution_stats["total_executed"] += len(plan.decided_actions)
successful_count = sum(1 for r in execution_results if r["success"])
self.execution_stats["successful_executions"] += successful_count
self.execution_stats["failed_executions"] += len(execution_results) - successful_count
logger.info(
f"规划执行完成: 总数={len(plan.decided_actions)}, 成功={successful_count}, 失败={len(execution_results) - successful_count}"
)
return {
"executed_count": len(plan.decided_actions),
"successful_count": successful_count,
"failed_count": len(execution_results) - successful_count,
"results": execution_results,
}
async def _execute_reply_actions(self, reply_actions: List[ActionPlannerInfo], plan: Plan) -> Dict[str, any]:
"""执行回复动作"""
results = []
for action_info in reply_actions:
result = await self._execute_single_reply_action(action_info, plan)
results.append(result)
return {"results": results}
async def _execute_single_reply_action(self, action_info: ActionPlannerInfo, plan: Plan) -> Dict[str, any]:
"""执行单个回复动作"""
start_time = time.time()
success = False
error_message = ""
reply_content = ""
try:
logger.info(f"执行回复动作: {action_info.action_type} (原因: {action_info.reasoning})")
# 获取用户ID - 兼容对象和字典
if hasattr(action_info.action_message, "user_info"):
user_id = action_info.action_message.user_info.user_id
else:
user_id = action_info.action_message.get("user_info", {}).get("user_id")
if user_id == str(global_config.bot.qq_account):
logger.warning("尝试回复自己,跳过此动作以防止死循环。")
return {
"action_type": action_info.action_type,
"success": False,
"error_message": "尝试回复自己,跳过此动作以防止死循环。",
"execution_time": 0,
"reasoning": action_info.reasoning,
"reply_content": "",
}
# 构建回复动作参数
action_params = {
"chat_id": plan.chat_id,
"target_message": action_info.action_message,
"reasoning": action_info.reasoning,
"action_data": action_info.action_data or {},
}
logger.debug(f"📬 [PlanExecutor] 准备调用 ActionManagertarget_message: {action_info.action_message}")
# 通过动作管理器执行回复
reply_content = await self.action_manager.execute_action(
action_name=action_info.action_type, **action_params
)
success = True
logger.info(f"回复动作 '{action_info.action_type}' 执行成功。")
except Exception as e:
error_message = str(e)
logger.error(f"执行回复动作失败: {action_info.action_type}, 错误: {error_message}")
# 记录用户关系追踪
if success and action_info.action_message:
await self._track_user_interaction(action_info, plan, reply_content)
execution_time = time.time() - start_time
self.execution_stats["execution_times"].append(execution_time)
return {
"action_type": action_info.action_type,
"success": success,
"error_message": error_message,
"execution_time": execution_time,
"reasoning": action_info.reasoning,
"reply_content": reply_content[:200] + "..." if len(reply_content) > 200 else reply_content,
}
async def _execute_other_actions(self, other_actions: List[ActionPlannerInfo], plan: Plan) -> Dict[str, any]:
"""执行其他动作"""
results = []
# 并行执行其他动作
tasks = []
for action_info in other_actions:
task = self._execute_single_other_action(action_info, plan)
tasks.append(task)
if tasks:
executed_results = await asyncio.gather(*tasks, return_exceptions=True)
for i, result in enumerate(executed_results):
if isinstance(result, Exception):
logger.error(f"执行动作 {other_actions[i].action_type} 时发生异常: {result}")
results.append(
{
"action_type": other_actions[i].action_type,
"success": False,
"error_message": str(result),
"execution_time": 0,
"reasoning": other_actions[i].reasoning,
}
)
else:
results.append(result)
return {"results": results}
async def _execute_single_other_action(self, action_info: ActionPlannerInfo, plan: Plan) -> Dict[str, any]:
"""执行单个其他动作"""
start_time = time.time()
success = False
error_message = ""
try:
logger.info(f"执行其他动作: {action_info.action_type} (原因: {action_info.reasoning})")
action_data = action_info.action_data or {}
# 针对 poke_user 动作,特殊处理
if action_info.action_type == "poke_user":
target_message = action_info.action_message
if target_message:
# 优先直接获取 user_id这才是最可靠的信息
user_id = target_message.get("user_id")
if user_id:
action_data["user_id"] = user_id
logger.info(f"检测到戳一戳动作目标用户ID: {user_id}")
else:
# 如果没有 user_id再尝试用 user_nickname 作为备用方案
user_name = target_message.get("user_nickname")
if user_name:
action_data["user_name"] = user_name
logger.info(f"检测到戳一戳动作,目标用户: {user_name}")
else:
logger.warning("无法从戳一戳消息中获取用户ID或昵称。")
# 传递原始消息ID以支持引用
action_data["target_message_id"] = target_message.get("message_id")
# 构建动作参数
action_params = {
"chat_id": plan.chat_id,
"target_message": action_info.action_message,
"reasoning": action_info.reasoning,
"action_data": action_data,
}
# 通过动作管理器执行动作
await self.action_manager.execute_action(action_name=action_info.action_type, **action_params)
success = True
logger.info(f"其他动作 '{action_info.action_type}' 执行成功。")
except Exception as e:
error_message = str(e)
logger.error(f"执行其他动作失败: {action_info.action_type}, 错误: {error_message}")
execution_time = time.time() - start_time
self.execution_stats["execution_times"].append(execution_time)
return {
"action_type": action_info.action_type,
"success": success,
"error_message": error_message,
"execution_time": execution_time,
"reasoning": action_info.reasoning,
}
async def _track_user_interaction(self, action_info: ActionPlannerInfo, plan: Plan, reply_content: str):
"""追踪用户交互 - 集成回复后关系追踪"""
try:
if not action_info.action_message:
return
# 获取用户信息 - 处理对象和字典两种情况
if hasattr(action_info.action_message, "user_info"):
# 对象情况
user_info = action_info.action_message.user_info
user_id = user_info.user_id
user_name = user_info.user_nickname or user_id
user_message = action_info.action_message.content
else:
# 字典情况
user_info = action_info.action_message.get("user_info", {})
user_id = user_info.get("user_id")
user_name = user_info.get("user_nickname") or user_id
user_message = action_info.action_message.get("content", "")
if not user_id:
logger.debug("跳过追踪缺少用户ID")
return
# 如果有设置关系追踪器,执行回复后关系追踪
if self.relationship_tracker:
# 记录基础交互信息(保持向后兼容)
self.relationship_tracker.add_interaction(
user_id=user_id,
user_name=user_name,
user_message=user_message,
bot_reply=reply_content,
reply_timestamp=time.time(),
)
# 执行新的回复后关系追踪
await self.relationship_tracker.track_reply_relationship(
user_id=user_id, user_name=user_name, bot_reply_content=reply_content, reply_timestamp=time.time()
)
logger.debug(f"已执行用户交互追踪: {user_id}")
except Exception as e:
logger.error(f"追踪用户交互时出错: {e}")
logger.debug(f"action_message类型: {type(action_info.action_message)}")
logger.debug(f"action_message内容: {action_info.action_message}")
def get_execution_stats(self) -> Dict[str, any]:
"""获取执行统计信息"""
stats = self.execution_stats.copy()
# 计算平均执行时间
if stats["execution_times"]:
avg_time = sum(stats["execution_times"]) / len(stats["execution_times"])
stats["average_execution_time"] = avg_time
stats["max_execution_time"] = max(stats["execution_times"])
stats["min_execution_time"] = min(stats["execution_times"])
else:
stats["average_execution_time"] = 0
stats["max_execution_time"] = 0
stats["min_execution_time"] = 0
# 移除执行时间列表以避免返回过大数据
stats.pop("execution_times", None)
return stats
def reset_stats(self):
"""重置统计信息"""
self.execution_stats = {
"total_executed": 0,
"successful_executions": 0,
"failed_executions": 0,
"reply_executions": 0,
"other_action_executions": 0,
"execution_times": [],
}
def get_recent_performance(self, limit: int = 10) -> List[Dict[str, any]]:
"""获取最近的执行性能"""
recent_times = self.execution_stats["execution_times"][-limit:]
if not recent_times:
return []
return [
{
"execution_index": i + 1,
"execution_time": time_val,
"timestamp": time.time() - (len(recent_times) - i) * 60, # 估算时间戳
}
for i, time_val in enumerate(recent_times)
]

View File

@@ -0,0 +1,678 @@
"""
PlanFilter: 接收 Plan 对象,根据不同模式的逻辑进行筛选,决定最终要执行的动作。
"""
import orjson
import time
import traceback
import re
from datetime import datetime
from typing import Any, Dict, List, Optional
from json_repair import repair_json
from src.chat.memory_system.Hippocampus import hippocampus_manager
from src.chat.utils.chat_message_builder import (
build_readable_actions,
build_readable_messages_with_id,
get_actions_by_timestamp_with_chat,
)
from src.chat.utils.prompt import global_prompt_manager
from src.common.data_models.info_data_model import ActionPlannerInfo, Plan
from src.common.logger import get_logger
from src.config.config import global_config, model_config
from src.llm_models.utils_model import LLMRequest
from src.mood.mood_manager import mood_manager
from src.plugin_system.base.component_types import ActionInfo, ChatMode, ChatType
from src.schedule.schedule_manager import schedule_manager
logger = get_logger("plan_filter")
SAKURA_PINK = "\033[38;5;175m"
SKY_BLUE = "\033[38;5;117m"
RESET_COLOR = "\033[0m"
class ChatterPlanFilter:
"""
根据 Plan 中的模式和信息,筛选并决定最终的动作。
"""
def __init__(self, chat_id: str, available_actions: List[str]):
"""
初始化动作计划筛选器。
Args:
chat_id (str): 当前聊天的唯一标识符。
available_actions (List[str]): 当前可用的动作列表。
"""
self.chat_id = chat_id
self.available_actions = available_actions
self.planner_llm = LLMRequest(model_set=model_config.model_task_config.planner, request_type="planner")
self.last_obs_time_mark = 0.0
async def filter(self, reply_not_available: bool, plan: Plan) -> Plan:
"""
执行筛选逻辑,并填充 Plan 对象的 decided_actions 字段。
"""
try:
prompt, used_message_id_list = await self._build_prompt(plan)
plan.llm_prompt = prompt
llm_content, _ = await self.planner_llm.generate_response_async(prompt=prompt)
if llm_content:
try:
parsed_json = orjson.loads(repair_json(llm_content))
except orjson.JSONDecodeError:
parsed_json = {
"thinking": "",
"actions": {"action_type": "no_action", "reason": "返回内容无法解析为JSON"},
}
if "reply" in plan.available_actions and reply_not_available:
# 如果reply动作不可用但llm返回的仍然有reply则改为no_reply
if (
isinstance(parsed_json, dict)
and parsed_json.get("actions", {}).get("action_type", "") == "reply"
):
parsed_json["actions"]["action_type"] = "no_reply"
elif isinstance(parsed_json, list):
for item in parsed_json:
if isinstance(item, dict) and item.get("actions", {}).get("action_type", "") == "reply":
item["actions"]["action_type"] = "no_reply"
item["actions"]["reason"] += " (但由于兴趣度不足reply动作不可用已改为no_reply)"
if isinstance(parsed_json, dict):
parsed_json = [parsed_json]
if isinstance(parsed_json, list):
final_actions = []
reply_action_added = False
# 定义回复类动作的集合,方便扩展
reply_action_types = {"reply", "proactive_reply"}
for item in parsed_json:
if not isinstance(item, dict):
continue
# 预解析 action_type 来进行判断
thinking = item.get("thinking", "未提供思考过程")
actions_obj = item.get("actions", {})
# 处理actions字段可能是字典或列表的情况
if isinstance(actions_obj, dict):
action_type = actions_obj.get("action_type", "no_action")
elif isinstance(actions_obj, list) and actions_obj:
# 如果是列表取第一个元素的action_type
first_action = actions_obj[0]
if isinstance(first_action, dict):
action_type = first_action.get("action_type", "no_action")
else:
action_type = "no_action"
else:
action_type = "no_action"
if action_type in reply_action_types:
if not reply_action_added:
final_actions.extend(
await self._parse_single_action(item, used_message_id_list, plan)
)
reply_action_added = True
else:
# 非回复类动作直接添加
final_actions.extend(await self._parse_single_action(item, used_message_id_list, plan))
if thinking and thinking != "未提供思考过程":
logger.info(f"\n{SAKURA_PINK}思考: {thinking}{RESET_COLOR}\n")
plan.decided_actions = self._filter_no_actions(final_actions)
except Exception as e:
logger.error(f"筛选 Plan 时出错: {e}\n{traceback.format_exc()}")
plan.decided_actions = [ActionPlannerInfo(action_type="no_action", reasoning=f"筛选时出错: {e}")]
# 在返回最终计划前,打印将要执行的动作
action_types = [action.action_type for action in plan.decided_actions]
logger.info(f"选择动作: [{SKY_BLUE}{', '.join(action_types) if action_types else ''}{RESET_COLOR}]")
return plan
async def _build_prompt(self, plan: Plan) -> tuple[str, list]:
"""
根据 Plan 对象构建提示词。
"""
try:
time_block = f"当前时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
bot_name = global_config.bot.nickname
bot_nickname = (
f",也有人叫你{','.join(global_config.bot.alias_names)}" if global_config.bot.alias_names else ""
)
bot_core_personality = global_config.personality.personality_core
identity_block = f"你的名字是{bot_name}{bot_nickname},你{bot_core_personality}"
schedule_block = ""
# 优先检查是否被吵醒
from src.chat.message_manager.message_manager import message_manager
angry_prompt_addition = ""
wakeup_mgr = message_manager.wakeup_manager
# 双重检查确保愤怒状态不会丢失
# 检查1: 直接从 wakeup_manager 获取
if wakeup_mgr.is_in_angry_state():
angry_prompt_addition = wakeup_mgr.get_angry_prompt_addition()
# 检查2: 如果上面没获取到,再从 mood_manager 确认
if not angry_prompt_addition:
chat_mood_for_check = mood_manager.get_mood_by_chat_id(plan.chat_id)
if chat_mood_for_check.is_angry_from_wakeup:
angry_prompt_addition = global_config.sleep_system.angry_prompt
if angry_prompt_addition:
schedule_block = angry_prompt_addition
elif global_config.planning_system.schedule_enable:
if current_activity := schedule_manager.get_current_activity():
schedule_block = f"你当前正在:{current_activity},但注意它与群聊的聊天无关。"
mood_block = ""
# 如果被吵醒,则心情也是愤怒的,不需要另外的情绪模块
if not angry_prompt_addition and global_config.mood.enable_mood:
chat_mood = mood_manager.get_mood_by_chat_id(plan.chat_id)
mood_block = f"你现在的心情是:{chat_mood.mood_state}"
if plan.mode == ChatMode.PROACTIVE:
long_term_memory_block = await self._get_long_term_memory_context()
chat_content_block, message_id_list = build_readable_messages_with_id(
messages=[msg.flatten() for msg in plan.chat_history],
timestamp_mode="normal",
truncate=False,
show_actions=False,
)
prompt_template = await global_prompt_manager.get_prompt_async("proactive_planner_prompt")
actions_before_now = get_actions_by_timestamp_with_chat(
chat_id=plan.chat_id,
timestamp_start=time.time() - 3600,
timestamp_end=time.time(),
limit=5,
)
actions_before_now_block = build_readable_actions(actions=actions_before_now)
actions_before_now_block = f"你刚刚选择并执行过的action是\n{actions_before_now_block}"
prompt = prompt_template.format(
time_block=time_block,
identity_block=identity_block,
schedule_block=schedule_block,
mood_block=mood_block,
long_term_memory_block=long_term_memory_block,
chat_content_block=chat_content_block or "最近没有聊天内容。",
actions_before_now_block=actions_before_now_block,
)
return prompt, message_id_list
# 构建已读/未读历史消息
read_history_block, unread_history_block, message_id_list = await self._build_read_unread_history_blocks(
plan
)
# 为了兼容性保留原有的chat_content_block
chat_content_block, _ = build_readable_messages_with_id(
messages=[msg.flatten() for msg in plan.chat_history],
timestamp_mode="normal",
read_mark=self.last_obs_time_mark,
truncate=True,
show_actions=True,
)
actions_before_now = get_actions_by_timestamp_with_chat(
chat_id=plan.chat_id,
timestamp_start=time.time() - 3600,
timestamp_end=time.time(),
limit=5,
)
actions_before_now_block = build_readable_actions(actions=actions_before_now)
actions_before_now_block = f"你刚刚选择并执行过的action是\n{actions_before_now_block}"
self.last_obs_time_mark = time.time()
mentioned_bonus = ""
if global_config.chat.mentioned_bot_inevitable_reply:
mentioned_bonus = "\n- 有人提到你"
if global_config.chat.at_bot_inevitable_reply:
mentioned_bonus = "\n- 有人提到你或者at你"
if plan.mode == ChatMode.FOCUS:
no_action_block = """
动作no_action
动作描述:不选择任何动作
{{
"action": "no_action",
"reason":"不动作的原因"
}}
动作no_reply
动作描述:不进行回复,等待合适的回复时机
- 当你刚刚发送了消息没有人回复时选择no_reply
- 当你一次发送了太多消息为了避免打扰聊天节奏选择no_reply
{{
"action": "no_reply",
"reason":"不回复的原因"
}}
"""
else: # normal Mode
no_action_block = """重要说明:
- 'reply' 表示只进行普通聊天回复,不执行任何额外动作
- 其他action表示在普通回复的基础上执行相应的额外动作
{{
"action": "reply",
"target_message_id":"触发action的消息id",
"reason":"回复的原因"
}}"""
is_group_chat = plan.chat_type == ChatType.GROUP
chat_context_description = "你现在正在一个群聊中"
if not is_group_chat and plan.target_info:
chat_target_name = plan.target_info.get("person_name") or plan.target_info.get("user_nickname") or "对方"
chat_context_description = f"你正在和 {chat_target_name} 私聊"
action_options_block = await self._build_action_options(plan.available_actions)
moderation_prompt_block = "请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。"
custom_prompt_block = ""
if global_config.custom_prompt.planner_custom_prompt_content:
custom_prompt_block = global_config.custom_prompt.planner_custom_prompt_content
users_in_chat_str = "" # TODO: Re-implement user list fetching if needed
planner_prompt_template = await global_prompt_manager.get_prompt_async("planner_prompt")
prompt = planner_prompt_template.format(
schedule_block=schedule_block,
mood_block=mood_block,
time_block=time_block,
chat_context_description=chat_context_description,
read_history_block=read_history_block,
unread_history_block=unread_history_block,
actions_before_now_block=actions_before_now_block,
mentioned_bonus=mentioned_bonus,
no_action_block=no_action_block,
action_options_text=action_options_block,
moderation_prompt=moderation_prompt_block,
identity_block=identity_block,
custom_prompt_block=custom_prompt_block,
bot_name=bot_name,
users_in_chat=users_in_chat_str,
)
return prompt, message_id_list
except Exception as e:
logger.error(f"构建 Planner 提示词时出错: {e}")
logger.error(traceback.format_exc())
return "构建 Planner Prompt 时出错", []
async def _build_read_unread_history_blocks(self, plan: Plan) -> tuple[str, str, list]:
"""构建已读/未读历史消息块"""
try:
# 从message_manager获取真实的已读/未读消息
from src.chat.message_manager.message_manager import message_manager
from src.chat.utils.utils import assign_message_ids
from src.chat.utils.chat_message_builder import get_raw_msg_before_timestamp_with_chat
# 获取聊天流的上下文
stream_context = message_manager.stream_contexts.get(plan.chat_id)
# 获取真正的已读和未读消息
read_messages = stream_context.history_messages # 已读消息存储在history_messages中
if not read_messages:
from src.common.data_models.database_data_model import DatabaseMessages
# 如果内存中没有已读消息(比如刚启动),则从数据库加载最近的上下文
fallback_messages_dicts = get_raw_msg_before_timestamp_with_chat(
chat_id=plan.chat_id,
timestamp=time.time(),
limit=global_config.chat.max_context_size,
)
# 将字典转换为DatabaseMessages对象
read_messages = [DatabaseMessages(**msg_dict) for msg_dict in fallback_messages_dicts]
unread_messages = stream_context.get_unread_messages() # 获取未读消息
# 构建已读历史消息块
if read_messages:
read_content, read_ids = build_readable_messages_with_id(
messages=[msg.flatten() for msg in read_messages[-50:]], # 限制数量
timestamp_mode="normal_no_YMD",
truncate=False,
show_actions=False,
)
read_history_block = f"{read_content}"
else:
read_history_block = "暂无已读历史消息"
# 构建未读历史消息块(包含兴趣度)
if unread_messages:
# 扁平化未读消息用于计算兴趣度和格式化
flattened_unread = [msg.flatten() for msg in unread_messages]
# 尝试获取兴趣度评分(返回以真实 message_id 为键的字典)
interest_scores = await self._get_interest_scores_for_messages(flattened_unread)
# 为未读消息分配短 id保持与 build_readable_messages_with_id 的一致结构)
message_id_list = assign_message_ids(flattened_unread)
unread_lines = []
for idx, msg in enumerate(flattened_unread):
mapped = message_id_list[idx]
synthetic_id = mapped.get("id")
original_msg_id = msg.get("message_id") or msg.get("id")
msg_time = time.strftime("%H:%M:%S", time.localtime(msg.get("time", time.time())))
user_nickname = msg.get("user_nickname", "未知用户")
msg_content = msg.get("processed_plain_text", "")
# 不再显示兴趣度但保留合成ID供模型内部使用
# 同时,为了让模型更好地理解上下文,我们显示用户名
unread_lines.append(f"<{synthetic_id}> {msg_time} {user_nickname}: {msg_content}")
unread_history_block = "\n".join(unread_lines)
else:
unread_history_block = "暂无未读历史消息"
return read_history_block, unread_history_block, message_id_list
except Exception as e:
logger.error(f"构建已读/未读历史消息块时出错: {e}")
return "构建已读历史消息时出错", "构建未读历史消息时出错", []
async def _get_interest_scores_for_messages(self, messages: List[dict]) -> dict[str, float]:
"""为消息获取兴趣度评分"""
interest_scores = {}
try:
from .interest_scoring import chatter_interest_scoring_system
from src.common.data_models.database_data_model import DatabaseMessages
# 使用插件内部的兴趣度评分系统计算评分
for msg_dict in messages:
try:
# 将字典转换为DatabaseMessages对象
db_message = DatabaseMessages(
message_id=msg_dict.get("message_id", ""),
user_info=msg_dict.get("user_info", {}),
processed_plain_text=msg_dict.get("processed_plain_text", ""),
key_words=msg_dict.get("key_words", "[]"),
is_mentioned=msg_dict.get("is_mentioned", False)
)
# 计算消息兴趣度
interest_score_obj = await chatter_interest_scoring_system._calculate_single_message_score(
message=db_message,
bot_nickname=global_config.bot.nickname
)
interest_score = interest_score_obj.total_score
# 构建兴趣度字典
interest_scores[msg_dict.get("message_id", "")] = interest_score
except Exception as e:
logger.warning(f"计算消息兴趣度失败: {e}")
continue
except Exception as e:
logger.warning(f"获取兴趣度评分失败: {e}")
return interest_scores
async def _parse_single_action(
self, action_json: dict, message_id_list: list, plan: Plan
) -> List[ActionPlannerInfo]:
parsed_actions = []
try:
# 从新的actions结构中获取动作信息
actions_obj = action_json.get("actions", {})
# 处理actions字段可能是字典或列表的情况
actions_to_process = []
if isinstance(actions_obj, dict):
actions_to_process.append(actions_obj)
elif isinstance(actions_obj, list):
actions_to_process.extend(actions_obj)
if not actions_to_process:
actions_to_process.append({"action_type": "no_action", "reason": "actions格式错误"})
for single_action_obj in actions_to_process:
if not isinstance(single_action_obj, dict):
continue
action = single_action_obj.get("action_type", "no_action")
reasoning = single_action_obj.get("reasoning", "未提供原因") # 兼容旧的reason字段
action_data = single_action_obj.get("action_data", {})
# 为了向后兼容如果action_data不存在则从顶层字段获取
if not action_data:
action_data = {k: v for k, v in single_action_obj.items() if k not in ["action_type", "reason", "reasoning", "thinking"]}
# 保留原始的thinking字段如果有
thinking = action_json.get("thinking", "")
if thinking and thinking != "未提供思考过程":
action_data["thinking"] = thinking
target_message_obj = None
if action not in ["no_action", "no_reply", "do_nothing", "proactive_reply"]:
if target_message_id := action_data.get("target_message_id"):
target_message_dict = self._find_message_by_id(target_message_id, message_id_list)
else:
# 如果LLM没有指定target_message_id进行特殊处理
if action == "poke_user":
# 对于poke_user尝试找到触发它的那条戳一戳消息
target_message_dict = self._find_poke_notice(message_id_list)
if not target_message_dict:
# 如果找不到,再使用最新消息作为兜底
target_message_dict = self._get_latest_message(message_id_list)
else:
# 其他动作,默认选择最新的一条消息
target_message_dict = self._get_latest_message(message_id_list)
if target_message_dict:
# 直接使用字典作为action_message避免DatabaseMessages对象创建失败
target_message_obj = target_message_dict
# 替换action_data中的临时ID为真实ID
if "target_message_id" in action_data:
real_message_id = target_message_dict.get("message_id") or target_message_dict.get("id")
if real_message_id:
action_data["target_message_id"] = real_message_id
# 确保 action_message 中始终有 message_id 字段
if "message_id" not in target_message_obj and "id" in target_message_obj:
target_message_obj["message_id"] = target_message_obj["id"]
else:
# 如果找不到目标消息对于reply动作来说这是必需的应该记录警告
if action == "reply":
logger.warning(
f"reply动作找不到目标消息target_message_id: {action_data.get('target_message_id')}"
)
# 将reply动作改为no_action避免后续执行时出错
action = "no_action"
reasoning = f"找不到目标消息进行回复。原始理由: {reasoning}"
if (
action not in ["no_action", "no_reply", "reply", "do_nothing", "proactive_reply"]
and action not in plan.available_actions
):
reasoning = f"LLM 返回了当前不可用的动作 '{action}'。原始理由: {reasoning}"
action = "no_action"
parsed_actions.append(
ActionPlannerInfo(
action_type=action,
reasoning=reasoning,
action_data=action_data,
action_message=target_message_obj,
available_actions=plan.available_actions,
)
)
except Exception as e:
logger.error(f"解析单个action时出错: {e}")
parsed_actions.append(
ActionPlannerInfo(
action_type="no_action",
reasoning=f"解析action时出错: {e}",
)
)
return parsed_actions
def _filter_no_actions(self, action_list: List[ActionPlannerInfo]) -> List[ActionPlannerInfo]:
non_no_actions = [a for a in action_list if a.action_type not in ["no_action", "no_reply"]]
if non_no_actions:
return non_no_actions
return action_list[:1] if action_list else []
async def _get_long_term_memory_context(self) -> str:
try:
now = datetime.now()
keywords = ["今天", "日程", "计划"]
if 5 <= now.hour < 12:
keywords.append("早上")
elif 12 <= now.hour < 18:
keywords.append("中午")
else:
keywords.append("晚上")
retrieved_memories = await hippocampus_manager.get_memory_from_topic(
valid_keywords=keywords, max_memory_num=5, max_memory_length=1
)
if not retrieved_memories:
return "最近没有什么特别的记忆。"
memory_statements = [f"关于'{topic}', 你记得'{memory_item}'" for topic, memory_item in retrieved_memories]
return " ".join(memory_statements)
except Exception as e:
logger.error(f"获取长期记忆时出错: {e}")
return "回忆时出现了一些问题。"
async def _build_action_options(self, current_available_actions: Dict[str, ActionInfo]) -> str:
action_options_block = ""
for action_name, action_info in current_available_actions.items():
# 构建参数的JSON示例
params_json_list = []
if action_info.action_parameters:
for p_name, p_desc in action_info.action_parameters.items():
# 为参数描述添加一个通用示例值
if action_name == "set_emoji_like" and p_name == "emoji":
# 特殊处理set_emoji_like的emoji参数
from plugins.set_emoji_like.qq_emoji_list import qq_face
emoji_options = [re.search(r"\[表情:(.+?)\]", name).group(1) for name in qq_face.values() if re.search(r"\[表情:(.+?)\]", name)]
example_value = f"<从'{', '.join(emoji_options[:10])}...'中选择一个>"
else:
example_value = f"<{p_desc}>"
params_json_list.append(f' "{p_name}": "{example_value}"')
# 基础动作信息
action_description = action_info.description
action_require = "\n".join(f"- {req}" for req in action_info.action_require)
# 构建完整的JSON使用范例
json_example_lines = [
" {",
f' "action_type": "{action_name}"',
]
# 将参数列表合并到JSON示例中
if params_json_list:
# 移除最后一行的逗号
json_example_lines.extend([line.rstrip(',') for line in params_json_list])
json_example_lines.append(' "reason": "<执行该动作的详细原因>"')
json_example_lines.append(" }")
# 使用逗号连接内部元素,除了最后一个
json_parts = []
for i, line in enumerate(json_example_lines):
# "{" 和 "}" 不需要逗号
if line.strip() in ["{", "}"]:
json_parts.append(line)
continue
# 检查是否是最后一个需要逗号的元素
is_last_item = True
for next_line in json_example_lines[i+1:]:
if next_line.strip() not in ["}"]:
is_last_item = False
break
if not is_last_item:
json_parts.append(f"{line},")
else:
json_parts.append(line)
json_example = "\n".join(json_parts)
# 使用新的、更详细的action_prompt模板
using_action_prompt = await global_prompt_manager.get_prompt_async("action_prompt_with_example")
action_options_block += using_action_prompt.format(
action_name=action_name,
action_description=action_description,
action_require=action_require,
json_example=json_example,
)
return action_options_block
def _find_message_by_id(self, message_id: str, message_id_list: list) -> Optional[Dict[str, Any]]:
# 兼容多种 message_id 格式数字、m123、buffered-xxxx
# 如果是纯数字,补上 m 前缀以兼容旧格式
candidate_ids = {message_id}
if message_id.isdigit():
candidate_ids.add(f"m{message_id}")
# 如果是 m 开头且后面是数字,尝试去掉 m 前缀的数字形式
if message_id.startswith("m") and message_id[1:].isdigit():
candidate_ids.add(message_id[1:])
# 逐项匹配 message_id_list每项可能为 {'id':..., 'message':...}
for item in message_id_list:
# 支持 message_id_list 中直接是字符串/ID 的情形
if isinstance(item, str):
if item in candidate_ids:
# 没有 message 对象返回None
return None
continue
if not isinstance(item, dict):
continue
item_id = item.get("id")
# 直接匹配分配的短 id
if item_id and item_id in candidate_ids:
return item.get("message")
# 有时 message 存储里会有原始的 message_id 字段(如 buffered-xxxx
message_obj = item.get("message")
if isinstance(message_obj, dict):
orig_mid = message_obj.get("message_id") or message_obj.get("id")
if orig_mid and orig_mid in candidate_ids:
return message_obj
# 作为兜底,尝试在 message_id_list 中找到 message.message_id 匹配
for item in message_id_list:
if isinstance(item, dict) and isinstance(item.get("message"), dict):
mid = item["message"].get("message_id") or item["message"].get("id")
if mid == message_id:
return item["message"]
return None
def _get_latest_message(self, message_id_list: list) -> Optional[Dict[str, Any]]:
if not message_id_list:
return None
return message_id_list[-1].get("message")
def _find_poke_notice(self, message_id_list: list) -> Optional[Dict[str, Any]]:
"""在消息列表中寻找戳一戳的通知消息"""
for item in reversed(message_id_list):
message = item.get("message")
if (
isinstance(message, dict)
and message.get("type") == "notice"
and "" in message.get("processed_plain_text", "")
):
return message
return None

