fix:调整目录结构,优化hfc prompt,移除日程,移除动态和llm判断willing模式,

This commit is contained in:
SengokuCola
2025-05-13 18:37:55 +08:00
parent 6376da0682
commit fed71bccad
131 changed files with 422 additions and 1500 deletions

345
src/experimental/PFC/pfc.py Normal file
View File

@@ -0,0 +1,345 @@
from typing import List, Tuple, TYPE_CHECKING
from src.common.logger import get_module_logger
from src.chat.models.utils_model import LLMRequest
from src.config.config import global_config
from src.experimental.PFC.chat_observer import ChatObserver
from src.experimental.PFC.pfc_utils import get_items_from_json
from src.individuality.individuality import Individuality
from src.experimental.PFC.conversation_info import ConversationInfo
from src.experimental.PFC.observation_info import ObservationInfo
from src.chat.utils.chat_message_builder import build_readable_messages
from rich.traceback import install
install(extra_lines=3)
if TYPE_CHECKING:
pass
logger = get_module_logger("pfc")
def _calculate_similarity(goal1: str, goal2: str) -> float:
"""简单计算两个目标之间的相似度
这里使用一个简单的实现,实际可以使用更复杂的文本相似度算法
Args:
goal1: 第一个目标
goal2: 第二个目标
Returns:
float: 相似度得分 (0-1)
"""
# 简单实现:检查重叠字数比例
words1 = set(goal1)
words2 = set(goal2)
overlap = len(words1.intersection(words2))
total = len(words1.union(words2))
return overlap / total if total > 0 else 0
class GoalAnalyzer:
"""对话目标分析器"""
def __init__(self, stream_id: str, private_name: str):
self.llm = LLMRequest(
model=global_config.llm_normal, temperature=0.7, max_tokens=1000, request_type="conversation_goal"
)
self.personality_info = Individuality.get_instance().get_prompt(x_person=2, level=3)
self.name = global_config.BOT_NICKNAME
self.nick_name = global_config.BOT_ALIAS_NAMES
self.private_name = private_name
self.chat_observer = ChatObserver.get_instance(stream_id, private_name)
# 多目标存储结构
self.goals = [] # 存储多个目标
self.max_goals = 3 # 同时保持的最大目标数量
self.current_goal_and_reason = None
async def analyze_goal(self, conversation_info: ConversationInfo, observation_info: ObservationInfo):
"""分析对话历史并设定目标
Args:
conversation_info: 对话信息
observation_info: 观察信息
Returns:
Tuple[str, str, str]: (目标, 方法, 原因)
"""
# 构建对话目标
goals_str = ""
if conversation_info.goal_list:
for goal_reason in conversation_info.goal_list:
if isinstance(goal_reason, dict):
goal = goal_reason.get("goal", "目标内容缺失")
reasoning = goal_reason.get("reasoning", "没有明确原因")
else:
goal = str(goal_reason)
reasoning = "没有明确原因"
goal_str = f"目标:{goal},产生该对话目标的原因:{reasoning}\n"
goals_str += goal_str
else:
goal = "目前没有明确对话目标"
reasoning = "目前没有明确对话目标,最好思考一个对话目标"
goals_str = f"目标:{goal},产生该对话目标的原因:{reasoning}\n"
# 获取聊天历史记录
chat_history_text = observation_info.chat_history_str
if observation_info.new_messages_count > 0:
new_messages_list = observation_info.unprocessed_messages
new_messages_str = await build_readable_messages(
new_messages_list,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="relative",
read_mark=0.0,
)
chat_history_text += f"\n--- 以下是 {observation_info.new_messages_count} 条新消息 ---\n{new_messages_str}"
# await observation_info.clear_unprocessed_messages()
persona_text = f"你的名字是{self.name}{self.personality_info}"
# 构建action历史文本
action_history_list = conversation_info.done_action
action_history_text = "你之前做的事情是:"
for action in action_history_list:
action_history_text += f"{action}\n"
prompt = f"""{persona_text}。现在你在参与一场QQ聊天请分析以下聊天记录并根据你的性格特征确定多个明确的对话目标。
这些目标应该反映出对话的不同方面和意图。
{action_history_text}
当前对话目标:
{goals_str}
聊天记录:
{chat_history_text}
请分析当前对话并确定最适合的对话目标。你可以:
1. 保持现有目标不变
2. 修改现有目标
3. 添加新目标
4. 删除不再相关的目标
5. 如果你想结束对话请设置一个目标目标goal为"结束对话"原因reasoning为你希望结束对话
请以JSON数组格式输出当前的所有对话目标每个目标包含以下字段
1. goal: 对话目标(简短的一句话)
2. reasoning: 对话原因,为什么设定这个目标(简要解释)
输出格式示例:
[
{{
"goal": "回答用户关于Python编程的具体问题",
