fix:调整目录结构,优化hfc prompt,移除日程,移除动态和llm判断willing模式,

This commit is contained in:
SengokuCola
2025-05-13 18:37:55 +08:00
parent 6376da0682
commit fed71bccad
131 changed files with 422 additions and 1500 deletions

View File

@@ -0,0 +1,85 @@
from typing import List, Tuple
from src.common.logger import get_module_logger
from src.chat.memory_system.Hippocampus import HippocampusManager
from src.chat.models.utils_model import LLMRequest
from src.config.config import global_config
from src.chat.message_receive.message import Message
from src.chat.knowledge.knowledge_lib import qa_manager
from src.chat.utils.chat_message_builder import build_readable_messages
logger = get_module_logger("knowledge_fetcher")
class KnowledgeFetcher:
"""知识调取器"""
def __init__(self, private_name: str):
self.llm = LLMRequest(
model=global_config.llm_normal,
temperature=global_config.llm_normal["temp"],
max_tokens=1000,
request_type="knowledge_fetch",
)
self.private_name = private_name
def _lpmm_get_knowledge(self, query: str) -> str:
"""获取相关知识
Args:
query: 查询内容
Returns:
str: 构造好的,带相关度的知识
"""
logger.debug(f"[私聊][{self.private_name}]正在从LPMM知识库中获取知识")
try:
knowledge_info = qa_manager.get_knowledge(query)
logger.debug(f"[私聊][{self.private_name}]LPMM知识库查询结果: {knowledge_info:150}")
return knowledge_info
except Exception as e:
logger.error(f"[私聊][{self.private_name}]LPMM知识库搜索工具执行失败: {str(e)}")
return "未找到匹配的知识"
async def fetch(self, query: str, chat_history: List[Message]) -> Tuple[str, str]:
"""获取相关知识
Args:
query: 查询内容
chat_history: 聊天历史
Returns:
Tuple[str, str]: (获取的知识, 知识来源)
"""
# 构建查询上下文
chat_history_text = await build_readable_messages(
chat_history,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="relative",
read_mark=0.0,
)
# 从记忆中获取相关知识
related_memory = await HippocampusManager.get_instance().get_memory_from_text(
text=f"{query}\n{chat_history_text}",
max_memory_num=3,
max_memory_length=2,
max_depth=3,
fast_retrieval=False,
)
knowledge_text = ""
sources_text = "无记忆匹配" # 默认值
if related_memory:
sources = []
for memory in related_memory:
knowledge_text += memory[1] + "\n"
sources.append(f"记忆片段{memory[0]}")
knowledge_text = knowledge_text.strip()
sources_text = "".join(sources)
knowledge_text += "\n现在有以下**知识**可供参考:\n "
knowledge_text += self._lpmm_get_knowledge(query)
knowledge_text += "\n请记住这些**知识**,并根据**知识**回答问题。\n"
return knowledge_text or "未找到相关知识", sources_text or "无记忆匹配"