View File

@@ -0,0 +1,168 @@
"""
PlanGenerator: 负责搜集和汇总所有决策所需的信息,生成一个未经筛选的"原始计划" (Plan)。
"""
import time
from typing import Dict
from src.chat.utils.chat_message_builder import get_raw_msg_before_timestamp_with_chat
from src.chat.utils.utils import get_chat_type_and_target_info
from src.common.data_models.database_data_model import DatabaseMessages
from src.common.data_models.info_data_model import Plan, TargetPersonInfo
from src.config.config import global_config
from src.plugin_system.base.component_types import ActionInfo, ChatMode, ChatType
from src.plugin_system.core.component_registry import component_registry
class ChatterPlanGenerator:
"""
ChatterPlanGenerator 负责在规划流程的初始阶段收集所有必要信息。
它会汇总以下信息来构建一个"原始"的 Plan 对象,该对象后续会由 PlanFilter 进行筛选:
- 当前聊天信息 (ID, 目标用户)
- 当前可用的动作列表
- 最近的聊天历史记录
Attributes:
chat_id (str): 当前聊天的唯一标识符。
action_manager (ActionManager): 用于获取可用动作列表的管理器。
"""
def __init__(self, chat_id: str):
"""
初始化 ChatterPlanGenerator。
Args:
chat_id (str): 当前聊天的 ID。
"""
from src.chat.planner_actions.action_manager import ChatterActionManager
self.chat_id = chat_id
# 注意ChatterActionManager 可能需要根据实际情况初始化
self.action_manager = ChatterActionManager()
async def generate(self, mode: ChatMode) -> Plan:
"""
收集所有信息,生成并返回一个初始的 Plan 对象。
这个 Plan 对象包含了决策所需的所有上下文信息。
Args:
mode (ChatMode): 当前的聊天模式。
Returns:
Plan: 包含所有上下文信息的初始计划对象。
"""
try:
# 获取聊天类型和目标信息
chat_type, target_info = get_chat_type_and_target_info(self.chat_id)
# 获取可用动作列表
available_actions = await self._get_available_actions(chat_type, mode)
# 获取聊天历史记录
recent_messages = await self._get_recent_messages()
# 构建计划对象
plan = Plan(
chat_id=self.chat_id,
chat_type=chat_type,
mode=mode,
target_info=target_info,
available_actions=available_actions,
chat_history=recent_messages,
)
return plan
except Exception:
# 如果生成失败,返回一个基本的空计划
return Plan(
chat_id=self.chat_id,
mode=mode,
target_info=TargetPersonInfo(),
available_actions={},
chat_history=[],
)
async def _get_available_actions(self, chat_type: ChatType, mode: ChatMode) -> Dict[str, ActionInfo]:
"""
获取当前可用的动作列表。
Args:
chat_type (ChatType): 聊天类型。
mode (ChatMode): 聊天模式。
Returns:
Dict[str, ActionInfo]: 可用动作的字典。
"""
try:
# 从组件注册表获取可用动作
available_actions = component_registry.get_enabled_actions()
# 根据聊天类型和模式筛选动作
filtered_actions = {}
for action_name, action_info in available_actions.items():
# 检查动作是否支持当前聊天类型
if chat_type in action_info.chat_types:
# 检查动作是否支持当前模式
if mode in action_info.chat_modes:
filtered_actions[action_name] = action_info
return filtered_actions
except Exception:
# 如果获取失败,返回空字典
return {}
async def _get_recent_messages(self) -> list[DatabaseMessages]:
"""
获取最近的聊天历史记录。
Returns:
list[DatabaseMessages]: 最近的聊天消息列表。
"""
try:
# 获取最近的消息记录
raw_messages = get_raw_msg_before_timestamp_with_chat(
chat_id=self.chat_id, timestamp=time.time(), limit=global_config.memory.short_memory_length
)
# 转换为 DatabaseMessages 对象
recent_messages = []
for msg in raw_messages:
try:
db_msg = DatabaseMessages(
message_id=msg.get("message_id", ""),
time=float(msg.get("time", 0)),
chat_id=msg.get("chat_id", ""),
processed_plain_text=msg.get("processed_plain_text", ""),
user_id=msg.get("user_id", ""),
user_nickname=msg.get("user_nickname", ""),
user_platform=msg.get("user_platform", ""),
)
recent_messages.append(db_msg)
except Exception:
# 跳过格式错误的消息
continue
return recent_messages
except Exception:
# 如果获取失败,返回空列表
return []
def get_generator_stats(self) -> Dict:
"""
获取生成器统计信息。
Returns:
Dict: 统计信息字典。
"""
return {
"chat_id": self.chat_id,
"action_count": len(self.action_manager._using_actions)
if hasattr(self.action_manager, "_using_actions")
else 0,
"generation_time": time.time(),
}

View File

@@ -0,0 +1,269 @@
"""
主规划器入口,负责协调 PlanGenerator, PlanFilter, 和 PlanExecutor。
集成兴趣度评分系统和用户关系追踪机制,实现智能化的聊天决策。
"""
from dataclasses import asdict
import time
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple
from src.plugins.built_in.affinity_flow_chatter.plan_executor import ChatterPlanExecutor
from src.plugins.built_in.affinity_flow_chatter.plan_filter import ChatterPlanFilter
from src.plugins.built_in.affinity_flow_chatter.plan_generator import ChatterPlanGenerator
from src.plugins.built_in.affinity_flow_chatter.interest_scoring import chatter_interest_scoring_system
from src.mood.mood_manager import mood_manager
from src.common.logger import get_logger
from src.config.config import global_config
if TYPE_CHECKING:
from src.common.data_models.message_manager_data_model import StreamContext
from src.common.data_models.info_data_model import Plan
from src.chat.planner_actions.action_manager import ChatterActionManager
# 导入提示词模块以确保其被初始化
from src.plugins.built_in.affinity_flow_chatter import planner_prompts # noqa
logger = get_logger("planner")
class ChatterActionPlanner:
"""
增强版ActionPlanner集成兴趣度评分和用户关系追踪机制。
核心功能:
1. 兴趣度评分系统:根据兴趣匹配度、关系分、提及度、时间因子对消息评分
2. 用户关系追踪:自动追踪用户交互并更新关系分
3. 智能回复决策:基于兴趣度阈值和连续不回复概率的智能决策
4. 完整的规划流程:生成→筛选→执行的完整三阶段流程
"""
def __init__(self, chat_id: str, action_manager: "ChatterActionManager"):
"""
初始化增强版ActionPlanner。
Args:
chat_id (str): 当前聊天的 ID。
action_manager (ChatterActionManager): 一个 ChatterActionManager 实例。
"""
self.chat_id = chat_id
self.action_manager = action_manager
self.generator = ChatterPlanGenerator(chat_id)
self.executor = ChatterPlanExecutor(action_manager)
# 使用新的统一兴趣度管理系统
# 规划器统计
self.planner_stats = {
"total_plans": 0,
"successful_plans": 0,
"failed_plans": 0,
"replies_generated": 0,
"other_actions_executed": 0,
}
async def plan(self, context: "StreamContext" = None) -> Tuple[List[Dict], Optional[Dict]]:
"""
执行完整的增强版规划流程。
Args:
context (StreamContext): 包含聊天流消息的上下文对象。
Returns:
Tuple[List[Dict], Optional[Dict]]: 一个元组,包含:
- final_actions_dict (List[Dict]): 最终确定的动作列表(字典格式)。
- final_target_message_dict (Optional[Dict]): 最终的目标消息(字典格式)。
"""
try:
self.planner_stats["total_plans"] += 1
return await self._enhanced_plan_flow(context)
except Exception as e:
logger.error(f"规划流程出错: {e}")
self.planner_stats["failed_plans"] += 1
return [], None
async def _enhanced_plan_flow(self, context: "StreamContext") -> Tuple[List[Dict], Optional[Dict]]:
"""执行增强版规划流程"""
try:
# 在规划前,先进行动作修改
from src.chat.planner_actions.action_modifier import ActionModifier
action_modifier = ActionModifier(self.action_manager, self.chat_id)
await action_modifier.modify_actions()
# 1. 生成初始 Plan
initial_plan = await self.generator.generate(context.chat_mode)
# 确保Plan中包含所有当前可用的动作
initial_plan.available_actions = self.action_manager.get_using_actions()
unread_messages = context.get_unread_messages() if context else []
# 2. 使用新的兴趣度管理系统进行评分
score = 0.0
should_reply = False
reply_not_available = False
if unread_messages:
# 获取用户ID优先从user_info.user_id获取其次从user_id属性获取
user_id = None
first_message = unread_messages[0]
user_id = first_message.user_info.user_id
# 构建计算上下文
calc_context = {
"stream_id": self.chat_id,
"user_id": user_id,
}
# 为每条消息计算兴趣度
for message in unread_messages:
try:
# 使用插件内部的兴趣度评分系统计算
interest_score = await chatter_interest_scoring_system._calculate_single_message_score(
message=message,
bot_nickname=global_config.bot.nickname
)
message_interest = interest_score.total_score
# 更新消息的兴趣度
message.interest_value = message_interest
# 简单的回复决策逻辑:兴趣度超过阈值则回复
message.should_reply = message_interest > global_config.affinity_flow.non_reply_action_interest_threshold
logger.debug(f"消息 {message.message_id} 兴趣度: {message_interest:.3f}, 应回复: {message.should_reply}")
# 更新StreamContext中的消息信息并刷新focus_energy
if context:
from src.chat.message_manager.message_manager import message_manager
message_manager.update_message(
stream_id=self.chat_id,
message_id=message.message_id,
interest_value=message_interest,
should_reply=message.should_reply
)
# 更新数据库中的消息记录
try:
from src.chat.message_receive.storage import MessageStorage
MessageStorage.update_message_interest_value(message.message_id, message_interest)
logger.debug(f"已更新数据库中消息 {message.message_id} 的兴趣度为: {message_interest:.3f}")
except Exception as e:
logger.warning(f"更新数据库消息兴趣度失败: {e}")
# 记录最高分
if message_interest > score:
score = message_interest
if message.should_reply:
should_reply = True
else:
reply_not_available = True
except Exception as e:
logger.warning(f"计算消息 {message.message_id} 兴趣度失败: {e}")
# 设置默认值
message.interest_value = 0.0
message.should_reply = False
# 检查兴趣度是否达到非回复动作阈值
non_reply_action_interest_threshold = global_config.affinity_flow.non_reply_action_interest_threshold
if score < non_reply_action_interest_threshold:
logger.info(f"兴趣度 {score:.3f} 低于阈值 {non_reply_action_interest_threshold:.3f},不执行动作")
# 直接返回 no_action
from src.common.data_models.info_data_model import ActionPlannerInfo
no_action = ActionPlannerInfo(
action_type="no_action",
reasoning=f"兴趣度评分 {score:.3f} 未达阈值 {non_reply_action_interest_threshold:.3f}",
action_data={},
action_message=None,
)
filtered_plan = initial_plan
filtered_plan.decided_actions = [no_action]
else:
# 4. 筛选 Plan
available_actions = list(initial_plan.available_actions.keys())
plan_filter = ChatterPlanFilter(self.chat_id, available_actions)
filtered_plan = await plan_filter.filter(reply_not_available, initial_plan)
# 检查filtered_plan是否有reply动作用于统计
has_reply_action = any(decision.action_type == "reply" for decision in filtered_plan.decided_actions)
# 5. 使用 PlanExecutor 执行 Plan
execution_result = await self.executor.execute(filtered_plan)
# 6. 根据执行结果更新统计信息
self._update_stats_from_execution_result(execution_result)
# 7. 返回结果
return self._build_return_result(filtered_plan)
except Exception as e:
logger.error(f"增强版规划流程出错: {e}")
self.planner_stats["failed_plans"] += 1
return [], None
def _update_stats_from_execution_result(self, execution_result: Dict[str, any]):
"""根据执行结果更新规划器统计"""
if not execution_result:
return
successful_count = execution_result.get("successful_count", 0)
# 更新成功执行计数
self.planner_stats["successful_plans"] += successful_count
# 统计回复动作和其他动作
reply_count = 0
other_count = 0
for result in execution_result.get("results", []):
action_type = result.get("action_type", "")
if action_type in ["reply", "proactive_reply"]:
reply_count += 1
else:
other_count += 1
self.planner_stats["replies_generated"] += reply_count
self.planner_stats["other_actions_executed"] += other_count
def _build_return_result(self, plan: "Plan") -> Tuple[List[Dict], Optional[Dict]]:
"""构建返回结果"""
final_actions = plan.decided_actions or []
final_target_message = next((act.action_message for act in final_actions if act.action_message), None)
final_actions_dict = [asdict(act) for act in final_actions]
if final_target_message:
if hasattr(final_target_message, "__dataclass_fields__"):
final_target_message_dict = asdict(final_target_message)
else:
final_target_message_dict = final_target_message
else:
final_target_message_dict = None
return final_actions_dict, final_target_message_dict
def get_planner_stats(self) -> Dict[str, any]:
"""获取规划器统计"""
return self.planner_stats.copy()
def get_current_mood_state(self) -> str:
"""获取当前聊天的情绪状态"""
chat_mood = mood_manager.get_mood_by_chat_id(self.chat_id)
return chat_mood.mood_state
def get_mood_stats(self) -> Dict[str, any]:
"""获取情绪状态统计"""
chat_mood = mood_manager.get_mood_by_chat_id(self.chat_id)
return {
"current_mood": chat_mood.mood_state,
"is_angry_from_wakeup": chat_mood.is_angry_from_wakeup,
"regression_count": chat_mood.regression_count,
"last_change_time": chat_mood.last_change_time,
}
# 全局兴趣度评分系统实例 - 在 individuality 模块中创建

View File

@@ -0,0 +1,290 @@
"""
本文件集中管理所有与规划器Planner相关的提示词Prompt模板。
通过将提示词与代码逻辑分离,可以更方便地对模型的行为进行迭代和优化,
而无需修改核心代码。
"""
from src.chat.utils.prompt import Prompt
def init_prompts():
"""
初始化并向 Prompt 注册系统注册所有规划器相关的提示词。
这个函数会在模块加载时自动调用,确保所有提示词在系统启动时都已准备就绪。
"""
# 核心规划器提示词,用于在接收到新消息时决定如何回应。
# 它构建了一个复杂的上下文,包括历史记录、可用动作、角色设定等,
# 并要求模型以 JSON 格式输出一个或多个动作组合。
Prompt(
"""
{mood_block}
{time_block}
{identity_block}
{users_in_chat}
{custom_prompt_block}
{chat_context_description},以下是具体的聊天内容。
## 📜 已读历史消息(仅供参考)
{read_history_block}
## 📬 未读历史消息(动作执行对象)
{unread_history_block}
{moderation_prompt}
**任务: 构建一个完整的响应**
你的任务是根据当前的聊天内容,构建一个完整的、人性化的响应。一个完整的响应由两部分组成:
1. **主要动作**: 这是响应的核心,通常是 `reply`(如果有)。
2. **辅助动作 (可选)**: 这是为了增强表达效果的附加动作,例如 `emoji`(发送表情包)或 `poke_user`(戳一戳)。
**决策流程:**
1. **重要:已读历史消息仅作为当前聊天情景的参考,帮助你理解对话上下文。**
2. **重要:所有动作的执行对象只能是未读历史消息中的消息,不能对已读消息执行动作。**
3. 在未读历史消息中,优先对兴趣值高的消息做出动作(兴趣值标注在消息末尾)。
4. 首先,决定是否要对未读消息进行 `reply`(如果有)。
5. 然后,评估当前的对话气氛和用户情绪,判断是否需要一个**辅助动作**来让你的回应更生动、更符合你的性格。
6. 如果需要,选择一个最合适的辅助动作与 `reply`(如果有) 组合。
7. 如果用户明确要求了某个动作,请务必优先满足。
**重要提醒:**
- **回复消息时必须遵循对话的流程,不要重复已经说过的话。**
- **确保回复与上下文紧密相关,回应要针对用户的消息内容。**
- **保持角色设定的一致性,使用符合你性格的语言风格。**
- **不要对表情包消息做出回应!**
**输出格式:**
请严格按照以下 JSON 格式输出,包含 `thinking` 和 `actions` 字段:
**重要概念:将“内心思考”作为思绪流的体现**
`thinking` 字段是本次决策的核心。它并非一个简单的“理由”,而是 **一个模拟人类在回应前,头脑中自然浮现的、未经修饰的思绪流**。你需要完全代入 {identity_block} 的角色,将那一刻的想法自然地记录下来。
**内心思考的要点:**
* **自然流露**: 不要使用“决定”、“所以”、“因此”等结论性或汇报式的词语。你的思考应该像日记一样,是给自己看的,充满了不确定性和情绪的自然流动。
* **展现过程**: 重点在于展现 **思考的过程**,而不是 **决策的结果**。描述你看到了什么,想到了什么,感受到了什么。
* **使用昵称**: 在你的思绪流中,请直接使用用户的昵称来指代他们,而不是`<m1>`, `<m2>`这样的消息ID。
* **严禁技术术语**: 严禁在思考中提及任何数字化的度量(如兴趣度、分数)或内部技术术语。请完全使用角色自身的感受和语言来描述思考过程。
## 可用动作列表
{action_options_text}
```json
{{
"thinking": "在这里写下你的思绪流...",
"actions": [
{{
"action_type": "动作类型reply, emoji等",
"reasoning": "选择该动作的理由",
"action_data": {{
"target_message_id": "目标消息ID",
"content": "回复内容或其他动作所需数据"
}}
}}
]
}}
```
**强制规则**:
- 对于每一个需要目标消息的动作(如`reply`, `poke_user`, `set_emoji_like`),你 **必须** 在`action_data`中提供准确的`target_message_id`这个ID来源于`## 未读历史消息`中消息前的`<m...>`标签。
- 当你选择的动作需要参数时(例如 `set_emoji_like` 需要 `emoji` 参数),你 **必须** 在 `action_data` 中提供所有必需的参数及其对应的值。
如果没有合适的回复对象或不需要回复,输出空的 actions 数组:
```json
{{
"thinking": "说明为什么不需要回复",
"actions": []
}}
```
""",
"planner_prompt",
)
# 主动规划器提示词,用于主动场景和前瞻性规划
Prompt(
"""
{mood_block}
{time_block}
{identity_block}
{users_in_chat}
{custom_prompt_block}
{chat_context_description},以下是具体的聊天内容。
## 📜 已读历史消息(仅供参考)
{read_history_block}
## 📬 未读历史消息(动作执行对象)
{unread_history_block}
{moderation_prompt}
**任务: 构建一个完整的响应**
你的任务是根据当前的聊天内容,构建一个完整的、人性化的响应。一个完整的响应由两部分组成:
1. **主要动作**: 这是响应的核心,通常是 `reply`(如果有)。
2. **辅助动作 (可选)**: 这是为了增强表达效果的附加动作,例如 `emoji`(发送表情包)或 `poke_user`(戳一戳)。
**决策流程:**
1. **重要:已读历史消息仅作为当前聊天情景的参考,帮助你理解对话上下文。**
2. **重要:所有动作的执行对象只能是未读历史消息中的消息,不能对已读消息执行动作。**
3. 在未读历史消息中,优先对兴趣值高的消息做出动作(兴趣值标注在消息末尾)。
4. 首先,决定是否要对未读消息进行 `reply`(如果有)。
5. 然后,评估当前的对话气氛和用户情绪,判断是否需要一个**辅助动作**来让你的回应更生动、更符合你的性格。
6. 如果需要,选择一个最合适的辅助动作与 `reply`(如果有) 组合。
7. 如果用户明确要求了某个动作,请务必优先满足。
**动作限制:**
- 在私聊中,你只能使用 `reply` 动作。私聊中不允许使用任何其他动作。
- 在群聊中,你可以自由选择是否使用辅助动作。
**重要提醒:**
- **回复消息时必须遵循对话的流程,不要重复已经说过的话。**
- **确保回复与上下文紧密相关,回应要针对用户的消息内容。**
- **保持角色设定的一致性,使用符合你性格的语言风格。**
**输出格式:**
请严格按照以下 JSON 格式输出,包含 `thinking` 和 `actions` 字段:
```json
{{
"thinking": "你的思考过程,分析当前情况并说明为什么选择这些动作",
"actions": [
{{
"action_type": "动作类型reply, emoji等",
"reasoning": "选择该动作的理由",
"action_data": {{
"target_message_id": "目标消息ID",
"content": "回复内容或其他动作所需数据"
}}
}}
]
}}
```
如果没有合适的回复对象或不需要回复,输出空的 actions 数组:
```json
{{
"thinking": "说明为什么不需要回复",
"actions": []
}}
```
""",
"proactive_planner_prompt",
)
# 轻量级规划器提示词,用于快速决策和简单场景
Prompt(
"""
{identity_block}
## 当前聊天情景
{chat_context_description}
## 未读消息
{unread_history_block}
**任务:快速决策**
请根据当前聊天内容,快速决定是否需要回复。
**决策规则:**
1. 如果有人直接提到你或问你问题,优先回复
2. 如果消息内容符合你的兴趣,考虑回复
3. 如果只是群聊中的普通聊天且与你无关,可以不回复
**输出格式:**
```json
{{
"thinking": "简要分析",
"actions": [
{{
"action_type": "reply",
"reasoning": "回复理由",
"action_data": {{
"target_message_id": "目标消息ID",
"content": "回复内容"
}}
}}
]
}}
```
""",
"chatter_planner_lite",
)
# 动作筛选器提示词,用于筛选和优化规划器生成的动作
Prompt(
"""
{identity_block}
## 原始动作计划
{original_plan}
## 聊天上下文
{chat_context}
**任务:动作筛选优化**
请对原始动作计划进行筛选和优化,确保动作的合理性和有效性。
**筛选原则:**
1. 移除重复或不必要的动作
2. 确保动作之间的逻辑顺序
3. 优化动作的具体参数
4. 考虑当前聊天环境和个人设定
**输出格式:**
```json
{{
"thinking": "筛选优化思考",
"actions": [
{{
"action_type": "优化后的动作类型",
"reasoning": "优化理由",
"action_data": {{
"target_message_id": "目标消息ID",
"content": "优化后的内容"
}}
}}
]
}}
```
""",
"chatter_plan_filter",
)
# 动作提示词,用于格式化动作选项
Prompt(
"""
## 动作: {action_name}
**描述**: {action_description}
**参数**:
{action_parameters}
**要求**:
{action_require}
**使用说明**:
请根据上述信息判断是否需要使用此动作。
""",
"action_prompt",
)
# 带有完整JSON示例的动作提示词模板
Prompt(
"""
动作: {action_name}
动作描述: {action_description}
动作使用场景:
{action_require}
你应该像这样使用它:
{{
{json_example}
}}
""",
"action_prompt_with_example",
)
# 确保提示词在模块加载时初始化
init_prompts()

View File

@@ -0,0 +1,46 @@
"""
亲和力聊天处理器插件
"""
from typing import List, Tuple, Type
from src.plugin_system.apis.plugin_register_api import register_plugin
from src.plugin_system.base.base_plugin import BasePlugin
from src.plugin_system.base.component_types import ComponentInfo
from src.common.logger import get_logger
logger = get_logger("affinity_chatter_plugin")
@register_plugin
class AffinityChatterPlugin(BasePlugin):
"""亲和力聊天处理器插件
- 延迟导入 `AffinityChatter` 并通过组件注册器注册为聊天处理器
- 提供 `get_plugin_components` 以兼容插件注册机制
"""
plugin_name: str = "affinity_chatter"
enable_plugin: bool = True
dependencies: list[str] = []
python_dependencies: list[str] = []
config_file_name: str = ""
# 简单的 config_schema 占位(如果将来需要配置可扩展)
config_schema = {}
def get_plugin_components(self) -> List[Tuple[ComponentInfo, Type]]:
"""返回插件包含的组件列表ChatterInfo, AffinityChatter
这里采用延迟导入 AffinityChatter 来避免循环依赖和启动顺序问题。
如果导入失败则返回空列表以让注册过程继续而不崩溃。
"""
try:
# 延迟导入以避免循环导入
from .affinity_chatter import AffinityChatter
return [(AffinityChatter.get_chatter_info(), AffinityChatter)]
except Exception as e:
logger.error(f"加载 AffinityChatter 时出错: {e}")
return []

View File

@@ -0,0 +1,755 @@
"""
用户关系追踪器
负责追踪用户交互历史并通过LLM分析更新用户关系分
支持数据库持久化存储和回复后自动关系更新
"""
import time
from typing import Dict, List, Optional
from src.common.logger import get_logger
from src.config.config import model_config, global_config
from src.llm_models.utils_model import LLMRequest
from src.common.database.sqlalchemy_database_api import get_db_session
from src.common.database.sqlalchemy_models import UserRelationships, Messages
from sqlalchemy import select, desc
from src.common.data_models.database_data_model import DatabaseMessages
logger = get_logger("chatter_relationship_tracker")
class ChatterRelationshipTracker:
"""用户关系追踪器"""
def __init__(self, interest_scoring_system=None):
self.tracking_users: Dict[str, Dict] = {} # user_id -> interaction_data
self.max_tracking_users = 3
self.update_interval_minutes = 30
self.last_update_time = time.time()
self.relationship_history: List[Dict] = []
self.interest_scoring_system = interest_scoring_system
# 用户关系缓存 (user_id -> {"relationship_text": str, "relationship_score": float, "last_tracked": float})
self.user_relationship_cache: Dict[str, Dict] = {}
self.cache_expiry_hours = 1 # 缓存过期时间(小时)
# 关系更新LLM
try:
self.relationship_llm = LLMRequest(
model_set=model_config.model_task_config.relationship_tracker, request_type="relationship_tracker"
)
except AttributeError:
# 如果relationship_tracker配置不存在尝试其他可用的模型配置
available_models = [
attr
for attr in dir(model_config.model_task_config)
if not attr.startswith("_") and attr != "model_dump"
]
if available_models:
# 使用第一个可用的模型配置
fallback_model = available_models[0]
logger.warning(f"relationship_tracker model configuration not found, using fallback: {fallback_model}")
self.relationship_llm = LLMRequest(
model_set=getattr(model_config.model_task_config, fallback_model),
request_type="relationship_tracker",
)
else:
# 如果没有任何模型配置创建一个简单的LLMRequest
logger.warning("No model configurations found, creating basic LLMRequest")
self.relationship_llm = LLMRequest(
model_set="gpt-3.5-turbo", # 默认模型
request_type="relationship_tracker",
)
def set_interest_scoring_system(self, interest_scoring_system):
"""设置兴趣度评分系统引用"""
self.interest_scoring_system = interest_scoring_system
def add_interaction(self, user_id: str, user_name: str, user_message: str, bot_reply: str, reply_timestamp: float):
"""添加用户交互记录"""
if len(self.tracking_users) >= self.max_tracking_users:
# 移除最旧的记录
oldest_user = min(
self.tracking_users.keys(), key=lambda k: self.tracking_users[k].get("reply_timestamp", 0)
)
del self.tracking_users[oldest_user]
# 获取当前关系分
current_relationship_score = global_config.affinity_flow.base_relationship_score # 默认值
if self.interest_scoring_system:
current_relationship_score = self.interest_scoring_system.get_user_relationship(user_id)
self.tracking_users[user_id] = {
"user_id": user_id,
"user_name": user_name,
"user_message": user_message,
"bot_reply": bot_reply,
"reply_timestamp": reply_timestamp,
"current_relationship_score": current_relationship_score,
}
logger.debug(f"添加用户交互追踪: {user_id}")
async def check_and_update_relationships(self) -> List[Dict]:
"""检查并更新用户关系"""
current_time = time.time()
if current_time - self.last_update_time < self.update_interval_minutes * 60:
return []
updates = []
for user_id, interaction in list(self.tracking_users.items()):
if current_time - interaction["reply_timestamp"] > 60 * 5: # 5分钟
update = await self._update_user_relationship(interaction)
if update:
updates.append(update)
del self.tracking_users[user_id]
self.last_update_time = current_time
return updates
async def _update_user_relationship(self, interaction: Dict) -> Optional[Dict]:
"""更新单个用户的关系"""
try:
# 获取bot人设信息
from src.individuality.individuality import Individuality
individuality = Individuality()
bot_personality = await individuality.get_personality_block()
prompt = f"""
你现在是一个有着特定性格和身份的AI助手。你的人设是{bot_personality}
请以你独特的性格视角,严格按现实逻辑分析以下用户交互,更新用户关系:
用户ID: {interaction["user_id"]}
用户名: {interaction["user_name"]}
用户消息: {interaction["user_message"]}
你的回复: {interaction["bot_reply"]}
当前关系分: {interaction["current_relationship_score"]}
【重要】关系分数档次定义:
- 0.0-0.2:陌生人/初次认识 - 仅礼貌性交流
- 0.2-0.4:普通网友 - 有基本互动但不熟悉
- 0.4-0.6:熟悉网友 - 经常交流,有一定了解
- 0.6-0.8:朋友 - 可以分享心情,互相关心
- 0.8-1.0:好朋友/知己 - 深度信任,亲密无间
【严格要求】:
1. 加分必须符合现实关系发展逻辑 - 不能因为对方态度好就盲目加分到不符合当前关系档次的分数
2. 关系提升需要足够的互动积累和时间验证
3. 即使是朋友关系单次互动加分通常不超过0.05-0.1
4. 关系描述要详细具体,包括:
- 用户性格特点观察
- 印象深刻的互动记忆
- 你们关系的具体状态描述
根据你的人设性格,思考:
1. 以你的性格,你会如何看待这次互动?
2. 用户的行为是否符合你性格的喜好?
3. 这次互动是否真的让你们的关系提升了一个档次?为什么?
4. 有什么特别值得记住的互动细节?
请以JSON格式返回更新结果
{{
"new_relationship_score": 0.0~1.0的数值(必须符合现实逻辑),
"reasoning": "从你的性格角度说明更新理由,重点说明是否符合现实关系发展逻辑",
"interaction_summary": "基于你性格的交互总结,包含印象深刻的互动记忆"
}}
"""
llm_response, _ = await self.relationship_llm.generate_response_async(prompt=prompt)
if llm_response:
import json
try:
# 清理LLM响应移除可能的格式标记
cleaned_response = self._clean_llm_json_response(llm_response)
response_data = json.loads(cleaned_response)
new_score = max(
0.0,
min(
1.0,
float(
response_data.get(
"new_relationship_score", global_config.affinity_flow.base_relationship_score
)
),
),
)
if self.interest_scoring_system:
self.interest_scoring_system.update_user_relationship(
interaction["user_id"], new_score - interaction["current_relationship_score"]
)
return {
"user_id": interaction["user_id"],
"new_relationship_score": new_score,
"reasoning": response_data.get("reasoning", ""),
"interaction_summary": response_data.get("interaction_summary", ""),
}
except json.JSONDecodeError as e:
logger.error(f"LLM响应JSON解析失败: {e}")
logger.debug(f"LLM原始响应: {llm_response}")
except Exception as e:
logger.error(f"处理关系更新数据失败: {e}")
except Exception as e:
logger.error(f"更新用户关系时出错: {e}")
return None
def get_tracking_users(self) -> Dict[str, Dict]:
"""获取正在追踪的用户"""
return self.tracking_users.copy()
def get_user_interaction(self, user_id: str) -> Optional[Dict]:
"""获取特定用户的交互记录"""
return self.tracking_users.get(user_id)
def remove_user_tracking(self, user_id: str):
"""移除用户追踪"""
if user_id in self.tracking_users:
del self.tracking_users[user_id]
logger.debug(f"移除用户追踪: {user_id}")
def clear_all_tracking(self):
"""清空所有追踪"""
self.tracking_users.clear()
logger.info("清空所有用户追踪")
def get_relationship_history(self) -> List[Dict]:
"""获取关系历史记录"""
return self.relationship_history.copy()
def add_to_history(self, relationship_update: Dict):
"""添加到关系历史"""
self.relationship_history.append({**relationship_update, "update_time": time.time()})
# 限制历史记录数量
if len(self.relationship_history) > 100:
self.relationship_history = self.relationship_history[-100:]
def get_tracker_stats(self) -> Dict:
"""获取追踪器统计"""
return {
"tracking_users": len(self.tracking_users),
"max_tracking_users": self.max_tracking_users,
"update_interval_minutes": self.update_interval_minutes,
"relationship_history": len(self.relationship_history),
"last_update_time": self.last_update_time,
}
def update_config(self, max_tracking_users: int = None, update_interval_minutes: int = None):
"""更新配置"""
if max_tracking_users is not None:
self.max_tracking_users = max_tracking_users
logger.info(f"更新最大追踪用户数: {max_tracking_users}")
if update_interval_minutes is not None:
self.update_interval_minutes = update_interval_minutes
logger.info(f"更新关系更新间隔: {update_interval_minutes} 分钟")
def force_update_relationship(self, user_id: str, new_score: float, reasoning: str = ""):
"""强制更新用户关系分"""
if user_id in self.tracking_users:
current_score = self.tracking_users[user_id]["current_relationship_score"]
if self.interest_scoring_system:
self.interest_scoring_system.update_user_relationship(user_id, new_score - current_score)
update_info = {
"user_id": user_id,
"new_relationship_score": new_score,
"reasoning": reasoning or "手动更新",
"interaction_summary": "手动更新关系分",
}
self.add_to_history(update_info)
logger.info(f"强制更新用户关系: {user_id} -> {new_score:.2f}")
def get_user_summary(self, user_id: str) -> Dict:
"""获取用户交互总结"""
if user_id not in self.tracking_users:
return {}
interaction = self.tracking_users[user_id]
return {
"user_id": user_id,
"user_name": interaction["user_name"],
"current_relationship_score": interaction["current_relationship_score"],
"interaction_count": 1, # 简化版本,每次追踪只记录一次交互
"last_interaction": interaction["reply_timestamp"],
"recent_message": interaction["user_message"][:100] + "..."
if len(interaction["user_message"]) > 100
else interaction["user_message"],
}
# ===== 数据库支持方法 =====
def get_user_relationship_score(self, user_id: str) -> float:
"""获取用户关系分"""
# 先检查缓存
if user_id in self.user_relationship_cache:
cache_data = self.user_relationship_cache[user_id]
# 检查缓存是否过期
cache_time = cache_data.get("last_tracked", 0)
if time.time() - cache_time < self.cache_expiry_hours * 3600:
return cache_data.get("relationship_score", global_config.affinity_flow.base_relationship_score)
# 缓存过期或不存在,从数据库获取
relationship_data = self._get_user_relationship_from_db(user_id)
if relationship_data:
# 更新缓存
self.user_relationship_cache[user_id] = {
"relationship_text": relationship_data.get("relationship_text", ""),
"relationship_score": relationship_data.get(
"relationship_score", global_config.affinity_flow.base_relationship_score
),
"last_tracked": time.time(),
}
return relationship_data.get("relationship_score", global_config.affinity_flow.base_relationship_score)
# 数据库中也没有,返回默认值
return global_config.affinity_flow.base_relationship_score
def _get_user_relationship_from_db(self, user_id: str) -> Optional[Dict]:
"""从数据库获取用户关系数据"""
try:
with get_db_session() as session:
# 查询用户关系表
stmt = select(UserRelationships).where(UserRelationships.user_id == user_id)
result = session.execute(stmt).scalar_one_or_none()
if result:
return {
"relationship_text": result.relationship_text or "",
"relationship_score": float(result.relationship_score)
if result.relationship_score is not None
else 0.3,
"last_updated": result.last_updated,
}
except Exception as e:
logger.error(f"从数据库获取用户关系失败: {e}")
return None
def _update_user_relationship_in_db(self, user_id: str, relationship_text: str, relationship_score: float):
"""更新数据库中的用户关系"""
try:
current_time = time.time()
with get_db_session() as session:
# 检查是否已存在关系记录
existing = session.execute(
select(UserRelationships).where(UserRelationships.user_id == user_id)
).scalar_one_or_none()
if existing:
# 更新现有记录
existing.relationship_text = relationship_text
existing.relationship_score = relationship_score
existing.last_updated = current_time
existing.user_name = existing.user_name or user_id # 更新用户名如果为空
else:
# 插入新记录
new_relationship = UserRelationships(
user_id=user_id,
user_name=user_id,
relationship_text=relationship_text,
relationship_score=relationship_score,
last_updated=current_time,
)
session.add(new_relationship)
session.commit()
logger.info(f"已更新数据库中用户关系: {user_id} -> 分数: {relationship_score:.3f}")
except Exception as e:
logger.error(f"更新数据库用户关系失败: {e}")
# ===== 回复后关系追踪方法 =====
async def track_reply_relationship(
self, user_id: str, user_name: str, bot_reply_content: str, reply_timestamp: float
):
"""回复后关系追踪 - 主要入口点"""
try:
logger.info(f"🔄 [RelationshipTracker] 开始回复后关系追踪: {user_id}")
# 检查上次追踪时间
last_tracked_time = self._get_last_tracked_time(user_id)
time_diff = reply_timestamp - last_tracked_time
if time_diff < 5 * 60: # 5分钟内不重复追踪
logger.debug(
f"⏱️ [RelationshipTracker] 用户 {user_id} 距离上次追踪时间不足5分钟 ({time_diff:.2f}s),跳过"
)
return
# 获取上次bot回复该用户的消息
last_bot_reply = await self._get_last_bot_reply_to_user(user_id)
if not last_bot_reply:
logger.info(f"👋 [RelationshipTracker] 未找到用户 {user_id} 的历史回复记录,启动'初次见面'逻辑")
await self._handle_first_interaction(user_id, user_name, bot_reply_content)
return
# 获取用户后续的反应消息
user_reactions = await self._get_user_reactions_after_reply(user_id, last_bot_reply.time)
logger.debug(f"💬 [RelationshipTracker] 找到用户 {user_id} 在上次回复后的 {len(user_reactions)} 条反应消息")
# 获取当前关系数据
current_relationship = self._get_user_relationship_from_db(user_id)
current_score = (
current_relationship.get("relationship_score", global_config.affinity_flow.base_relationship_score)
if current_relationship
else global_config.affinity_flow.base_relationship_score
)
current_text = current_relationship.get("relationship_text", "新用户") if current_relationship else "新用户"
# 使用LLM分析并更新关系
logger.debug(f"🧠 [RelationshipTracker] 开始为用户 {user_id} 分析并更新关系")
await self._analyze_and_update_relationship(
user_id, user_name, last_bot_reply, user_reactions, current_text, current_score, bot_reply_content
)
except Exception as e:
logger.error(f"回复后关系追踪失败: {e}")
logger.debug("错误详情:", exc_info=True)
def _get_last_tracked_time(self, user_id: str) -> float:
"""获取上次追踪时间"""
# 先检查缓存
if user_id in self.user_relationship_cache:
return self.user_relationship_cache[user_id].get("last_tracked", 0)
# 从数据库获取
relationship_data = self._get_user_relationship_from_db(user_id)
if relationship_data:
return relationship_data.get("last_updated", 0)
return 0
async def _get_last_bot_reply_to_user(self, user_id: str) -> Optional[DatabaseMessages]:
"""获取上次bot回复该用户的消息"""
try:
with get_db_session() as session:
# 查询bot回复给该用户的最新消息
stmt = (
select(Messages)
.where(Messages.user_id == user_id)
.where(Messages.reply_to.isnot(None))
.order_by(desc(Messages.time))
.limit(1)
)
result = session.execute(stmt).scalar_one_or_none()
if result:
# 将SQLAlchemy模型转换为DatabaseMessages对象
return self._sqlalchemy_to_database_messages(result)
except Exception as e:
logger.error(f"获取上次回复消息失败: {e}")
return None
async def _get_user_reactions_after_reply(self, user_id: str, reply_time: float) -> List[DatabaseMessages]:
"""获取用户在bot回复后的反应消息"""
try:
with get_db_session() as session:
# 查询用户在回复时间之后的5分钟内的消息
end_time = reply_time + 5 * 60 # 5分钟
stmt = (
select(Messages)
.where(Messages.user_id == user_id)
.where(Messages.time > reply_time)
.where(Messages.time <= end_time)
.order_by(Messages.time)
)
results = session.execute(stmt).scalars().all()
if results:
return [self._sqlalchemy_to_database_messages(result) for result in results]
except Exception as e:
logger.error(f"获取用户反应消息失败: {e}")
return []
def _sqlalchemy_to_database_messages(self, sqlalchemy_message) -> DatabaseMessages:
"""将SQLAlchemy消息模型转换为DatabaseMessages对象"""
try:
return DatabaseMessages(
message_id=sqlalchemy_message.message_id or "",
time=float(sqlalchemy_message.time) if sqlalchemy_message.time is not None else 0.0,
chat_id=sqlalchemy_message.chat_id or "",
reply_to=sqlalchemy_message.reply_to,
processed_plain_text=sqlalchemy_message.processed_plain_text or "",
user_id=sqlalchemy_message.user_id or "",
user_nickname=sqlalchemy_message.user_nickname or "",
user_platform=sqlalchemy_message.user_platform or "",
)
except Exception as e:
logger.error(f"SQLAlchemy消息转换失败: {e}")
# 返回一个基本的消息对象
return DatabaseMessages(
message_id="",
time=0.0,
chat_id="",
processed_plain_text="",
user_id="",
user_nickname="",
user_platform="",
)
async def _analyze_and_update_relationship(
self,
user_id: str,
user_name: str,
last_bot_reply: DatabaseMessages,
user_reactions: List[DatabaseMessages],
current_text: str,
current_score: float,
current_reply: str,
):
"""使用LLM分析并更新用户关系"""
try:
# 构建分析提示
user_reactions_text = "\n".join([f"- {msg.processed_plain_text}" for msg in user_reactions])
# 获取bot人设信息
from src.individuality.individuality import Individuality
individuality = Individuality()
bot_personality = await individuality.get_personality_block()
prompt = f"""
你现在是一个有着特定性格和身份的AI助手。你的人设是{bot_personality}
请以你独特的性格视角,严格按现实逻辑分析以下用户交互,更新用户关系印象和分数:
用户信息:
- 用户ID: {user_id}
- 用户名: {user_name}
你上次的回复: {last_bot_reply.processed_plain_text}
用户反应消息:
{user_reactions_text}
你当前的回复: {current_reply}
当前关系印象: {current_text}
当前关系分数: {current_score:.3f}
【重要】关系分数档次定义:
- 0.0-0.2:陌生人/初次认识 - 仅礼貌性交流
- 0.2-0.4:普通网友 - 有基本互动但不熟悉
- 0.4-0.6:熟悉网友 - 经常交流,有一定了解
- 0.6-0.8:朋友 - 可以分享心情,互相关心
- 0.8-1.0:好朋友/知己 - 深度信任,亲密无间
【严格要求】:
1. 加分必须符合现实关系发展逻辑 - 不能因为用户反应好就盲目加分
2. 关系提升需要足够的互动积累和时间验证单次互动加分通常不超过0.05-0.1
3. 必须考虑当前关系档次不能跳跃式提升比如从0.3直接到0.7
4. 关系印象描述要详细具体100-200字包括
- 用户性格特点和交流风格观察
- 印象深刻的互动记忆和对话片段
- 你们关系的具体状态描述和发展阶段
- 根据你的性格,你对用户的真实感受
性格视角深度分析:
1. 以你的性格特点,用户这次的反应给你什么感受?
2. 用户的情绪和行为符合你性格的喜好吗?具体哪些方面?
3. 从现实角度看,这次互动是否足以让关系提升到下一个档次?为什么?
4. 有什么特别值得记住的互动细节或对话内容?
5. 基于你们的互动历史,用户给你留下了哪些深刻印象?
请以JSON格式返回更新结果:
{{
"relationship_text": "详细的关系印象描述(100-200字),包含用户性格观察、印象深刻记忆、关系状态描述",
"relationship_score": 0.0~1.0的新分数(必须严格符合现实逻辑),
"analysis_reasoning": "从你性格角度的深度分析,重点说明分数调整的现实合理性",
"interaction_quality": "high/medium/low"
}}
"""
# 调用LLM进行分析
llm_response, _ = await self.relationship_llm.generate_response_async(prompt=prompt)
if llm_response:
import json
try:
# 清理LLM响应移除可能的格式标记
cleaned_response = self._clean_llm_json_response(llm_response)
response_data = json.loads(cleaned_response)
new_text = response_data.get("relationship_text", current_text)
new_score = max(0.0, min(1.0, float(response_data.get("relationship_score", current_score))))
reasoning = response_data.get("analysis_reasoning", "")
quality = response_data.get("interaction_quality", "medium")
# 更新数据库
self._update_user_relationship_in_db(user_id, new_text, new_score)
# 更新缓存
self.user_relationship_cache[user_id] = {
"relationship_text": new_text,
"relationship_score": new_score,
"last_tracked": time.time(),
}
# 如果有兴趣度评分系统,也更新内存中的关系分
if self.interest_scoring_system:
self.interest_scoring_system.update_user_relationship(user_id, new_score - current_score)
# 记录分析历史
analysis_record = {
"user_id": user_id,
"timestamp": time.time(),
"old_score": current_score,
"new_score": new_score,
"old_text": current_text,
"new_text": new_text,
"reasoning": reasoning,
"quality": quality,
"user_reactions_count": len(user_reactions),
}
self.relationship_history.append(analysis_record)
# 限制历史记录数量
if len(self.relationship_history) > 100:
self.relationship_history = self.relationship_history[-100:]
logger.info(f"✅ 关系分析完成: {user_id}")
logger.info(f" 📝 印象: '{current_text}' -> '{new_text}'")
logger.info(f" 💝 分数: {current_score:.3f} -> {new_score:.3f}")
logger.info(f" 🎯 质量: {quality}")
except json.JSONDecodeError as e:
logger.error(f"LLM响应JSON解析失败: {e}")
logger.debug(f"LLM原始响应: {llm_response}")
else:
logger.warning("LLM未返回有效响应")
except Exception as e:
logger.error(f"关系分析失败: {e}")
logger.debug("错误详情:", exc_info=True)
async def _handle_first_interaction(self, user_id: str, user_name: str, bot_reply_content: str):
"""处理与用户的初次交互"""
try:
logger.info(f"✨ [RelationshipTracker] 正在处理与用户 {user_id} 的初次交互")
# 获取bot人设信息
from src.individuality.individuality import Individuality
individuality = Individuality()
bot_personality = await individuality.get_personality_block()
prompt = f"""
你现在是:{bot_personality}
你正在与一个新用户进行初次有效互动。请根据你对TA的第一印象建立初始关系档案。
用户信息:
- 用户ID: {user_id}
- 用户名: {user_name}
你的首次回复: {bot_reply_content}
【严格要求】:
1. 建立一个初始关系分数通常在0.2-0.4之间(普通网友)。
2. 关系印象描述要简洁地记录你对用户的初步看法50-100字
- 用户名给你的感觉?
- 你的回复是基于什么考虑?
- 你对接下来与TA的互动有什么期待
请以JSON格式返回结果:
{{
"relationship_text": "简洁的初始关系印象描述(50-100字)",
"relationship_score": 0.2~0.4的新分数,
"analysis_reasoning": "从你性格角度说明建立此初始印象的理由"
}}
"""
# 调用LLM进行分析
llm_response, _ = await self.relationship_llm.generate_response_async(prompt=prompt)
if not llm_response:
logger.warning(f"初次交互分析时LLM未返回有效响应: {user_id}")
return
import json
cleaned_response = self._clean_llm_json_response(llm_response)
response_data = json.loads(cleaned_response)
new_text = response_data.get("relationship_text", "初次见面")
new_score = max(
0.0,
min(
1.0,
float(response_data.get("relationship_score", global_config.affinity_flow.base_relationship_score)),
),
)
# 更新数据库和缓存
self._update_user_relationship_in_db(user_id, new_text, new_score)
self.user_relationship_cache[user_id] = {
"relationship_text": new_text,
"relationship_score": new_score,
"last_tracked": time.time(),
}
logger.info(f"✅ [RelationshipTracker] 已成功为新用户 {user_id} 建立初始关系档案,分数为 {new_score:.3f}")
except Exception as e:
logger.error(f"处理初次交互失败: {user_id}, 错误: {e}")
logger.debug("错误详情:", exc_info=True)
def _clean_llm_json_response(self, response: str) -> str:
"""
清理LLM响应移除可能的JSON格式标记
Args:
response: LLM原始响应
Returns:
清理后的JSON字符串
"""
try:
import re
# 移除常见的JSON格式标记
cleaned = response.strip()
# 移除 ```json 或 ``` 等标记
cleaned = re.sub(r"^```(?:json)?\s*", "", cleaned, flags=re.MULTILINE | re.IGNORECASE)
cleaned = re.sub(r"\s*```$", "", cleaned, flags=re.MULTILINE)
# 移除可能的Markdown代码块标记
cleaned = re.sub(r"^`|`$", "", cleaned, flags=re.MULTILINE)
# 尝试找到JSON对象的开始和结束
json_start = cleaned.find("{")
json_end = cleaned.rfind("}")
if json_start != -1 and json_end != -1 and json_end > json_start:
# 提取JSON部分
cleaned = cleaned[json_start : json_end + 1]
# 移除多余的空白字符
cleaned = cleaned.strip()
logger.debug(f"LLM响应清理: 原始长度={len(response)}, 清理后长度={len(cleaned)}")
if cleaned != response:
logger.debug(f"清理前: {response[:200]}...")
logger.debug(f"清理后: {cleaned[:200]}...")
return cleaned
except Exception as e:
logger.warning(f"清理LLM响应失败: {e}")
return response # 清理失败时返回原始响应

View File

@@ -64,50 +64,50 @@ class AtAction(BaseAction):
# 使用回复器生成艾特回复,而不是直接发送命令
from src.chat.replyer.default_generator import DefaultReplyer
from src.chat.message_receive.chat_stream import get_chat_manager
# 获取当前聊天流
chat_manager = get_chat_manager()
chat_stream = self.chat_stream or chat_manager.get_stream(self.chat_id)
if not chat_stream:
logger.error(f"找不到聊天流: {self.chat_stream}")
return False, "聊天流不存在"
# 创建回复器实例
replyer = DefaultReplyer(chat_stream)
# 构建回复对象,将艾特消息作为回复目标
reply_to = f"{user_name}:{at_message}"
extra_info = f"你需要艾特用户 {user_name} 并回复他们说: {at_message}"
# 使用回复器生成回复
success, llm_response, prompt = await replyer.generate_reply_with_context(
reply_to=reply_to,
extra_info=extra_info,
enable_tool=False, # 艾特回复通常不需要工具调用
from_plugin=False
from_plugin=False,
)
if success and llm_response:
# 获取生成的回复内容
reply_content = llm_response.get("content", "")
if reply_content:
# 获取用户QQ号发送真正的艾特消息
user_id = user_info.get("user_id")
# 发送真正的艾特命令,使用回复器生成的智能内容
await self.send_command(
"SEND_AT_MESSAGE",
args={"qq_id": user_id, "text": reply_content},
display_message=f"艾特用户 {user_name} 并发送智能回复: {reply_content}",
)
await self.store_action_info(
action_build_into_prompt=True,
action_prompt_display=f"执行了艾特用户动作:艾特用户 {user_name} 并发送智能回复: {reply_content}",
action_done=True,
)
logger.info(f"成功通过回复器生成智能内容并发送真正的艾特消息给 {user_name}: {reply_content}")
return True, "智能艾特消息发送成功"
else:
@@ -116,7 +116,7 @@ class AtAction(BaseAction):
else:
logger.error("回复器生成回复失败")
return False, "回复生成失败"
except Exception as e:
logger.error(f"执行艾特用户动作时发生异常: {e}", exc_info=True)
await self.store_action_info(

View File

@@ -26,8 +26,8 @@
"components": [
{
"type": "action",
"name": "emoji",
"description": "发送表情包辅助表达情绪"
"name": "emoji",
"description": "作为一条全新的消息,发送一个符合当前情景的表情包来生动地表达情绪"
}
]
}

View File

@@ -33,7 +33,7 @@ class EmojiAction(BaseAction):
# 动作基本信息
action_name = "emoji"
action_description = "发送表情包辅助表达情绪"
action_description = "作为一条全新的消息,发送一个符合当前情景的表情包来生动地表达情绪"
# LLM判断提示词
llm_judge_prompt = """
@@ -70,7 +70,9 @@ class EmojiAction(BaseAction):
# 2. 获取所有有效的表情包对象
emoji_manager = get_emoji_manager()
all_emojis_obj: list[MaiEmoji] = [e for e in emoji_manager.emoji_objects if not e.is_deleted and e.description]
all_emojis_obj: list[MaiEmoji] = [
e for e in emoji_manager.emoji_objects if not e.is_deleted and e.description
]
if not all_emojis_obj:
logger.warning(f"{self.log_prefix} 无法获取任何带有描述的有效表情包")
return False, "无法获取任何带有描述的有效表情包"
@@ -91,12 +93,12 @@ class EmojiAction(BaseAction):
# 4. 准备情感数据和后备列表
emotion_map = {}
all_emojis_data = []
for emoji in all_emojis_obj:
b64 = image_path_to_base64(emoji.full_path)
if not b64:
continue
desc = emoji.description
emotions = emoji.emotion
all_emojis_data.append((b64, desc))
@@ -122,10 +124,10 @@ class EmojiAction(BaseAction):
emoji_base64, emoji_description = random.choice(all_emojis_data)
else:
# 获取最近的5条消息内容用于判断
recent_messages = await message_api.get_recent_messages(chat_id=self.chat_id, limit=5)
recent_messages = message_api.get_recent_messages(chat_id=self.chat_id, limit=5)
messages_text = ""
if recent_messages:
messages_text = await message_api.build_readable_messages(
messages_text = message_api.build_readable_messages(
messages=recent_messages,
timestamp_mode="normal_no_YMD",
truncate=False,
@@ -150,10 +152,10 @@ class EmojiAction(BaseAction):
# 调用LLM
models = llm_api.get_available_models()
chat_model_config = models.get("planner")
chat_model_config = models.get("utils")
if not chat_model_config:
logger.error(f"{self.log_prefix} 未找到'planner'模型配置无法调用LLM")
return False, "未找到'planner'模型配置"
logger.error(f"{self.log_prefix} 未找到'utils'模型配置无法调用LLM")
return False, "未找到'utils'模型配置"
success, chosen_emotion, _, _ = await llm_api.generate_with_model(
prompt, model_config=chat_model_config, request_type="emoji"
@@ -168,23 +170,25 @@ class EmojiAction(BaseAction):
# 使用模糊匹配来查找最相关的情感标签
matched_key = next((key for key in emotion_map if chosen_emotion in key), None)
if matched_key:
emoji_base64, emoji_description = random.choice(emotion_map[matched_key])
logger.info(f"{self.log_prefix} 找到匹配情感 '{chosen_emotion}' (匹配到: '{matched_key}') 的表情包: {emoji_description}")
logger.info(
f"{self.log_prefix} 找到匹配情感 '{chosen_emotion}' (匹配到: '{matched_key}') 的表情包: {emoji_description}"
)
else:
logger.warning(
f"{self.log_prefix} LLM选择的情感 '{chosen_emotion}' 不在可用列表中, 将随机选择一个表情包"
)
emoji_base64, emoji_description = random.choice(all_emojis_data)
elif global_config.emoji.emoji_selection_mode == "description":
# --- 详细描述选择模式 ---
# 获取最近的5条消息内容用于判断
recent_messages = await message_api.get_recent_messages(chat_id=self.chat_id, limit=5)
recent_messages = message_api.get_recent_messages(chat_id=self.chat_id, limit=5)
messages_text = ""
if recent_messages:
messages_text = await message_api.build_readable_messages(
messages_text = message_api.build_readable_messages(
messages=recent_messages,
timestamp_mode="normal_no_YMD",
truncate=False,
@@ -208,10 +212,10 @@ class EmojiAction(BaseAction):
# 调用LLM
models = llm_api.get_available_models()
chat_model_config = models.get("planner")
chat_model_config = models.get("utils")
if not chat_model_config:
logger.error(f"{self.log_prefix} 未找到'planner'模型配置无法调用LLM")
return False, "未找到'planner'模型配置"
logger.error(f"{self.log_prefix} 未找到'utils'模型配置无法调用LLM")
return False, "未找到'utils'模型配置"
success, chosen_description, _, _ = await llm_api.generate_with_model(
prompt, model_config=chat_model_config, request_type="emoji"
@@ -226,15 +230,23 @@ class EmojiAction(BaseAction):
logger.info(f"{self.log_prefix} LLM选择的描述: {chosen_description}")
# 简单关键词匹配
matched_emoji = next((item for item in all_emojis_data if chosen_description.lower() in item[1].lower() or item[1].lower() in chosen_description.lower()), None)
matched_emoji = next(
(
item
for item in all_emojis_data
if chosen_description.lower() in item[1].lower()
or item[1].lower() in chosen_description.lower()
),
None,
)
# 如果包含匹配失败,尝试关键词匹配
if not matched_emoji:
keywords = ['惊讶', '困惑', '呆滞', '震惊', '', '无语', '', '可爱']
keywords = ["惊讶", "困惑", "呆滞", "震惊", "", "无语", "", "可爱"]
for keyword in keywords:
if keyword in chosen_description:
for item in all_emojis_data:
if any(k in item[1] for k in ['', '', '', '困惑', '无语']):
if any(k in item[1] for k in ["", "", "", "困惑", "无语"]):
matched_emoji = item
break
if matched_emoji:
@@ -255,7 +267,9 @@ class EmojiAction(BaseAction):
if not success:
logger.error(f"{self.log_prefix} 表情包发送失败")
await self.store_action_info(action_build_into_prompt = True,action_prompt_display ="发送了一个表情包,但失败了",action_done= False)
await self.store_action_info(
action_build_into_prompt=True, action_prompt_display=f"发送了一个表情包,但失败了", action_done=False
)
return False, "表情包发送失败"
# 发送成功后,记录到历史
@@ -263,8 +277,10 @@ class EmojiAction(BaseAction):
add_emoji_to_history(self.chat_id, emoji_description)
except Exception as e:
logger.error(f"{self.log_prefix} 添加表情到历史记录时出错: {e}")
await self.store_action_info(action_build_into_prompt = True,action_prompt_display ="发送了一个表情包",action_done= True)
await self.store_action_info(
action_build_into_prompt=True, action_prompt_display=f"发送了一个表情包", action_done=True
)
return True, f"发送表情包: {emoji_description}"

View File

@@ -11,7 +11,7 @@
"host_application": {
"min_version": "0.10.0",
"max_version": "0.10.0"
"max_version": "0.11.0"
},
"homepage_url": "https://github.com/Windpicker-owo/InternetSearchPlugin",
"repository_url": "https://github.com/Windpicker-owo/InternetSearchPlugin",

View File

@@ -1,4 +1,3 @@
from src.plugin_system import BaseEventHandler
from src.plugin_system.base.base_event import HandlerResult
@@ -1748,6 +1747,7 @@ class SetGroupSignHandler(BaseEventHandler):
logger.error("事件 napcat_set_group_sign 请求失败!")
return HandlerResult(False, False, {"status": "error"})
# ===PERSONAL===
class SetInputStatusHandler(BaseEventHandler):
handler_name: str = "napcat_set_input_status_handler"

View File

@@ -233,7 +233,7 @@ class LauchNapcatAdapterHandler(BaseEventHandler):
await reassembler.start_cleanup_task()
logger.info("开始启动Napcat Adapter")
# 创建单独的异步任务,防止阻塞主线程
asyncio.create_task(self._start_maibot_connection())
asyncio.create_task(napcat_server(self.plugin_config))
@@ -244,10 +244,10 @@ class LauchNapcatAdapterHandler(BaseEventHandler):
"""非阻塞方式启动MaiBot连接等待主服务启动后再连接"""
# 等待一段时间让MaiBot主服务完全启动
await asyncio.sleep(5)
max_attempts = 10
attempt = 0
while attempt < max_attempts:
try:
logger.info(f"尝试连接MaiBot (第{attempt + 1}次)")
@@ -291,7 +291,7 @@ class NapcatAdapterPlugin(BasePlugin):
def enable_plugin(self) -> bool:
"""通过配置文件动态控制插件启用状态"""
# 如果已经通过配置加载了状态,使用配置中的值
if hasattr(self, '_is_enabled'):
if hasattr(self, "_is_enabled"):
return self._is_enabled
# 否则使用默认值(禁用状态)
return False
@@ -305,7 +305,7 @@ class NapcatAdapterPlugin(BasePlugin):
"name": ConfigField(type=str, default="napcat_adapter_plugin", description="插件名称"),
"version": ConfigField(type=str, default="1.1.0", description="插件版本"),
"config_version": ConfigField(type=str, default="1.3.1", description="配置文件版本"),
"enabled": ConfigField(type=bool, default=False, description="是否启用插件"),
"enabled": ConfigField(type=bool, default=True, description="是否启用插件"),
},
"inner": {
"version": ConfigField(type=str, default="0.2.1", description="配置版本号,请勿修改"),
@@ -314,60 +314,88 @@ class NapcatAdapterPlugin(BasePlugin):
"nickname": ConfigField(type=str, default="", description="昵称配置(目前未使用)"),
},
"napcat_server": {
"mode": ConfigField(type=str, default="reverse", description="连接模式reverse=反向连接(作为服务器), forward=正向连接(作为客户端)", choices=["reverse", "forward"]),
"mode": ConfigField(
type=str,
default="reverse",
description="连接模式reverse=反向连接(作为服务器), forward=正向连接(作为客户端)",
choices=["reverse", "forward"],
),
"host": ConfigField(type=str, default="localhost", description="主机地址"),
"port": ConfigField(type=int, default=8095, description="端口号"),
"url": ConfigField(type=str, default="", description="正向连接时的完整WebSocket URL如 ws://localhost:8080/ws (仅在forward模式下使用)"),
"access_token": ConfigField(type=str, default="", description="WebSocket 连接的访问令牌,用于身份验证(可选)"),
"url": ConfigField(
type=str,
default="",
description="正向连接时的完整WebSocket URL如 ws://localhost:8080/ws (仅在forward模式下使用)",
),
"access_token": ConfigField(
type=str, default="", description="WebSocket 连接的访问令牌,用于身份验证(可选)"
),
"heartbeat_interval": ConfigField(type=int, default=30, description="心跳间隔时间(按秒计)"),
},
"maibot_server": {
"host": ConfigField(type=str, default="localhost", description="麦麦在.env文件中设置的主机地址即HOST字段"),
"host": ConfigField(
type=str, default="localhost", description="麦麦在.env文件中设置的主机地址即HOST字段"
),
"port": ConfigField(type=int, default=8000, description="麦麦在.env文件中设置的端口即PORT字段"),
"platform_name": ConfigField(type=str, default="qq", description="平台名称,用于消息路由"),
},
"voice": {
"use_tts": ConfigField(type=bool, default=False, description="是否使用tts语音请确保你配置了tts并有对应的adapter"),
"use_tts": ConfigField(
type=bool, default=False, description="是否使用tts语音请确保你配置了tts并有对应的adapter"
),
},
"slicing": {
"max_frame_size": ConfigField(type=int, default=64, description="WebSocket帧的最大大小单位为字节默认64KB"),
"max_frame_size": ConfigField(
type=int, default=64, description="WebSocket帧的最大大小单位为字节默认64KB"
),
"delay_ms": ConfigField(type=int, default=10, description="切片发送间隔时间,单位为毫秒"),
},
"debug": {
"level": ConfigField(type=str, default="INFO", description="日志等级DEBUG, INFO, WARNING, ERROR, CRITICAL", choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"]),
"level": ConfigField(
type=str,
default="INFO",
description="日志等级DEBUG, INFO, WARNING, ERROR, CRITICAL",
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
),
},
"features": {
# 权限设置
"group_list_type": ConfigField(type=str, default="blacklist", description="群聊列表类型whitelist白名单或 blacklist黑名单", choices=["whitelist", "blacklist"]),
"group_list_type": ConfigField(
type=str,
default="blacklist",
description="群聊列表类型whitelist白名单或 blacklist黑名单",
choices=["whitelist", "blacklist"],
),
"group_list": ConfigField(type=list, default=[], description="群聊ID列表"),
"private_list_type": ConfigField(type=str, default="blacklist", description="私聊列表类型whitelist白名单或 blacklist黑名单", choices=["whitelist", "blacklist"]),
"private_list_type": ConfigField(
type=str,
default="blacklist",
description="私聊列表类型whitelist白名单或 blacklist黑名单",
choices=["whitelist", "blacklist"],
),
"private_list": ConfigField(type=list, default=[], description="用户ID列表"),
"ban_user_id": ConfigField(type=list, default=[], description="全局禁止用户ID列表这些用户无法在任何地方使用机器人"),
"ban_user_id": ConfigField(
type=list, default=[], description="全局禁止用户ID列表这些用户无法在任何地方使用机器人"
),
"ban_qq_bot": ConfigField(type=bool, default=False, description="是否屏蔽QQ官方机器人消息"),
# 聊天功能设置
"enable_poke": ConfigField(type=bool, default=True, description="是否启用戳一戳功能"),
"ignore_non_self_poke": ConfigField(type=bool, default=False, description="是否无视不是针对自己的戳一戳"),
"poke_debounce_seconds": ConfigField(type=int, default=3, description="戳一戳防抖时间(秒),在指定时间内第二次针对机器人的戳一戳将被忽略"),
"poke_debounce_seconds": ConfigField(
type=int, default=3, description="戳一戳防抖时间(秒),在指定时间内第二次针对机器人的戳一戳将被忽略"
),
"enable_reply_at": ConfigField(type=bool, default=True, description="是否启用引用回复时艾特用户的功能"),
"reply_at_rate": ConfigField(type=float, default=0.5, description="引用回复时艾特用户的几率 (0.0 ~ 1.0)"),
"enable_emoji_like": ConfigField(type=bool, default=True, description="是否启用群聊表情回复功能"),
# 视频处理设置
"enable_video_analysis": ConfigField(type=bool, default=True, description="是否启用视频识别功能"),
"max_video_size_mb": ConfigField(type=int, default=100, description="视频文件最大大小限制MB"),
"download_timeout": ConfigField(type=int, default=60, description="视频下载超时时间(秒)"),
"supported_formats": ConfigField(type=list, default=["mp4", "avi", "mov", "mkv", "flv", "wmv", "webm"], description="支持的视频格式"),
# 消息缓冲设置
"enable_message_buffer": ConfigField(type=bool, default=True, description="是否启用消息缓冲合并功能"),
"message_buffer_enable_group": ConfigField(type=bool, default=True, description="是否启用群聊消息缓冲合并"),
"message_buffer_enable_private": ConfigField(type=bool, default=True, description="是否启用私聊消息缓冲合并"),
"message_buffer_interval": ConfigField(type=float, default=3.0, description="消息合并间隔时间(秒),在此时间内的连续消息将被合并"),
"message_buffer_initial_delay": ConfigField(type=float, default=0.5, description="消息缓冲初始延迟(秒),收到第一条消息后等待此时间开始合并"),
"message_buffer_max_components": ConfigField(type=int, default=50, description="单个会话最大缓冲消息组件数量,超过此数量将强制合并"),
"message_buffer_block_prefixes": ConfigField(type=list, default=["/", "!", "", ".", "", "#", "%"], description="消息缓冲屏蔽前缀,以这些前缀开头的消息不会被缓冲"),
}
"supported_formats": ConfigField(
type=list, default=["mp4", "avi", "mov", "mkv", "flv", "wmv", "webm"], description="支持的视频格式"
),
# 消息缓冲功能已移除
},
}
# 配置节描述
@@ -380,7 +408,7 @@ class NapcatAdapterPlugin(BasePlugin):
"voice": "发送语音设置",
"slicing": "WebSocket消息切片设置",
"debug": "调试设置",
"features": "功能设置(权限控制、聊天功能、视频处理、消息缓冲等)"
"features": "功能设置(权限控制、聊天功能、视频处理、消息缓冲等)",
}
def register_events(self):
@@ -414,6 +442,7 @@ class NapcatAdapterPlugin(BasePlugin):
chunker.set_plugin_config(self.config)
# 设置response_pool的插件配置
from .src.response_pool import set_plugin_config as set_response_pool_config
set_response_pool_config(self.config)
# 设置send_handler的插件配置
send_handler.set_plugin_config(self.config)
@@ -423,4 +452,4 @@ class NapcatAdapterPlugin(BasePlugin):
notice_handler.set_plugin_config(self.config)
# 设置meta_event_handler的插件配置
meta_event_handler.set_plugin_config(self.config)
# 设置其他handler的插件配置现在由component_registry在注册时自动设置
# 设置其他handler的插件配置现在由component_registry在注册时自动设置

View File

@@ -1,317 +0,0 @@
import asyncio
import time
from typing import Dict, List, Any, Optional
from dataclasses import dataclass, field
from src.common.logger import get_logger
logger = get_logger("napcat_adapter")
from src.plugin_system.apis import config_api
from .recv_handler import RealMessageType
@dataclass
class TextMessage:
"""文本消息"""
text: str
timestamp: float = field(default_factory=time.time)
@dataclass
class BufferedSession:
"""缓冲会话数据"""
session_id: str
messages: List[TextMessage] = field(default_factory=list)
timer_task: Optional[asyncio.Task] = None
delay_task: Optional[asyncio.Task] = None
original_event: Any = None
created_at: float = field(default_factory=time.time)
class SimpleMessageBuffer:
def __init__(self, merge_callback=None):
"""
初始化消息缓冲器
Args:
merge_callback: 消息合并后的回调函数,接收(session_id, merged_text, original_event)参数
"""
self.buffer_pool: Dict[str, BufferedSession] = {}
self.lock = asyncio.Lock()
self.merge_callback = merge_callback
self._shutdown = False
self.plugin_config = None
def set_plugin_config(self, plugin_config: dict):
"""设置插件配置"""
self.plugin_config = plugin_config
@staticmethod
def get_session_id(event_data: Dict[str, Any]) -> str:
"""根据事件数据生成会话ID"""
message_type = event_data.get("message_type", "unknown")
user_id = event_data.get("user_id", "unknown")
if message_type == "private":
return f"private_{user_id}"
elif message_type == "group":
group_id = event_data.get("group_id", "unknown")
return f"group_{group_id}_{user_id}"
else:
return f"{message_type}_{user_id}"
@staticmethod
def extract_text_from_message(message: List[Dict[str, Any]]) -> Optional[str]:
"""从OneBot消息中提取纯文本如果包含非文本内容则返回None"""
text_parts = []
has_non_text = False
logger.debug(f"正在提取消息文本,消息段数量: {len(message)}")
for msg_seg in message:
msg_type = msg_seg.get("type", "")
logger.debug(f"处理消息段类型: {msg_type}")
if msg_type == RealMessageType.text:
text = msg_seg.get("data", {}).get("text", "").strip()
if text:
text_parts.append(text)
logger.debug(f"提取到文本: {text[:50]}...")
else:
# 发现非文本消息段,标记为包含非文本内容
has_non_text = True
logger.debug(f"发现非文本消息段: {msg_type},跳过缓冲")
# 如果包含非文本内容,则不进行缓冲
if has_non_text:
logger.debug("消息包含非文本内容,不进行缓冲")
return None
if text_parts:
combined_text = " ".join(text_parts).strip()
logger.debug(f"成功提取纯文本: {combined_text[:50]}...")
return combined_text
logger.debug("没有找到有效的文本内容")
return None
def should_skip_message(self, text: str) -> bool:
"""判断消息是否应该跳过缓冲"""
if not text or not text.strip():
return True
# 检查屏蔽前缀
block_prefixes = tuple(config_api.get_plugin_config(self.plugin_config, "features.message_buffer_block_prefixes", []))
text = text.strip()
if text.startswith(block_prefixes):
logger.debug(f"消息以屏蔽前缀开头,跳过缓冲: {text[:20]}...")
return True
return False
async def add_text_message(
self, event_data: Dict[str, Any], message: List[Dict[str, Any]], original_event: Any = None
) -> bool:
"""
添加文本消息到缓冲区
Args:
event_data: 事件数据
message: OneBot消息数组
original_event: 原始事件对象
Returns:
是否成功添加到缓冲区
"""
if self._shutdown:
return False
# 检查是否启用消息缓冲
if not config_api.get_plugin_config(self.plugin_config, "features.enable_message_buffer", False):
return False
# 检查是否启用对应类型的缓冲
message_type = event_data.get("message_type", "")
if message_type == "group" and not config_api.get_plugin_config(self.plugin_config, "features.message_buffer_enable_group", False):
return False
elif message_type == "private" and not config_api.get_plugin_config(self.plugin_config, "features.message_buffer_enable_private", False):
return False
# 提取文本
text = self.extract_text_from_message(message)
if not text:
return False
# 检查是否应该跳过
if self.should_skip_message(text):
return False
session_id = self.get_session_id(event_data)
async with self.lock:
# 获取或创建会话
if session_id not in self.buffer_pool:
self.buffer_pool[session_id] = BufferedSession(session_id=session_id, original_event=original_event)
session = self.buffer_pool[session_id]
# 检查是否超过最大组件数量
if len(session.messages) >= config_api.get_plugin_config(self.plugin_config, "features.message_buffer_max_components", 5):
logger.debug(f"会话 {session_id} 消息数量达到上限,强制合并")
asyncio.create_task(self._force_merge_session(session_id))
self.buffer_pool[session_id] = BufferedSession(session_id=session_id, original_event=original_event)
session = self.buffer_pool[session_id]
# 添加文本消息
session.messages.append(TextMessage(text=text))
session.original_event = original_event # 更新事件
# 取消之前的定时器
await self._cancel_session_timers(session)
# 设置新的延迟任务
session.delay_task = asyncio.create_task(self._wait_and_start_merge(session_id))
logger.debug(f"文本消息已添加到缓冲器 {session_id}: {text[:50]}...")
return True
@staticmethod
async def _cancel_session_timers(session: BufferedSession):
"""取消会话的所有定时器"""
for task_name in ["timer_task", "delay_task"]:
task = getattr(session, task_name)
if task and not task.done():
task.cancel()
try:
await task
except asyncio.CancelledError:
pass
setattr(session, task_name, None)
async def _wait_and_start_merge(self, session_id: str):
"""等待初始延迟后开始合并定时器"""
initial_delay = config_api.get_plugin_config(self.plugin_config, "features.message_buffer_initial_delay", 0.5)
await asyncio.sleep(initial_delay)
async with self.lock:
session = self.buffer_pool.get(session_id)
if session and session.messages:
# 取消旧的定时器
if session.timer_task and not session.timer_task.done():
session.timer_task.cancel()
try:
await session.timer_task
except asyncio.CancelledError:
pass
# 设置合并定时器
session.timer_task = asyncio.create_task(self._wait_and_merge(session_id))
async def _wait_and_merge(self, session_id: str):
"""等待合并间隔后执行合并"""
interval = config_api.get_plugin_config(self.plugin_config, "features.message_buffer_interval", 2.0)
await asyncio.sleep(interval)
await self._merge_session(session_id)
async def _force_merge_session(self, session_id: str):
"""强制合并会话(不等待定时器)"""
await self._merge_session(session_id, force=True)
async def _merge_session(self, session_id: str, force: bool = False):
"""合并会话中的消息"""
async with self.lock:
session = self.buffer_pool.get(session_id)
if not session or not session.messages:
self.buffer_pool.pop(session_id, None)
return
try:
# 合并文本消息
text_parts = []
for msg in session.messages:
if msg.text.strip():
text_parts.append(msg.text.strip())
if not text_parts:
self.buffer_pool.pop(session_id, None)
return
merged_text = "".join(text_parts) # 使用中文逗号连接
message_count = len(session.messages)
logger.debug(f"合并会话 {session_id}{message_count} 条文本消息: {merged_text[:100]}...")
# 调用回调函数
if self.merge_callback:
try:
if asyncio.iscoroutinefunction(self.merge_callback):
await self.merge_callback(session_id, merged_text, session.original_event)
else:
self.merge_callback(session_id, merged_text, session.original_event)
except Exception as e:
logger.error(f"消息合并回调执行失败: {e}")
except Exception as e:
logger.error(f"合并会话 {session_id} 时出错: {e}")
finally:
# 清理会话
await self._cancel_session_timers(session)
self.buffer_pool.pop(session_id, None)
async def flush_session(self, session_id: str):
"""强制刷新指定会话的缓冲区"""
await self._force_merge_session(session_id)
async def flush_all(self):
"""强制刷新所有会话的缓冲区"""
session_ids = list(self.buffer_pool.keys())
for session_id in session_ids:
await self._force_merge_session(session_id)
async def get_buffer_stats(self) -> Dict[str, Any]:
"""获取缓冲区统计信息"""
async with self.lock:
stats = {"total_sessions": len(self.buffer_pool), "sessions": {}}
for session_id, session in self.buffer_pool.items():
stats["sessions"][session_id] = {
"message_count": len(session.messages),
"created_at": session.created_at,
"age": time.time() - session.created_at,
}
return stats
async def clear_expired_sessions(self, max_age: float = 300.0):
"""清理过期的会话"""
current_time = time.time()
expired_sessions = []
async with self.lock:
for session_id, session in self.buffer_pool.items():
if current_time - session.created_at > max_age:
expired_sessions.append(session_id)
for session_id in expired_sessions:
logger.debug(f"清理过期会话: {session_id}")
await self._force_merge_session(session_id)
async def shutdown(self):
"""关闭消息缓冲器"""
self._shutdown = True
logger.debug("正在关闭简化消息缓冲器...")
# 刷新所有缓冲区
await self.flush_all()
# 确保所有任务都被取消
async with self.lock:
for session in list(self.buffer_pool.values()):
await self._cancel_session_timers(session)
self.buffer_pool.clear()
logger.debug("简化消息缓冲器已关闭")

View File

@@ -11,10 +11,10 @@ router = None
def create_router(plugin_config: dict):
"""创建路由器实例"""
global router
platform_name = config_api.get_plugin_config(plugin_config, "maibot_server.platform_name", "napcat")
platform_name = config_api.get_plugin_config(plugin_config, "maibot_server.platform_name", "qq")
host = config_api.get_plugin_config(plugin_config, "maibot_server.host", "localhost")
port = config_api.get_plugin_config(plugin_config, "maibot_server.port", 8000)
route_config = RouteConfig(
route_config={
platform_name: TargetConfig(
@@ -32,7 +32,7 @@ async def mmc_start_com(plugin_config: dict = None):
logger.info("正在连接MaiBot")
if plugin_config:
create_router(plugin_config)
if router:
router.register_class_handler(send_handler.handle_message)
await router.run()

View File

@@ -32,7 +32,7 @@ class NoticeType: # 通知事件
group_recall = "group_recall" # 群聊消息撤回
notify = "notify"
group_ban = "group_ban" # 群禁言
group_msg_emoji_like = "group_msg_emoji_like" # 群聊表情回复
group_msg_emoji_like = "group_msg_emoji_like" # 群聊表情回复
class Notify:
poke = "poke" # 戳一戳

View File

@@ -6,7 +6,6 @@ from ...CONSTS import PLUGIN_NAME
logger = get_logger("napcat_adapter")
from src.plugin_system.apis import config_api
from ..message_buffer import SimpleMessageBuffer
from ..utils import (
get_group_info,
get_member_info,
@@ -48,20 +47,18 @@ class MessageHandler:
self.server_connection: Server.ServerConnection = None
self.bot_id_list: Dict[int, bool] = {}
self.plugin_config = None
# 初始化简化消息缓冲器,传入回调函数
self.message_buffer = SimpleMessageBuffer(merge_callback=self._send_buffered_message)
# 消息缓冲功能已移除
def set_plugin_config(self, plugin_config: dict):
"""设置插件配置"""
self.plugin_config = plugin_config
# 将配置传递给消息缓冲器
if self.message_buffer:
self.message_buffer.set_plugin_config(plugin_config)
# 消息缓冲功能已移除
async def shutdown(self):
"""关闭消息处理器,清理资源"""
if self.message_buffer:
await self.message_buffer.shutdown()
# 消息缓冲功能已移除
# 消息缓冲功能已移除
async def set_server_connection(self, server_connection: Server.ServerConnection) -> None:
"""设置Napcat连接"""
@@ -100,7 +97,7 @@ class MessageHandler:
# 检查群聊黑白名单
group_list_type = config_api.get_plugin_config(self.plugin_config, "features.group_list_type", "blacklist")
group_list = config_api.get_plugin_config(self.plugin_config, "features.group_list", [])
if group_list_type == "whitelist":
if group_id not in group_list:
logger.warning("群聊不在白名单中,消息被丢弃")
@@ -111,9 +108,11 @@ class MessageHandler:
return False
else:
# 检查私聊黑白名单
private_list_type = config_api.get_plugin_config(self.plugin_config, "features.private_list_type", "blacklist")
private_list_type = config_api.get_plugin_config(
self.plugin_config, "features.private_list_type", "blacklist"
)
private_list = config_api.get_plugin_config(self.plugin_config, "features.private_list", [])
if private_list_type == "whitelist":
if user_id not in private_list:
logger.warning("私聊不在白名单中,消息被丢弃")
@@ -156,21 +155,23 @@ class MessageHandler:
Parameters:
raw_message: dict: 原始消息
"""
# 添加原始消息调试日志特别关注message字段
logger.debug(f"收到原始消息: message_type={raw_message.get('message_type')}, message_id={raw_message.get('message_id')}")
logger.debug(
f"收到原始消息: message_type={raw_message.get('message_type')}, message_id={raw_message.get('message_id')}"
)
logger.debug(f"原始消息内容: {raw_message.get('message', [])}")
# 检查是否包含@或video消息段
message_segments = raw_message.get('message', [])
message_segments = raw_message.get("message", [])
if message_segments:
for i, seg in enumerate(message_segments):
seg_type = seg.get('type')
if seg_type in ['at', 'video']:
seg_type = seg.get("type")
if seg_type in ["at", "video"]:
logger.info(f"检测到 {seg_type.upper()} 消息段 [{i}]: {seg}")
elif seg_type not in ['text', 'face', 'image']:
elif seg_type not in ["text", "face", "image"]:
logger.warning(f"检测到特殊消息段 [{i}]: type={seg_type}, data={seg.get('data', {})}")
message_type: str = raw_message.get("message_type")
message_id: int = raw_message.get("message_id")
# message_time: int = raw_message.get("time")
@@ -301,38 +302,7 @@ class MessageHandler:
logger.warning("处理后消息内容为空")
return None
# 检查是否需要使用消息缓冲
enable_message_buffer = config_api.get_plugin_config(self.plugin_config, "features.enable_message_buffer", True)
if enable_message_buffer:
# 检查消息类型是否启用缓冲
message_type = raw_message.get("message_type")
should_use_buffer = False
if message_type == "group" and config_api.get_plugin_config(self.plugin_config, "features.message_buffer_enable_group", True):
should_use_buffer = True
elif message_type == "private" and config_api.get_plugin_config(self.plugin_config, "features.message_buffer_enable_private", True):
should_use_buffer = True
if should_use_buffer:
logger.debug(f"尝试缓冲消息,消息类型: {message_type}, 用户: {user_info.user_id}")
# 尝试添加到缓冲器
buffered = await self.message_buffer.add_text_message(
event_data={
"message_type": message_type,
"user_id": user_info.user_id,
"group_id": group_info.group_id if group_info else None,
},
message=raw_message.get("message", []),
original_event={"message_info": message_info, "raw_message": raw_message},
)
if buffered:
logger.debug(f"✅ 文本消息已成功缓冲: {user_info.user_id}")
return None # 缓冲成功,不立即发送
# 如果缓冲失败(消息包含非文本元素),走正常处理流程
logger.debug(f"❌ 消息缓冲失败,包含非文本元素,走正常处理流程: {user_info.user_id}")
# 缓冲失败时继续执行后面的正常处理流程,不要直接返回
# 消息缓冲功能已移除,直接处理消息
logger.debug(f"准备发送消息到MaiBot消息段数量: {len(seg_message)}")
for i, seg in enumerate(seg_message):
@@ -351,7 +321,6 @@ class MessageHandler:
logger.debug("发送到Maibot处理信息")
await message_send_instance.message_send(message_base)
return None
async def handle_real_message(self, raw_message: dict, in_reply: bool = False) -> List[Seg] | None:
# sourcery skip: low-code-quality
@@ -369,10 +338,10 @@ class MessageHandler:
for sub_message in real_message:
sub_message: dict
sub_message_type = sub_message.get("type")
# 添加详细的消息类型调试信息
logger.debug(f"处理消息段: type={sub_message_type}, data={sub_message.get('data', {})}")
# 特别关注 at 和 video 消息的识别
if sub_message_type == "at":
logger.debug(f"检测到@消息: {sub_message}")
@@ -380,7 +349,7 @@ class MessageHandler:
logger.debug(f"检测到VIDEO消息: {sub_message}")
elif sub_message_type not in ["text", "face", "image", "record"]:
logger.warning(f"检测到特殊消息类型: {sub_message_type}, 完整消息: {sub_message}")
match sub_message_type:
case RealMessageType.text:
ret_seg = await self.handle_text_message(sub_message)
@@ -519,8 +488,7 @@ class MessageHandler:
logger.debug(f"handle_real_message完成处理了{len(real_message)}个消息段,生成了{len(seg_message)}个seg")
return seg_message
@staticmethod
async def handle_text_message(raw_message: dict) -> Seg:
async def handle_text_message(self, raw_message: dict) -> Seg:
"""
处理纯文本信息
Parameters:
@@ -532,8 +500,7 @@ class MessageHandler:
plain_text: str = message_data.get("text")
return Seg(type="text", data=plain_text)
@staticmethod
async def handle_face_message(raw_message: dict) -> Seg | None:
async def handle_face_message(self, raw_message: dict) -> Seg | None:
"""
处理表情消息
Parameters:
@@ -550,8 +517,7 @@ class MessageHandler:
logger.warning(f"不支持的表情:{face_raw_id}")
return None
@staticmethod
async def handle_image_message(raw_message: dict) -> Seg | None:
async def handle_image_message(self, raw_message: dict) -> Seg | None:
"""
处理图片消息与表情包消息
Parameters:
@@ -607,7 +573,6 @@ class MessageHandler:
return Seg(type="at", data=f"{member_info.get('nickname')}:{member_info.get('user_id')}")
else:
return None
return None
async def handle_record_message(self, raw_message: dict) -> Seg | None:
"""
@@ -636,8 +601,7 @@ class MessageHandler:
return None
return Seg(type="voice", data=audio_base64)
@staticmethod
async def handle_video_message(raw_message: dict) -> Seg | None:
async def handle_video_message(self, raw_message: dict) -> Seg | None:
"""
处理视频消息
Parameters:
@@ -744,7 +708,6 @@ class MessageHandler:
reply_message = [Seg(type="text", data="(获取发言内容失败)")]
sender_info: dict = message_detail.get("sender")
sender_nickname: str = sender_info.get("nickname")
sender_id: str = sender_info.get("user_id")
seg_message: List[Seg] = []
if not sender_nickname:
logger.warning("无法获取被引用的人的昵称,返回默认值")
@@ -768,7 +731,7 @@ class MessageHandler:
return None
processed_message: Seg
if 5 > image_count > 0:
if image_count < 5 and image_count > 0:
# 处理图片数量小于5的情况此时解析图片为base64
logger.debug("图片数量小于5开始解析图片为base64")
processed_message = await self._recursive_parse_image_seg(handled_message, True)
@@ -785,18 +748,15 @@ class MessageHandler:
forward_hint = Seg(type="text", data="这是一条转发消息:\n")
return Seg(type="seglist", data=[forward_hint, processed_message])
@staticmethod
async def handle_dice_message(raw_message: dict) -> Seg:
async def handle_dice_message(self, raw_message: dict) -> Seg:
message_data: dict = raw_message.get("data", {})
res = message_data.get("result", "")
return Seg(type="text", data=f"[扔了一个骰子,点数是{res}]")
@staticmethod
async def handle_shake_message(raw_message: dict) -> Seg:
async def handle_shake_message(self, raw_message: dict) -> Seg:
return Seg(type="text", data="[向你发送了窗口抖动,现在你的屏幕猛烈地震了一下!]")
@staticmethod
async def handle_json_message(raw_message: dict) -> Seg | None:
async def handle_json_message(self, raw_message: dict) -> Seg:
"""
处理JSON消息
Parameters:
@@ -868,43 +828,6 @@ class MessageHandler:
data=f"这是一条小程序分享消息,可以根据来源,考虑使用对应解析工具\n{formatted_content}",
)
# 检查是否是音乐分享
elif nested_data.get("view") == "music" and "music" in nested_data.get("meta", {}):
logger.debug("检测到音乐分享消息,开始提取信息")
music_info = nested_data["meta"]["music"]
title = music_info.get("title", "未知歌曲")
desc = music_info.get("desc", "未知艺术家")
jump_url = music_info.get("jumpUrl", "")
preview_url = music_info.get("preview", "")
source = music_info.get("tag", "未知来源")
# 优化文本结构,使其更像卡片
text_parts = [
"--- 音乐分享 ---",
f"歌曲:{title}",
f"歌手:{desc}",
f"来源:{source}"
]
if jump_url:
text_parts.append(f"链接:{jump_url}")
text_parts.append("----------------")
text_content = "\n".join(text_parts)
# 如果有预览图创建一个seglist包含文本和图片
if preview_url:
try:
image_base64 = await get_image_base64(preview_url)
if image_base64:
return Seg(type="seglist", data=[
Seg(type="text", data=text_content + "\n"),
Seg(type="image", data=image_base64)
])
except Exception as e:
logger.error(f"下载音乐预览图失败: {e}")
return Seg(type="text", data=text_content)
# 如果没有提取到关键信息返回None
return None
@@ -915,8 +838,7 @@ class MessageHandler:
logger.error(f"处理JSON消息时出错: {e}")
return None
@staticmethod
async def handle_rps_message(raw_message: dict) -> Seg:
async def handle_rps_message(self, raw_message: dict) -> Seg:
message_data: dict = raw_message.get("data", {})
res = message_data.get("result", "")
if res == "1":
@@ -1099,55 +1021,7 @@ class MessageHandler:
return None
return response_data.get("messages")
@staticmethod
async def _send_buffered_message(session_id: str, merged_text: str, original_event: Dict[str, Any]):
"""发送缓冲的合并消息"""
try:
# 从原始事件数据中提取信息
message_info = original_event.get("message_info")
raw_message = original_event.get("raw_message")
if not message_info or not raw_message:
logger.error("缓冲消息缺少必要信息")
return
# 创建合并后的消息段 - 将合并的文本转换为Seg格式
from maim_message import Seg
merged_seg = Seg(type="text", data=merged_text)
submit_seg = Seg(type="seglist", data=[merged_seg])
# 创建新的消息ID
import time
new_message_id = f"buffered-{message_info.message_id}-{int(time.time() * 1000)}"
# 更新消息信息
from maim_message import BaseMessageInfo, MessageBase
buffered_message_info = BaseMessageInfo(
platform=message_info.platform,
message_id=new_message_id,
time=time.time(),
user_info=message_info.user_info,
group_info=message_info.group_info,
template_info=message_info.template_info,
format_info=message_info.format_info,
additional_config=message_info.additional_config,
)
# 创建MessageBase
message_base = MessageBase(
message_info=buffered_message_info,
message_segment=submit_seg,
raw_message=raw_message.get("raw_message", ""),
)
logger.debug(f"发送缓冲合并消息到Maibot处理: {session_id}")
await message_send_instance.message_send(message_base)
except Exception as e:
logger.error(f"发送缓冲消息失败: {e}", exc_info=True)
# 消息缓冲功能已移除
message_handler = MessageHandler()

View File

@@ -33,6 +33,7 @@ class MessageSending:
try:
# 重新导入router
from ..mmc_com_layer import router
self.maibot_router = router
if self.maibot_router is not None:
logger.info("MaiBot router重连成功")
@@ -73,14 +74,14 @@ class MessageSending:
# 获取对应的客户端并发送切片
platform = message_base.message_info.platform
# 再次检查router状态防止运行时被重置
if self.maibot_router is None or not hasattr(self.maibot_router, 'clients'):
if self.maibot_router is None or not hasattr(self.maibot_router, "clients"):
logger.warning("MaiBot router连接已断开尝试重新连接")
if not await self._attempt_reconnect():
logger.error("MaiBot router重连失败切片发送中止")
return False
if platform not in self.maibot_router.clients:
logger.error(f"平台 {platform} 未连接")
return False

View File

@@ -23,7 +23,9 @@ class MetaEventHandler:
"""设置插件配置"""
self.plugin_config = plugin_config
# 更新interval值
self.interval = config_api.get_plugin_config(self.plugin_config, "napcat_server.heartbeat_interval", 5000) / 1000
self.interval = (
config_api.get_plugin_config(self.plugin_config, "napcat_server.heartbeat_interval", 5000) / 1000
)
async def handle_meta_event(self, message: dict) -> None:
event_type = message.get("meta_event_type")

View File

@@ -9,7 +9,7 @@ from src.common.logger import get_logger
logger = get_logger("napcat_adapter")
from src.plugin_system.apis import config_api
from ..database import BanUser, napcat_db, is_identical
from ..database import BanUser, db_manager, is_identical
from . import NoticeType, ACCEPT_FORMAT
from .message_sending import message_send_instance
from .message_handler import message_handler
@@ -62,7 +62,7 @@ class NoticeHandler:
return self.server_connection
return websocket_manager.get_connection()
async def _ban_operation(self, group_id: int, user_id: Optional[int] = None, lift_time: Optional[int] = None) -> None:
def _ban_operation(self, group_id: int, user_id: Optional[int] = None, lift_time: Optional[int] = None) -> None:
"""
将用户禁言记录添加到self.banned_list中
如果是全体禁言则user_id为0
@@ -71,16 +71,16 @@ class NoticeHandler:
user_id = 0 # 使用0表示全体禁言
lift_time = -1
ban_record = BanUser(user_id=user_id, group_id=group_id, lift_time=lift_time)
for record in list(self.banned_list):
for record in self.banned_list:
if is_identical(record, ban_record):
self.banned_list.remove(record)
self.banned_list.append(ban_record)
await napcat_db.create_ban_record(ban_record) # 更新
db_manager.create_ban_record(ban_record) # 作为更新
return
self.banned_list.append(ban_record)
await napcat_db.create_ban_record(ban_record) # 新建
db_manager.create_ban_record(ban_record) # 添加到数据库
async def _lift_operation(self, group_id: int, user_id: Optional[int] = None) -> None:
def _lift_operation(self, group_id: int, user_id: Optional[int] = None) -> None:
"""
从self.lifted_group_list中移除已经解除全体禁言的群
"""
@@ -88,12 +88,7 @@ class NoticeHandler:
user_id = 0 # 使用0表示全体禁言
ban_record = BanUser(user_id=user_id, group_id=group_id, lift_time=-1)
self.lifted_list.append(ban_record)
# 从被禁言列表里移除对应记录
for record in list(self.banned_list):
if is_identical(record, ban_record):
self.banned_list.remove(record)
break
await napcat_db.delete_ban_record(ban_record)
db_manager.delete_ban_record(ban_record) # 删除数据库中的记录
async def handle_notice(self, raw_message: dict) -> None:
notice_type = raw_message.get("notice_type")
@@ -121,9 +116,9 @@ class NoticeHandler:
sub_type = raw_message.get("sub_type")
match sub_type:
case NoticeType.Notify.poke:
if config_api.get_plugin_config(self.plugin_config, "features.enable_poke", True) and await message_handler.check_allow_to_chat(
user_id, group_id, False, False
):
if config_api.get_plugin_config(
self.plugin_config, "features.enable_poke", True
) and await message_handler.check_allow_to_chat(user_id, group_id, False, False):
logger.debug("处理戳一戳消息")
handled_message, user_info = await self.handle_poke_notify(raw_message, group_id, user_id)
else:
@@ -132,14 +127,18 @@ class NoticeHandler:
from src.plugin_system.core.event_manager import event_manager
from ...event_types import NapcatEvent
await event_manager.trigger_event(NapcatEvent.ON_RECEIVED.FRIEND_INPUT, permission_group=PLUGIN_NAME)
await event_manager.trigger_event(
NapcatEvent.ON_RECEIVED.FRIEND_INPUT, permission_group=PLUGIN_NAME
)
case _:
logger.warning(f"不支持的notify类型: {notice_type}.{sub_type}")
case NoticeType.group_msg_emoji_like:
case NoticeType.group_msg_emoji_like:
# 该事件转移到 handle_group_emoji_like_notify函数内触发
if config_api.get_plugin_config(self.plugin_config, "features.enable_emoji_like", True):
logger.debug("处理群聊表情回复")
handled_message, user_info = await self.handle_group_emoji_like_notify(raw_message,group_id,user_id)
handled_message, user_info = await self.handle_group_emoji_like_notify(
raw_message, group_id, user_id
)
else:
logger.warning("群聊表情回复被禁用,取消群聊表情回复处理")
case NoticeType.group_ban:
@@ -202,11 +201,9 @@ class NoticeHandler:
if system_notice:
await self.put_notice(message_base)
return None
else:
logger.debug("发送到Maibot处理通知信息")
await message_send_instance.message_send(message_base)
return None
async def handle_poke_notify(
self, raw_message: dict, group_id: int, user_id: int
@@ -301,7 +298,7 @@ class NoticeHandler:
async def handle_group_emoji_like_notify(self, raw_message: dict, group_id: int, user_id: int):
if not group_id:
logger.error("群ID不能为空无法处理群聊表情回复通知")
return None, None
return None, None
user_qq_info: dict = await get_member_info(self.get_server_connection(), group_id, user_id)
if user_qq_info:
@@ -311,37 +308,42 @@ class NoticeHandler:
user_name = "QQ用户"
user_cardname = "QQ用户"
logger.debug("无法获取表情回复对方的用户昵称")
from src.plugin_system.core.event_manager import event_manager
from ...event_types import NapcatEvent
target_message = await event_manager.trigger_event(NapcatEvent.MESSAGE.GET_MSG,message_id=raw_message.get("message_id",""))
target_message_text = target_message.get_message_result().get("data",{}).get("raw_message","")
target_message = await event_manager.trigger_event(
NapcatEvent.MESSAGE.GET_MSG, message_id=raw_message.get("message_id", "")
)
target_message_text = target_message.get_message_result().get("data", {}).get("raw_message", "")
if not target_message:
logger.error("未找到对应消息")
return None, None
if len(target_message_text) > 15:
target_message_text = target_message_text[:15] + "..."
user_info: UserInfo = UserInfo(
platform=config_api.get_plugin_config(self.plugin_config, "maibot_server.platform_name", "qq"),
user_id=user_id,
user_nickname=user_name,
user_cardname=user_cardname,
)
like_emoji_id = raw_message.get("likes")[0].get("emoji_id")
await event_manager.trigger_event(
NapcatEvent.ON_RECEIVED.EMOJI_LIEK,
permission_group=PLUGIN_NAME,
group_id=group_id,
user_id=user_id,
message_id=raw_message.get("message_id",""),
emoji_id=like_emoji_id
)
seg_data = Seg(type="text",data=f"{user_name}使用Emoji表情{QQ_FACE.get(like_emoji_id, '')}回复了你的消息[{target_message_text}]")
NapcatEvent.ON_RECEIVED.EMOJI_LIEK,
permission_group=PLUGIN_NAME,
group_id=group_id,
user_id=user_id,
message_id=raw_message.get("message_id", ""),
emoji_id=like_emoji_id,
)
seg_data = Seg(
type="text",
data=f"{user_name}使用Emoji表情{QQ_FACE.get(like_emoji_id, '')}回复了你的消息[{target_message_text}]",
)
return seg_data, user_info
async def handle_ban_notify(self, raw_message: dict, group_id: int) -> Tuple[Seg, UserInfo] | Tuple[None, None]:
if not group_id:
logger.error("群ID不能为空无法处理禁言通知")
@@ -381,7 +383,7 @@ class NoticeHandler:
if user_id == 0: # 为全体禁言
sub_type: str = "whole_ban"
await self._ban_operation(group_id)
self._ban_operation(group_id)
else: # 为单人禁言
# 获取被禁言人的信息
sub_type: str = "ban"
@@ -395,7 +397,7 @@ class NoticeHandler:
user_nickname=user_nickname,
user_cardname=user_cardname,
)
await self._ban_operation(group_id, user_id, int(time.time() + duration))
self._ban_operation(group_id, user_id, int(time.time() + duration))
seg_data: Seg = Seg(
type="notify",
@@ -444,7 +446,7 @@ class NoticeHandler:
user_id = raw_message.get("user_id")
if user_id == 0: # 全体禁言解除
sub_type = "whole_lift_ban"
await self._lift_operation(group_id)
self._lift_operation(group_id)
else: # 单人禁言解除
sub_type = "lift_ban"
# 获取被解除禁言人的信息
@@ -460,7 +462,7 @@ class NoticeHandler:
user_nickname=user_nickname,
user_cardname=user_cardname,
)
await self._lift_operation(group_id, user_id)
self._lift_operation(group_id, user_id)
seg_data: Seg = Seg(
type="notify",
@@ -471,8 +473,7 @@ class NoticeHandler:
)
return seg_data, operator_info
@staticmethod
async def put_notice(message_base: MessageBase) -> None:
async def put_notice(self, message_base: MessageBase) -> None:
"""
将处理后的通知消息放入通知队列
"""
@@ -488,7 +489,7 @@ class NoticeHandler:
group_id = lift_record.group_id
user_id = lift_record.user_id
asyncio.create_task(napcat_db.delete_ban_record(lift_record)) # 从数据库中删除禁言记录
db_manager.delete_ban_record(lift_record) # 从数据库中删除禁言记录
seg_message: Seg = await self.natural_lift(group_id, user_id)
@@ -585,8 +586,7 @@ class NoticeHandler:
self.banned_list.remove(ban_record)
await asyncio.sleep(5)
@staticmethod
async def send_notice() -> None:
async def send_notice(self) -> None:
"""
发送通知消息到Napcat
"""

View File

@@ -45,12 +45,12 @@ async def check_timeout_response() -> None:
while True:
cleaned_message_count: int = 0
now_time = time.time()
# 获取心跳间隔配置
heartbeat_interval = 30 # 默认值
if plugin_config:
heartbeat_interval = config_api.get_plugin_config(plugin_config, "napcat_server.heartbeat_interval", 30)
for echo_id, response_time in list(response_time_dict.items()):
if now_time - response_time > heartbeat_interval:
cleaned_message_count += 1

View File

@@ -96,6 +96,7 @@ class SendHandler:
logger.error("无法识别的消息类型")
return None
logger.info("尝试发送到napcat")
logger.debug(f"准备发送到napcat的消息体: action='{action}', {id_name}='{target_id}', message='{processed_message}'")
response = await self.send_message_to_napcat(
action,
{
@@ -228,8 +229,10 @@ class SendHandler:
new_payload = payload
if seg.type == "reply":
target_id = seg.data
target_id = str(target_id)
if target_id == "notice":
return payload
logger.info(target_id if isinstance(target_id, str) else "")
new_payload = self.build_payload(
payload,
await self.handle_reply_message(target_id if isinstance(target_id, str) else "", user_info),
@@ -294,15 +297,17 @@ class SendHandler:
async def handle_reply_message(self, id: str, user_info: UserInfo) -> dict | list:
"""处理回复消息"""
logger.debug(f"开始处理回复消息消息ID: {id}")
reply_seg = {"type": "reply", "data": {"id": id}}
# 检查是否启用引用艾特功能
if not config_api.get_plugin_config(self.plugin_config, "features.enable_reply_at", False):
logger.info("引用艾特功能未启用,仅发送普通回复")
return reply_seg
try:
# 尝试通过 message_id 获取消息详情
msg_info_response = await self.send_message_to_napcat("get_msg", {"message_id": int(id)})
msg_info_response = await self.send_message_to_napcat("get_msg", {"message_id": id})
logger.debug(f"获取消息 {id} 的详情响应: {msg_info_response}")
replied_user_id = None
if msg_info_response and msg_info_response.get("status") == "ok":
@@ -313,6 +318,7 @@ class SendHandler:
# 如果没有获取到被回复者的ID则直接返回不进行@
if not replied_user_id:
logger.warning(f"无法获取消息 {id} 的发送者信息,跳过 @")
logger.info(f"最终返回的回复段: {reply_seg}")
return reply_seg
# 根据概率决定是否艾特用户
@@ -320,13 +326,17 @@ class SendHandler:
at_seg = {"type": "at", "data": {"qq": str(replied_user_id)}}
# 在艾特后面添加一个空格
text_seg = {"type": "text", "data": {"text": " "}}
return [reply_seg, at_seg, text_seg]
result_seg = [reply_seg, at_seg, text_seg]
logger.info(f"最终返回的回复段: {result_seg}")
return result_seg
except Exception as e:
logger.error(f"处理引用回复并尝试@时出错: {e}")
# 出现异常时,只发送普通的回复,避免程序崩溃
logger.info(f"最终返回的回复段: {reply_seg}")
return reply_seg
logger.info(f"最终返回的回复段: {reply_seg}")
return reply_seg
@staticmethod
@@ -366,7 +376,7 @@ class SendHandler:
use_tts = False
if self.plugin_config:
use_tts = config_api.get_plugin_config(self.plugin_config, "voice.use_tts", False)
if not use_tts:
logger.warning("未启用语音消息处理")
return {}

View File

@@ -18,7 +18,9 @@ class WebSocketManager:
self.max_reconnect_attempts = 10 # 最大重连次数
self.plugin_config = None
async def start_connection(self, message_handler: Callable[[Server.ServerConnection], Any], plugin_config: dict) -> None:
async def start_connection(
self, message_handler: Callable[[Server.ServerConnection], Any], plugin_config: dict
) -> None:
"""根据配置启动 WebSocket 连接"""
self.plugin_config = plugin_config
mode = config_api.get_plugin_config(plugin_config, "napcat_server.mode")
@@ -72,9 +74,7 @@ class WebSocketManager:
# 如果配置了访问令牌,添加到请求头
access_token = config_api.get_plugin_config(self.plugin_config, "napcat_server.access_token")
if access_token:
connect_kwargs["additional_headers"] = {
"Authorization": f"Bearer {access_token}"
}
connect_kwargs["additional_headers"] = {"Authorization": f"Bearer {access_token}"}
logger.info("已添加访问令牌到连接请求头")
async with Server.connect(url, **connect_kwargs) as websocket:

View File

@@ -1,43 +0,0 @@
# 权限配置文件
# 此文件用于管理群聊和私聊的黑白名单设置,以及聊天相关功能
# 支持热重载,修改后会自动生效
# 群聊权限设置
group_list_type = "whitelist" # 群聊列表类型whitelist白名单或 blacklist黑名单
group_list = [] # 群聊ID列表
# 当 group_list_type 为 whitelist 时,只有列表中的群聊可以使用机器人
# 当 group_list_type 为 blacklist 时,列表中的群聊无法使用机器人
# 示例group_list = [123456789, 987654321]
# 私聊权限设置
private_list_type = "whitelist" # 私聊列表类型whitelist白名单或 blacklist黑名单
private_list = [] # 用户ID列表
# 当 private_list_type 为 whitelist 时,只有列表中的用户可以私聊机器人
# 当 private_list_type 为 blacklist 时,列表中的用户无法私聊机器人
# 示例private_list = [123456789, 987654321]
# 全局禁止设置
ban_user_id = [] # 全局禁止用户ID列表这些用户无法在任何地方使用机器人
ban_qq_bot = false # 是否屏蔽QQ官方机器人消息
# 聊天功能设置
enable_poke = true # 是否启用戳一戳功能
ignore_non_self_poke = false # 是否无视不是针对自己的戳一戳
poke_debounce_seconds = 3 # 戳一戳防抖时间(秒),在指定时间内第二次针对机器人的戳一戳将被忽略
enable_reply_at = true # 是否启用引用回复时艾特用户的功能
reply_at_rate = 0.5 # 引用回复时艾特用户的几率 (0.0 ~ 1.0)
# 视频处理设置
enable_video_analysis = true # 是否启用视频识别功能
max_video_size_mb = 100 # 视频文件最大大小限制MB
download_timeout = 60 # 视频下载超时时间(秒)
supported_formats = ["mp4", "avi", "mov", "mkv", "flv", "wmv", "webm"] # 支持的视频格式
# 消息缓冲设置
enable_message_buffer = true # 是否启用消息缓冲合并功能
message_buffer_enable_group = true # 是否启用群聊消息缓冲合并
message_buffer_enable_private = true # 是否启用私聊消息缓冲合并
message_buffer_interval = 3.0 # 消息合并间隔时间(秒),在此时间内的连续消息将被合并
message_buffer_initial_delay = 0.5 # 消息缓冲初始延迟(秒),收到第一条消息后等待此时间开始合并
message_buffer_max_components = 50 # 单个会话最大缓冲消息组件数量,超过此数量将强制合并
message_buffer_block_prefixes = ["/"] # 消息缓冲屏蔽前缀,以这些前缀开头的消息不会被缓冲

View File

@@ -1,29 +0,0 @@
[inner]
version = "0.2.1" # 版本号
# 请勿修改版本号,除非你知道自己在做什么
[nickname] # 现在没用
nickname = ""
[napcat_server] # Napcat连接的ws服务设置
mode = "reverse" # 连接模式reverse=反向连接(作为服务器), forward=正向连接(作为客户端)
host = "localhost" # 主机地址
port = 8095 # 端口号
url = "" # 正向连接时的完整WebSocket URL如 ws://localhost:8080/ws (仅在forward模式下使用)
access_token = "" # WebSocket 连接的访问令牌,用于身份验证(可选)
heartbeat_interval = 30 # 心跳间隔时间(按秒计)
[maibot_server] # 连接麦麦的ws服务设置
host = "localhost" # 麦麦在.env文件中设置的主机地址即HOST字段
port = 8000 # 麦麦在.env文件中设置的端口即PORT字段
[voice] # 发送语音设置
use_tts = false # 是否使用tts语音请确保你配置了tts并有对应的adapter
[slicing] # WebSocket消息切片设置
max_frame_size = 64 # WebSocket帧的最大大小单位为字节默认64KB
delay_ms = 10 # 切片发送间隔时间,单位为毫秒
[debug]
level = "INFO" # 日志等级DEBUG, INFO, WARNING, ERROR, CRITICAL

View File

@@ -30,7 +30,8 @@ class PokeAction(BaseAction):
# === 功能描述(必须填写)===
action_parameters = {
"user_name": "需要戳一戳的用户的名字",
"user_name": "需要戳一戳的用户的名字 (可选)",
"user_id": "需要戳一戳的用户的ID (可选,优先级更高)",
"times": "需要戳一戳的次数 (默认为 1)",
}
action_require = ["当需要戳某个用户时使用", "当你想提醒特定用户时使用"]
@@ -46,32 +47,38 @@ class PokeAction(BaseAction):
async def execute(self) -> Tuple[bool, str]:
"""执行戳一戳的动作"""
user_id = self.action_data.get("user_id")
user_name = self.action_data.get("user_name")
try:
times = int(self.action_data.get("times", 1))
except (ValueError, TypeError):
times = 1
if not user_name:
logger.warning("戳一戳动作缺少 'user_name' 参数。")
return False, "缺少 'user_name' 参数"
user_info = await get_person_info_manager().get_person_info_by_name(user_name)
if not user_info or not user_info.get("user_id"):
logger.info(f"找不到名为 '{user_name}' 的用户。")
return False, f"找不到名为 '{user_name}' 的用户"
user_id = user_info.get("user_id")
# 优先使用 user_id
if not user_id:
if not user_name:
logger.warning("戳一戳动作缺少 'user_id''user_name' 参数。")
return False, "缺少用户标识参数"
# 备用方案:通过 user_name 查找
user_info = await get_person_info_manager().get_person_info_by_name(user_name)
if not user_info or not user_info.get("user_id"):
logger.info(f"找不到名为 '{user_name}' 的用户。")
return False, f"找不到名为 '{user_name}' 的用户"
user_id = user_info.get("user_id")
display_name = user_name or user_id
for i in range(times):
logger.info(f"正在向 {user_name} ({user_id}) 发送第 {i + 1}/{times} 次戳一戳...")
logger.info(f"正在向 {display_name} ({user_id}) 发送第 {i + 1}/{times} 次戳一戳...")
await self.send_command(
"SEND_POKE", args={"qq_id": user_id}, display_message=f"戳了戳 {user_name} ({i + 1}/{times})"
"SEND_POKE", args={"qq_id": user_id}, display_message=f"戳了戳 {display_name} ({i + 1}/{times})"
)
# 添加一个小的延迟,以避免发送过快
await asyncio.sleep(0.5)
success_message = f"已向 {user_name} 发送 {times} 次戳一戳。"
success_message = f"已向 {display_name} 发送 {times} 次戳一戳。"
await self.store_action_info(
action_build_into_prompt=True, action_prompt_display=success_message, action_done=True
)

View File

@@ -1,6 +1,7 @@
"""
Base search engine interface
"""
from abc import ABC, abstractmethod
from typing import Dict, List, Any
@@ -9,20 +10,20 @@ class BaseSearchEngine(ABC):
"""
搜索引擎基类
"""
@abstractmethod
async def search(self, args: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
执行搜索
Args:
args: 搜索参数,包含 query、num_results、time_range 等
Returns:
搜索结果列表,每个结果包含 title、url、snippet、provider 字段
"""
pass
@abstractmethod
def is_available(self) -> bool:
"""

View File

@@ -1,6 +1,7 @@
"""
Bing search engine implementation
"""
import asyncio
import functools
import random
@@ -58,21 +59,21 @@ class BingSearchEngine(BaseSearchEngine):
"""
Bing搜索引擎实现
"""
def __init__(self):
self.session = requests.Session()
self.session.headers = HEADERS
def is_available(self) -> bool:
"""检查Bing搜索引擎是否可用"""
return True # Bing是免费搜索引擎总是可用
async def search(self, args: Dict[str, Any]) -> List[Dict[str, Any]]:
"""执行Bing搜索"""
query = args["query"]
num_results = args.get("num_results", 3)
time_range = args.get("time_range", "any")
try:
loop = asyncio.get_running_loop()
func = functools.partial(self._search_sync, query, num_results, time_range)
@@ -81,17 +82,17 @@ class BingSearchEngine(BaseSearchEngine):
except Exception as e:
logger.error(f"Bing 搜索失败: {e}")
return []
def _search_sync(self, keyword: str, num_results: int, time_range: str) -> List[Dict[str, Any]]:
"""同步执行Bing搜索"""
if not keyword:
return []
list_result = []
# 构建搜索URL
search_url = bing_search_url + keyword
# 如果指定了时间范围,添加时间过滤参数
if time_range == "week":
search_url += "&qft=+filterui:date-range-7"
@@ -182,34 +183,29 @@ class BingSearchEngine(BaseSearchEngine):
# 尝试提取搜索结果
# 方法1: 查找标准的搜索结果容器
results = root.select("ol#b_results li.b_algo")
if results:
for _rank, result in enumerate(results, 1):
# 提取标题和链接
title_link = result.select_one("h2 a")
if not title_link:
continue
title = title_link.get_text().strip()
url = title_link.get("href", "")
# 提取摘要
abstract = ""
abstract_elem = result.select_one("div.b_caption p")
if abstract_elem:
abstract = abstract_elem.get_text().strip()
# 限制摘要长度
if ABSTRACT_MAX_LENGTH and len(abstract) > ABSTRACT_MAX_LENGTH:
abstract = abstract[:ABSTRACT_MAX_LENGTH] + "..."
list_data.append({
"title": title,
"url": url,
"snippet": abstract,
"provider": "Bing"
})
list_data.append({"title": title, "url": url, "snippet": abstract, "provider": "Bing"})
if len(list_data) >= 10: # 限制结果数量
break
@@ -217,22 +213,34 @@ class BingSearchEngine(BaseSearchEngine):
if not list_data:
# 查找所有可能的搜索结果链接
all_links = root.find_all("a")
for link in all_links:
href = link.get("href", "")
text = link.get_text().strip()
# 过滤有效的搜索结果链接
if (href and text and len(text) > 10
if (
href
and text
and len(text) > 10
and not href.startswith("javascript:")
and not href.startswith("#")
and "http" in href
and not any(x in href for x in [
"bing.com/search", "bing.com/images", "bing.com/videos",
"bing.com/maps", "bing.com/news", "login", "account",
"microsoft", "javascript"
])):
and not any(
x in href
for x in [
"bing.com/search",
"bing.com/images",
"bing.com/videos",
"bing.com/maps",
"bing.com/news",
"login",
"account",
"microsoft",
"javascript",
]
)
):
# 尝试获取摘要
abstract = ""
parent = link.parent
@@ -240,18 +248,13 @@ class BingSearchEngine(BaseSearchEngine):
full_text = parent.get_text().strip()
if len(full_text) > len(text):
abstract = full_text.replace(text, "", 1).strip()
# 限制摘要长度
if ABSTRACT_MAX_LENGTH and len(abstract) > ABSTRACT_MAX_LENGTH:
abstract = abstract[:ABSTRACT_MAX_LENGTH] + "..."
list_data.append({
"title": text,
"url": href,
"snippet": abstract,
"provider": "Bing"
})
list_data.append({"title": text, "url": href, "snippet": abstract, "provider": "Bing"})
if len(list_data) >= 10:
break

View File

@@ -1,6 +1,7 @@
"""
DuckDuckGo search engine implementation
"""
from typing import Dict, List, Any
from asyncddgs import aDDGS
@@ -14,27 +15,22 @@ class DDGSearchEngine(BaseSearchEngine):
"""
DuckDuckGo搜索引擎实现
"""
def is_available(self) -> bool:
"""检查DuckDuckGo搜索引擎是否可用"""
return True # DuckDuckGo不需要API密钥总是可用
async def search(self, args: Dict[str, Any]) -> List[Dict[str, Any]]:
"""执行DuckDuckGo搜索"""
query = args["query"]
num_results = args.get("num_results", 3)
try:
async with aDDGS() as ddgs:
search_response = await ddgs.text(query, max_results=num_results)
return [
{
"title": r.get("title"),
"url": r.get("href"),
"snippet": r.get("body"),
"provider": "DuckDuckGo"
}
{"title": r.get("title"), "url": r.get("href"), "snippet": r.get("body"), "provider": "DuckDuckGo"}
for r in search_response
]
except Exception as e:

View File

@@ -1,6 +1,7 @@
"""
Exa search engine implementation
"""
import asyncio
import functools
from datetime import datetime, timedelta
@@ -19,31 +20,27 @@ class ExaSearchEngine(BaseSearchEngine):
"""
Exa搜索引擎实现
"""
def __init__(self):
self._initialize_clients()
def _initialize_clients(self):
"""初始化Exa客户端"""
# 从主配置文件读取API密钥
exa_api_keys = config_api.get_global_config("web_search.exa_api_keys", None)
# 创建API密钥管理器
self.api_manager = create_api_key_manager_from_config(
exa_api_keys,
lambda key: Exa(api_key=key),
"Exa"
)
self.api_manager = create_api_key_manager_from_config(exa_api_keys, lambda key: Exa(api_key=key), "Exa")
def is_available(self) -> bool:
"""检查Exa搜索引擎是否可用"""
return self.api_manager.is_available()
async def search(self, args: Dict[str, Any]) -> List[Dict[str, Any]]:
"""执行Exa搜索"""
if not self.is_available():
return []
query = args["query"]
num_results = args.get("num_results", 3)
time_range = args.get("time_range", "any")
@@ -52,7 +49,7 @@ class ExaSearchEngine(BaseSearchEngine):
if time_range != "any":
today = datetime.now()
start_date = today - timedelta(days=7 if time_range == "week" else 30)
exa_args["start_published_date"] = start_date.strftime('%Y-%m-%d')
exa_args["start_published_date"] = start_date.strftime("%Y-%m-%d")
try:
# 使用API密钥管理器获取下一个客户端
@@ -60,17 +57,17 @@ class ExaSearchEngine(BaseSearchEngine):
if not exa_client:
logger.error("无法获取Exa客户端")
return []
loop = asyncio.get_running_loop()
func = functools.partial(exa_client.search_and_contents, query, **exa_args)
search_response = await loop.run_in_executor(None, func)
return [
{
"title": res.title,
"url": res.url,
"snippet": " ".join(getattr(res, 'highlights', [])) or (getattr(res, 'text', '')[:250] + '...'),
"provider": "Exa"
"snippet": " ".join(getattr(res, "highlights", [])) or (getattr(res, "text", "")[:250] + "..."),
"provider": "Exa",
}
for res in search_response.results
]

View File

@@ -1,6 +1,7 @@
"""
Tavily search engine implementation
"""
import asyncio
import functools
from typing import Dict, List, Any
@@ -18,31 +19,29 @@ class TavilySearchEngine(BaseSearchEngine):
"""
Tavily搜索引擎实现
"""
def __init__(self):
self._initialize_clients()
def _initialize_clients(self):
"""初始化Tavily客户端"""
# 从主配置文件读取API密钥
tavily_api_keys = config_api.get_global_config("web_search.tavily_api_keys", None)
# 创建API密钥管理器
self.api_manager = create_api_key_manager_from_config(
tavily_api_keys,
lambda key: TavilyClient(api_key=key),
"Tavily"
tavily_api_keys, lambda key: TavilyClient(api_key=key), "Tavily"
)
def is_available(self) -> bool:
"""检查Tavily搜索引擎是否可用"""
return self.api_manager.is_available()
async def search(self, args: Dict[str, Any]) -> List[Dict[str, Any]]:
"""执行Tavily搜索"""
if not self.is_available():
return []
query = args["query"]
num_results = args.get("num_results", 3)
time_range = args.get("time_range", "any")
@@ -53,38 +52,40 @@ class TavilySearchEngine(BaseSearchEngine):
if not tavily_client:
logger.error("无法获取Tavily客户端")
return []
# 构建Tavily搜索参数
search_params = {
"query": query,
"max_results": num_results,
"search_depth": "basic",
"include_answer": False,
"include_raw_content": False
"include_raw_content": False,
}
# 根据时间范围调整搜索参数
if time_range == "week":
search_params["days"] = 7
elif time_range == "month":
search_params["days"] = 30
loop = asyncio.get_running_loop()
func = functools.partial(tavily_client.search, **search_params)
search_response = await loop.run_in_executor(None, func)
results = []
if search_response and "results" in search_response:
for res in search_response["results"]:
results.append({
"title": res.get("title", "无标题"),
"url": res.get("url", ""),
"snippet": res.get("content", "")[:300] + "..." if res.get("content") else "无摘要",
"provider": "Tavily"
})
results.append(
{
"title": res.get("title", "无标题"),
"url": res.get("url", ""),
"snippet": res.get("content", "")[:300] + "..." if res.get("content") else "无摘要",
"provider": "Tavily",
}
)
return results
except Exception as e:
logger.error(f"Tavily 搜索失败: {e}")
return []

View File

@@ -3,15 +3,10 @@ Web Search Tool Plugin
一个功能强大的网络搜索和URL解析插件支持多种搜索引擎和解析策略。
"""
from typing import List, Tuple, Type
from src.plugin_system import (
BasePlugin,
register_plugin,
ComponentInfo,
ConfigField,
PythonDependency
)
from src.plugin_system import BasePlugin, register_plugin, ComponentInfo, ConfigField, PythonDependency
from src.plugin_system.apis import config_api
from src.common.logger import get_logger
@@ -25,7 +20,7 @@ logger = get_logger("web_search_plugin")
class WEBSEARCHPLUGIN(BasePlugin):
"""
网络搜索工具插件
提供网络搜索和URL解析功能支持多种搜索引擎
- Exa (需要API密钥)
- Tavily (需要API密钥)
@@ -37,11 +32,11 @@ class WEBSEARCHPLUGIN(BasePlugin):
plugin_name: str = "web_search_tool" # 内部标识符
enable_plugin: bool = True
dependencies: List[str] = [] # 插件依赖列表
def __init__(self, *args, **kwargs):
"""初始化插件,立即加载所有搜索引擎"""
super().__init__(*args, **kwargs)
# 立即初始化所有搜索引擎触发API密钥管理器的日志输出
logger.info("🚀 正在初始化所有搜索引擎...")
try:
@@ -49,65 +44,58 @@ class WEBSEARCHPLUGIN(BasePlugin):
from .engines.tavily_engine import TavilySearchEngine
from .engines.ddg_engine import DDGSearchEngine
from .engines.bing_engine import BingSearchEngine
# 实例化所有搜索引擎这会触发API密钥管理器的初始化
exa_engine = ExaSearchEngine()
tavily_engine = TavilySearchEngine()
ddg_engine = DDGSearchEngine()
bing_engine = BingSearchEngine()
# 报告每个引擎的状态
engines_status = {
"Exa": exa_engine.is_available(),
"Tavily": tavily_engine.is_available(),
"DuckDuckGo": ddg_engine.is_available(),
"Bing": bing_engine.is_available()
"Bing": bing_engine.is_available(),
}
available_engines = [name for name, available in engines_status.items() if available]
unavailable_engines = [name for name, available in engines_status.items() if not available]
if available_engines:
logger.info(f"✅ 可用搜索引擎: {', '.join(available_engines)}")
if unavailable_engines:
logger.info(f"❌ 不可用搜索引擎: {', '.join(unavailable_engines)}")
except Exception as e:
logger.error(f"❌ 搜索引擎初始化失败: {e}", exc_info=True)
# Python包依赖列表
python_dependencies: List[PythonDependency] = [
PythonDependency(
package_name="asyncddgs",
description="异步DuckDuckGo搜索库",
optional=False
),
PythonDependency(package_name="asyncddgs", description="异步DuckDuckGo搜索库", optional=False),
PythonDependency(
package_name="exa_py",
description="Exa搜索API客户端库",
optional=True # 如果没有API密钥这个是可选的
optional=True, # 如果没有API密钥这个是可选的
),
PythonDependency(
package_name="tavily",
install_name="tavily-python", # 安装时使用这个名称
description="Tavily搜索API客户端库",
optional=True # 如果没有API密钥这个是可选的
optional=True, # 如果没有API密钥这个是可选的
),
PythonDependency(
package_name="httpx",
version=">=0.20.0",
install_name="httpx[socks]", # 安装时使用这个名称(包含可选依赖)
description="支持SOCKS代理的HTTP客户端库",
optional=False
)
optional=False,
),
]
config_file_name: str = "config.toml" # 配置文件名
# 配置节描述
config_section_descriptions = {
"plugin": "插件基本信息",
"proxy": "链接本地解析代理配置"
}
config_section_descriptions = {"plugin": "插件基本信息", "proxy": "链接本地解析代理配置"}
# 配置Schema定义
# 注意EXA配置和组件设置已迁移到主配置文件(bot_config.toml)的[exa]和[web_search]部分
@@ -119,42 +107,32 @@ class WEBSEARCHPLUGIN(BasePlugin):
},
"proxy": {
"http_proxy": ConfigField(
type=str,
default=None,
description="HTTP代理地址格式如: http://proxy.example.com:8080"
type=str, default=None, description="HTTP代理地址格式如: http://proxy.example.com:8080"
),
"https_proxy": ConfigField(
type=str,
default=None,
description="HTTPS代理地址格式如: http://proxy.example.com:8080"
type=str, default=None, description="HTTPS代理地址格式如: http://proxy.example.com:8080"
),
"socks5_proxy": ConfigField(
type=str,
default=None,
description="SOCKS5代理地址格式如: socks5://proxy.example.com:1080"
type=str, default=None, description="SOCKS5代理地址格式如: socks5://proxy.example.com:1080"
),
"enable_proxy": ConfigField(
type=bool,
default=False,
description="是否启用代理"
)
"enable_proxy": ConfigField(type=bool, default=False, description="是否启用代理"),
},
}
def get_plugin_components(self) -> List[Tuple[ComponentInfo, Type]]:
"""
获取插件组件列表
Returns:
组件信息和类型的元组列表
"""
enable_tool = []
# 从主配置文件读取组件启用配置
if config_api.get_global_config("web_search.enable_web_search_tool", True):
enable_tool.append((WebSurfingTool.get_tool_info(), WebSurfingTool))
if config_api.get_global_config("web_search.enable_url_tool", True):
enable_tool.append((URLParserTool.get_tool_info(), URLParserTool))
return enable_tool

View File

@@ -1,6 +1,7 @@
"""
URL parser tool implementation
"""
import asyncio
import functools
from typing import Any, Dict
@@ -24,17 +25,18 @@ class URLParserTool(BaseTool):
"""
一个用于解析和总结一个或多个网页URL内容的工具。
"""
name: str = "parse_url"
description: str = "当需要理解一个或多个特定网页链接的内容时,使用此工具。例如:'这些网页讲了什么?[https://example.com, https://example2.com]''帮我总结一下这些文章'"
available_for_llm: bool = True
parameters = [
("urls", ToolParamType.STRING, "要理解的网站", True, None),
]
def __init__(self, plugin_config=None):
super().__init__(plugin_config)
self._initialize_exa_clients()
def _initialize_exa_clients(self):
"""初始化Exa客户端"""
# 优先从主配置文件读取,如果没有则从插件配置文件读取
@@ -42,12 +44,10 @@ class URLParserTool(BaseTool):
if exa_api_keys is None:
# 从插件配置文件读取
exa_api_keys = self.get_config("exa.api_keys", [])
# 创建API密钥管理器
self.api_manager = create_api_key_manager_from_config(
exa_api_keys,
lambda key: Exa(api_key=key),
"Exa URL Parser"
exa_api_keys, lambda key: Exa(api_key=key), "Exa URL Parser"
)
async def _local_parse_and_summarize(self, url: str) -> Dict[str, Any]:
@@ -58,12 +58,12 @@ class URLParserTool(BaseTool):
# 读取代理配置
enable_proxy = self.get_config("proxy.enable_proxy", False)
proxies = None
if enable_proxy:
socks5_proxy = self.get_config("proxy.socks5_proxy", None)
http_proxy = self.get_config("proxy.http_proxy", None)
https_proxy = self.get_config("proxy.https_proxy", None)
# 优先使用SOCKS5代理全协议代理
if socks5_proxy:
proxies = socks5_proxy
@@ -75,17 +75,17 @@ class URLParserTool(BaseTool):
if https_proxy:
proxies["https://"] = https_proxy
logger.info(f"使用HTTP/HTTPS代理配置: {proxies}")
client_kwargs = {"timeout": 15.0, "follow_redirects": True}
if proxies:
client_kwargs["proxies"] = proxies
async with httpx.AsyncClient(**client_kwargs) as client:
response = await client.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, "html.parser")
title = soup.title.string if soup.title else "无标题"
for script in soup(["script", "style"]):
script.extract()
@@ -104,12 +104,12 @@ class URLParserTool(BaseTool):
return {"error": "未配置LLM模型"}
success, summary, reasoning, model_name = await llm_api.generate_with_model(
prompt=summary_prompt,
model_config=model_config,
request_type="story.generate",
temperature=0.3,
max_tokens=1000
)
prompt=summary_prompt,
model_config=model_config,
request_type="story.generate",
temperature=0.3,
max_tokens=1000,
)
if not success:
logger.info(f"生成摘要失败: {summary}")
@@ -117,12 +117,7 @@ class URLParserTool(BaseTool):
logger.info(f"成功生成摘要内容:'{summary}'")
return {
"title": title,
"url": url,
"snippet": summary,
"source": "local"
}
return {"title": title, "url": url, "snippet": summary, "source": "local"}
except httpx.HTTPStatusError as e:
logger.warning(f"本地解析URL '{url}' 失败 (HTTP {e.response.status_code})")
@@ -137,6 +132,7 @@ class URLParserTool(BaseTool):
"""
# 获取当前文件路径用于缓存键
import os
current_file_path = os.path.abspath(__file__)
# 检查缓存
@@ -144,7 +140,7 @@ class URLParserTool(BaseTool):
if cached_result:
logger.info(f"缓存命中: {self.name} -> {function_args}")
return cached_result
urls_input = function_args.get("urls")
if not urls_input:
return {"error": "URL列表不能为空。"}
@@ -158,14 +154,14 @@ class URLParserTool(BaseTool):
valid_urls = validate_urls(urls)
if not valid_urls:
return {"error": "未找到有效的URL。"}
urls = valid_urls
logger.info(f"准备解析 {len(urls)} 个URL: {urls}")
successful_results = []
error_messages = []
urls_to_retry_locally = []
# 步骤 1: 尝试使用 Exa API 进行解析
contents_response = None
if self.api_manager.is_available():
@@ -182,41 +178,45 @@ class URLParserTool(BaseTool):
contents_response = await loop.run_in_executor(None, func)
except Exception as e:
logger.error(f"执行 Exa URL解析时发生严重异常: {e}", exc_info=True)
contents_response = None # 确保异常后为None
contents_response = None # 确保异常后为None
# 步骤 2: 处理Exa的响应
if contents_response and hasattr(contents_response, 'statuses'):
results_map = {res.url: res for res in contents_response.results} if hasattr(contents_response, 'results') else {}
if contents_response and hasattr(contents_response, "statuses"):
results_map = (
{res.url: res for res in contents_response.results} if hasattr(contents_response, "results") else {}
)
if contents_response.statuses:
for status in contents_response.statuses:
if status.status == 'success':
if status.status == "success":
res = results_map.get(status.id)
if res:
summary = getattr(res, 'summary', '')
highlights = " ".join(getattr(res, 'highlights', []))
text_snippet = (getattr(res, 'text', '')[:300] + '...') if getattr(res, 'text', '') else ''
snippet = summary or highlights or text_snippet or '无摘要'
successful_results.append({
"title": getattr(res, 'title', '无标题'),
"url": getattr(res, 'url', status.id),
"snippet": snippet,
"source": "exa"
})
summary = getattr(res, "summary", "")
highlights = " ".join(getattr(res, "highlights", []))
text_snippet = (getattr(res, "text", "")[:300] + "...") if getattr(res, "text", "") else ""
snippet = summary or highlights or text_snippet or "无摘要"
successful_results.append(
{
"title": getattr(res, "title", "无标题"),
"url": getattr(res, "url", status.id),
"snippet": snippet,
"source": "exa",
}
)
else:
error_tag = getattr(status, 'error', '未知错误')
error_tag = getattr(status, "error", "未知错误")
logger.warning(f"Exa解析URL '{status.id}' 失败: {error_tag}。准备本地重试。")
urls_to_retry_locally.append(status.id)
else:
# 如果Exa未配置、API调用失败或返回无效响应则所有URL都进入本地重试
urls_to_retry_locally.extend(url for url in urls if url not in [res['url'] for res in successful_results])
urls_to_retry_locally.extend(url for url in urls if url not in [res["url"] for res in successful_results])
# 步骤 3: 对失败的URL进行本地解析
if urls_to_retry_locally:
logger.info(f"开始本地解析以下URL: {urls_to_retry_locally}")
local_tasks = [self._local_parse_and_summarize(url) for url in urls_to_retry_locally]
local_results = await asyncio.gather(*local_tasks)
for i, res in enumerate(local_results):
url = urls_to_retry_locally[i]
if "error" in res:
@@ -228,13 +228,9 @@ class URLParserTool(BaseTool):
return {"error": "无法从所有给定的URL获取内容。", "details": error_messages}
formatted_content = format_url_parse_results(successful_results)
result = {
"type": "url_parse_result",
"content": formatted_content,
"errors": error_messages
}
result = {"type": "url_parse_result", "content": formatted_content, "errors": error_messages}
# 保存到缓存
if "error" not in result:
await tool_cache.set(self.name, function_args, current_file_path, result)

View File

@@ -1,6 +1,7 @@
"""
Web search tool implementation
"""
import asyncio
from typing import Any, Dict, List
@@ -22,14 +23,23 @@ class WebSurfingTool(BaseTool):
"""
网络搜索工具
"""
name: str = "web_search"
description: str = "用于执行网络搜索。当用户明确要求搜索,或者需要获取关于公司、产品、事件的最新信息、新闻或动态时,必须使用此工具"
description: str = (
"用于执行网络搜索。当用户明确要求搜索,或者需要获取关于公司、产品、事件的最新信息、新闻或动态时,必须使用此工具"
)
available_for_llm: bool = True
parameters = [
("query", ToolParamType.STRING, "要搜索的关键词或问题。", True, None),
("num_results", ToolParamType.INTEGER, "期望每个搜索引擎返回的搜索结果数量默认为5。", False, None),
("time_range", ToolParamType.STRING, "指定搜索的时间范围,可以是 'any', 'week', 'month'。默认为 'any'", False, ["any", "week", "month"])
] # type: ignore
(
"time_range",
ToolParamType.STRING,
"指定搜索的时间范围,可以是 'any', 'week', 'month'。默认为 'any'",
False,
["any", "week", "month"],
),
] # type: ignore
def __init__(self, plugin_config=None):
super().__init__(plugin_config)
@@ -38,7 +48,7 @@ class WebSurfingTool(BaseTool):
"exa": ExaSearchEngine(),
"tavily": TavilySearchEngine(),
"ddg": DDGSearchEngine(),
"bing": BingSearchEngine()
"bing": BingSearchEngine(),
}
async def execute(self, function_args: Dict[str, Any]) -> Dict[str, Any]:
@@ -48,6 +58,7 @@ class WebSurfingTool(BaseTool):
# 获取当前文件路径用于缓存键
import os
current_file_path = os.path.abspath(__file__)
# 检查缓存
@@ -59,7 +70,7 @@ class WebSurfingTool(BaseTool):
# 读取搜索配置
enabled_engines = config_api.get_global_config("web_search.enabled_engines", ["ddg"])
search_strategy = config_api.get_global_config("web_search.search_strategy", "single")
logger.info(f"开始搜索,策略: {search_strategy}, 启用引擎: {enabled_engines}, 参数: '{function_args}'")
# 根据策略执行搜索
@@ -69,17 +80,19 @@ class WebSurfingTool(BaseTool):
result = await self._execute_fallback_search(function_args, enabled_engines)
else: # single
result = await self._execute_single_search(function_args, enabled_engines)
# 保存到缓存
if "error" not in result:
await tool_cache.set(self.name, function_args, current_file_path, result, semantic_query=query)
return result
async def _execute_parallel_search(self, function_args: Dict[str, Any], enabled_engines: List[str]) -> Dict[str, Any]:
async def _execute_parallel_search(
self, function_args: Dict[str, Any], enabled_engines: List[str]
) -> Dict[str, Any]:
"""并行搜索策略:同时使用所有启用的搜索引擎"""
search_tasks = []
for engine_name in enabled_engines:
engine = self.engines.get(engine_name)
if engine and engine.is_available():
@@ -92,7 +105,7 @@ class WebSurfingTool(BaseTool):
try:
search_results_lists = await asyncio.gather(*search_tasks, return_exceptions=True)
all_results = []
for result in search_results_lists:
if isinstance(result, list):
@@ -103,7 +116,7 @@ class WebSurfingTool(BaseTool):
# 去重并格式化
unique_results = deduplicate_results(all_results)
formatted_content = format_search_results(unique_results)
return {
"type": "web_search_result",
"content": formatted_content,
@@ -113,30 +126,32 @@ class WebSurfingTool(BaseTool):
logger.error(f"执行并行网络搜索时发生异常: {e}", exc_info=True)
return {"error": f"执行网络搜索时发生严重错误: {str(e)}"}
async def _execute_fallback_search(self, function_args: Dict[str, Any], enabled_engines: List[str]) -> Dict[str, Any]:
async def _execute_fallback_search(
self, function_args: Dict[str, Any], enabled_engines: List[str]
) -> Dict[str, Any]:
"""回退搜索策略:按顺序尝试搜索引擎,失败则尝试下一个"""
for engine_name in enabled_engines:
engine = self.engines.get(engine_name)
if not engine or not engine.is_available():
continue
try:
custom_args = function_args.copy()
custom_args["num_results"] = custom_args.get("num_results", 5)
results = await engine.search(custom_args)
if results: # 如果有结果,直接返回
formatted_content = format_search_results(results)
return {
"type": "web_search_result",
"content": formatted_content,
}
except Exception as e:
logger.warning(f"{engine_name} 搜索失败,尝试下一个引擎: {e}")
continue
return {"error": "所有搜索引擎都失败了。"}
async def _execute_single_search(self, function_args: Dict[str, Any], enabled_engines: List[str]) -> Dict[str, Any]:
@@ -145,20 +160,20 @@ class WebSurfingTool(BaseTool):
engine = self.engines.get(engine_name)
if not engine or not engine.is_available():
continue
try:
custom_args = function_args.copy()
custom_args["num_results"] = custom_args.get("num_results", 5)
results = await engine.search(custom_args)
formatted_content = format_search_results(results)
return {
"type": "web_search_result",
"content": formatted_content,
}
except Exception as e:
logger.error(f"{engine_name} 搜索失败: {e}")
return {"error": f"{engine_name} 搜索失败: {str(e)}"}
return {"error": "没有可用的搜索引擎。"}

View File

@@ -1,24 +1,25 @@
"""
API密钥管理器提供轮询机制
"""
import itertools
from typing import List, Optional, TypeVar, Generic, Callable
from src.common.logger import get_logger
logger = get_logger("api_key_manager")
T = TypeVar('T')
T = TypeVar("T")
class APIKeyManager(Generic[T]):
"""
API密钥管理器支持轮询机制
"""
def __init__(self, api_keys: List[str], client_factory: Callable[[str], T], service_name: str = "Unknown"):
"""
初始化API密钥管理器
Args:
api_keys: API密钥列表
client_factory: 客户端工厂函数接受API密钥参数并返回客户端实例
@@ -27,14 +28,14 @@ class APIKeyManager(Generic[T]):
self.service_name = service_name
self.clients: List[T] = []
self.client_cycle: Optional[itertools.cycle] = None
if api_keys:
# 过滤有效的API密钥排除None、空字符串、"None"字符串等
valid_keys = []
for key in api_keys:
if isinstance(key, str) and key.strip() and key.strip().lower() not in ("none", "null", ""):
valid_keys.append(key.strip())
if valid_keys:
try:
self.clients = [client_factory(key) for key in valid_keys]
@@ -48,35 +49,33 @@ class APIKeyManager(Generic[T]):
logger.warning(f"⚠️ {service_name} API Keys 配置无效包含None或空值{service_name} 功能将不可用")
else:
logger.warning(f"⚠️ {service_name} API Keys 未配置,{service_name} 功能将不可用")
def is_available(self) -> bool:
"""检查是否有可用的客户端"""
return bool(self.clients and self.client_cycle)
def get_next_client(self) -> Optional[T]:
"""获取下一个客户端(轮询)"""
if not self.is_available():
return None
return next(self.client_cycle)
def get_client_count(self) -> int:
"""获取可用客户端数量"""
return len(self.clients)
def create_api_key_manager_from_config(
config_keys: Optional[List[str]],
client_factory: Callable[[str], T],
service_name: str
config_keys: Optional[List[str]], client_factory: Callable[[str], T], service_name: str
) -> APIKeyManager[T]:
"""
从配置创建API密钥管理器的便捷函数
Args:
config_keys: 从配置读取的API密钥列表
client_factory: 客户端工厂函数
service_name: 服务名称
Returns:
API密钥管理器实例
"""

View File

@@ -1,6 +1,7 @@
"""
Formatters for web search results
"""
from typing import List, Dict, Any
@@ -13,15 +14,15 @@ def format_search_results(results: List[Dict[str, Any]]) -> str:
formatted_string = "根据网络搜索结果:\n\n"
for i, res in enumerate(results, 1):
title = res.get("title", '无标题')
url = res.get("url", '#')
snippet = res.get("snippet", '无摘要')
title = res.get("title", "无标题")
url = res.get("url", "#")
snippet = res.get("snippet", "无摘要")
provider = res.get("provider", "未知来源")
formatted_string += f"{i}. **{title}** (来自: {provider})\n"
formatted_string += f" - 摘要: {snippet}\n"
formatted_string += f" - 来源: {url}\n\n"
return formatted_string
@@ -31,10 +32,10 @@ def format_url_parse_results(results: List[Dict[str, Any]]) -> str:
"""
formatted_parts = []
for res in results:
title = res.get('title', '无标题')
url = res.get('url', '#')
snippet = res.get('snippet', '无摘要')
source = res.get('source', '未知')
title = res.get("title", "无标题")
url = res.get("url", "#")
snippet = res.get("snippet", "无摘要")
source = res.get("source", "未知")
formatted_string = f"**{title}**\n"
formatted_string += f"**内容摘要**:\n{snippet}\n"

View File

@@ -1,6 +1,7 @@
"""
URL processing utilities
"""
import re
from typing import List
@@ -12,11 +13,11 @@ def parse_urls_from_input(urls_input) -> List[str]:
if isinstance(urls_input, str):
# 如果是字符串尝试解析为URL列表
# 提取所有HTTP/HTTPS URL
url_pattern = r'https?://[^\s\],]+'
url_pattern = r"https?://[^\s\],]+"
urls = re.findall(url_pattern, urls_input)
if not urls:
# 如果没有找到标准URL将整个字符串作为单个URL
if urls_input.strip().startswith(('http://', 'https://')):
if urls_input.strip().startswith(("http://", "https://")):
urls = [urls_input.strip()]
else:
return []
@@ -24,7 +25,7 @@ def parse_urls_from_input(urls_input) -> List[str]:
urls = [url.strip() for url in urls_input if isinstance(url, str) and url.strip()]
else:
return []
return urls
@@ -34,6 +35,6 @@ def validate_urls(urls: List[str]) -> List[str]:
"""
valid_urls = []
for url in urls:
if url.startswith(('http://', 'https://')):
if url.startswith(("http://", "https://")):
valid_urls.append(url)
return valid_urls

View File

@@ -0,0 +1,216 @@
import asyncio
from datetime import datetime
from typing import List, Tuple, Type
from dateutil.parser import parse as parse_datetime
from src.common.logger import get_logger
from src.manager.async_task_manager import AsyncTask, async_task_manager
from src.person_info.person_info import get_person_info_manager
from src.plugin_system import (
BaseAction,
ActionInfo,
BasePlugin,
register_plugin,
ActionActivationType,
)
from src.plugin_system.apis import send_api
from src.plugin_system.base.component_types import ChatType
logger = get_logger(__name__)
# ============================ AsyncTask ============================
class ReminderTask(AsyncTask):
def __init__(
self,
delay: float,
stream_id: str,
is_group: bool,
target_user_id: str,
target_user_name: str,
event_details: str,
creator_name: str,
):
super().__init__(task_name=f"ReminderTask_{target_user_id}_{datetime.now().timestamp()}")
self.delay = delay
self.stream_id = stream_id
self.is_group = is_group
self.target_user_id = target_user_id
self.target_user_name = target_user_name
self.event_details = event_details
self.creator_name = creator_name
async def run(self):
try:
if self.delay > 0:
logger.info(f"等待 {self.delay:.2f} 秒后执行提醒...")
await asyncio.sleep(self.delay)
logger.info(f"执行提醒任务: 给 {self.target_user_name} 发送关于 '{self.event_details}' 的提醒")
reminder_text = f"叮咚!这是 {self.creator_name} 让我准时提醒你的事情:\n\n{self.event_details}"
if self.is_group:
# 在群聊中,构造 @ 消息段并发送
group_id = self.stream_id.split("_")[-1] if "_" in self.stream_id else self.stream_id
message_payload = [
{"type": "at", "data": {"qq": self.target_user_id}},
{"type": "text", "data": {"text": f" {reminder_text}"}},
]
await send_api.adapter_command_to_stream(
action="send_group_msg",
params={"group_id": group_id, "message": message_payload},
stream_id=self.stream_id,
)
else:
# 在私聊中,直接发送文本
await send_api.text_to_stream(text=reminder_text, stream_id=self.stream_id)
logger.info(f"提醒任务 {self.task_name} 成功完成。")
except Exception as e:
logger.error(f"执行提醒任务 {self.task_name} 时出错: {e}", exc_info=True)
# =============================== Actions ===============================
class RemindAction(BaseAction):
"""一个能从对话中智能识别并设置定时提醒的动作。"""
# === 基本信息 ===
action_name = "set_reminder"
action_description = "根据用户的对话内容,智能地设置一个未来的提醒事项。"
activation_type = ActionActivationType.LLM_JUDGE
chat_type_allow = ChatType.ALL
# === LLM 判断与参数提取 ===
llm_judge_prompt = """
判断用户是否意图设置一个未来的提醒。
- 必须包含明确的时间点或时间段如“十分钟后”、“明天下午3点”、“周五”
- 必须包含一个需要被提醒的事件。
- 可能会包含需要提醒的特定人物。
- 如果只是普通的聊天或询问时间,则不应触发。
示例:
- "半小时后提醒我开会" -> 是
- "明天下午三点叫张三来一下" -> 是
- "别忘了周五把报告交了" -> 是
- "现在几点了?" -> 否
- "我明天下午有空" -> 否
请只回答""""
"""
action_parameters = {
"user_name": "需要被提醒的人的称呼或名字,如果没有明确指定给某人,则默认为'自己'",
"remind_time": "描述提醒时间的自然语言字符串,例如'十分钟后''明天下午3点'",
"event_details": "需要提醒的具体事件内容",
}
action_require = [
"当用户请求在未来的某个时间点提醒他/她或别人某件事时使用",
"适用于包含明确时间信息和事件描述的对话",
"例如:'10分钟后提醒我收快递''明天早上九点喊一下李四参加晨会'",
]
async def execute(self) -> Tuple[bool, str]:
"""执行设置提醒的动作"""
user_name = self.action_data.get("user_name")
remind_time_str = self.action_data.get("remind_time")
event_details = self.action_data.get("event_details")
if not all([user_name, remind_time_str, event_details]):
missing_params = [
p
for p, v in {
"user_name": user_name,
"remind_time": remind_time_str,
"event_details": event_details,
}.items()
if not v
]
error_msg = f"缺少必要的提醒参数: {', '.join(missing_params)}"
logger.warning(f"[ReminderPlugin] LLM未能提取完整参数: {error_msg}")
return False, error_msg
# 1. 解析时间
try:
assert isinstance(remind_time_str, str)
target_time = parse_datetime(remind_time_str, fuzzy=True)
except Exception as e:
logger.error(f"[ReminderPlugin] 无法解析时间字符串 '{remind_time_str}': {e}")
await self.send_text(f"抱歉,我无法理解您说的时间 '{remind_time_str}',提醒设置失败。")
return False, f"无法解析时间 '{remind_time_str}'"
now = datetime.now()
if target_time <= now:
await self.send_text("提醒时间必须是一个未来的时间点哦,提醒设置失败。")
return False, "提醒时间必须在未来"
delay_seconds = (target_time - now).total_seconds()
# 2. 解析用户
person_manager = get_person_info_manager()
user_id_to_remind = None
user_name_to_remind = ""
assert isinstance(user_name, str)
if user_name.strip() in ["自己", "", "me"]:
user_id_to_remind = self.user_id
user_name_to_remind = self.user_nickname
else:
user_info = await person_manager.get_person_info_by_name(user_name)
if not user_info or not user_info.get("user_id"):
logger.warning(f"[ReminderPlugin] 找不到名为 '{user_name}' 的用户")
await self.send_text(f"抱歉,我的联系人里找不到叫做 '{user_name}' 的人,提醒设置失败。")
return False, f"用户 '{user_name}' 不存在"
user_id_to_remind = user_info.get("user_id")
user_name_to_remind = user_name
# 3. 创建并调度异步任务
try:
assert user_id_to_remind is not None
assert event_details is not None
reminder_task = ReminderTask(
delay=delay_seconds,
stream_id=self.chat_id,
is_group=self.is_group,
target_user_id=str(user_id_to_remind),
target_user_name=str(user_name_to_remind),
event_details=str(event_details),
creator_name=str(self.user_nickname),
)
await async_task_manager.add_task(reminder_task)
# 4. 发送确认消息
confirm_message = f"好的,我记下了。\n将在 {target_time.strftime('%Y-%m-%d %H:%M:%S')} 提醒 {user_name_to_remind}\n{event_details}"
await self.send_text(confirm_message)
return True, "提醒设置成功"
except Exception as e:
logger.error(f"[ReminderPlugin] 创建提醒任务时出错: {e}", exc_info=True)
await self.send_text("抱歉,设置提醒时发生了一点内部错误。")
return False, "设置提醒时发生内部错误"
# =============================== Plugin ===============================
@register_plugin
class ReminderPlugin(BasePlugin):
"""一个能从对话中智能识别并设置定时提醒的插件。"""
# --- 插件基础信息 ---
plugin_name = "reminder_plugin"
enable_plugin = True
dependencies = []
python_dependencies = []
config_file_name = "config.toml"
config_schema = {}
def get_plugin_components(self) -> List[Tuple[ActionInfo, Type[BaseAction]]]:
"""注册插件的所有功能组件。"""
return [(RemindAction.get_action_info(), RemindAction)]