"reasoning": "用户提出了关于Python的技术问题需要专业且准确的解答"
}},
{{
"goal": "回答用户关于python安装的具体问题",
"reasoning": "用户提出了关于Python的技术问题需要专业且准确的解答"
}}
]"""
logger.debug(f"[私聊][{self.private_name}]发送到LLM的提示词: {prompt}")
try:
content, _ = await self.llm.generate_response_async(prompt)
logger.debug(f"[私聊][{self.private_name}]LLM原始返回内容: {content}")
except Exception as e:
logger.error(f"[私聊][{self.private_name}]分析对话目标时出错: {str(e)}")
content = ""
# 使用改进后的get_items_from_json函数处理JSON数组
success, result = get_items_from_json(
content,
self.private_name,
"goal",
"reasoning",
required_types={"goal": str, "reasoning": str},
allow_array=True,
)
if success:
# 判断结果是单个字典还是字典列表
if isinstance(result, list):
# 清空现有目标列表并添加新目标
conversation_info.goal_list = []
for item in result:
conversation_info.goal_list.append(item)
# 返回第一个目标作为当前主要目标(如果有)
if result:
first_goal = result[0]
return first_goal.get("goal", ""), "", first_goal.get("reasoning", "")
else:
# 单个目标的情况
conversation_info.goal_list.append(result)
return goal, "", reasoning
# 如果解析失败,返回默认值
return "", "", ""
async def _update_goals(self, new_goal: str, method: str, reasoning: str):
"""更新目标列表
Args:
new_goal: 新的目标
method: 实现目标的方法
reasoning: 目标的原因
"""
# 检查新目标是否与现有目标相似
for i, (existing_goal, _, _) in enumerate(self.goals):
if _calculate_similarity(new_goal, existing_goal) > 0.7: # 相似度阈值
# 更新现有目标
self.goals[i] = (new_goal, method, reasoning)
# 将此目标移到列表前面(最主要的位置)
self.goals.insert(0, self.goals.pop(i))
return
# 添加新目标到列表前面
self.goals.insert(0, (new_goal, method, reasoning))
# 限制目标数量
if len(self.goals) > self.max_goals:
self.goals.pop() # 移除最老的目标
async def get_all_goals(self) -> List[Tuple[str, str, str]]:
"""获取所有当前目标
Returns:
List[Tuple[str, str, str]]: 目标列表,每项为(目标, 方法, 原因)
"""
return self.goals.copy()
async def get_alternative_goals(self) -> List[Tuple[str, str, str]]:
"""获取除了当前主要目标外的其他备选目标
Returns:
List[Tuple[str, str, str]]: 备选目标列表
"""
if len(self.goals) <= 1:
return []
return self.goals[1:].copy()
async def analyze_conversation(self, goal, reasoning):
messages = self.chat_observer.get_cached_messages()
chat_history_text = await build_readable_messages(
messages,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="relative",
read_mark=0.0,
)
persona_text = f"你的名字是{self.name}{self.personality_info}"
# ===> Persona 文本构建结束 <===
# --- 修改 Prompt 字符串,使用 persona_text ---
prompt = f"""{persona_text}。现在你在参与一场QQ聊天
当前对话目标:{goal}
产生该对话目标的原因:{reasoning}
请分析以下聊天记录,并根据你的性格特征评估该目标是否已经达到,或者你是否希望停止该次对话。
聊天记录:
{chat_history_text}
请以JSON格式输出包含以下字段
1. goal_achieved: 对话目标是否已经达到true/false
2. stop_conversation: 是否希望停止该次对话true/false
3. reason: 为什么希望停止该次对话(简要解释)
输出格式示例:
{{
"goal_achieved": true,
"stop_conversation": false,
"reason": "虽然目标已达成,但对话仍然有继续的价值"
}}"""
try:
content, _ = await self.llm.generate_response_async(prompt)
logger.debug(f"[私聊][{self.private_name}]LLM原始返回内容: {content}")
# 尝试解析JSON
success, result = get_items_from_json(
content,
self.private_name,
"goal_achieved",
"stop_conversation",
"reason",
required_types={"goal_achieved": bool, "stop_conversation": bool, "reason": str},
)
if not success:
logger.error(f"[私聊][{self.private_name}]无法解析对话分析结果JSON")
return False, False, "解析结果失败"
goal_achieved = result["goal_achieved"]
stop_conversation = result["stop_conversation"]
reason = result["reason"]
return goal_achieved, stop_conversation, reason
except Exception as e:
logger.error(f"[私聊][{self.private_name}]分析对话状态时出错: {str(e)}")
return False, False, f"分析出错: {str(e)}"
# 先注释掉,万一以后出问题了还能开回来(((
# class DirectMessageSender:
# """直接发送消息到平台的发送器"""
# def __init__(self, private_name: str):
# self.logger = get_module_logger("direct_sender")
# self.storage = MessageStorage()
# self.private_name = private_name
# async def send_via_ws(self, message: MessageSending) -> None:
# try:
# await global_api.send_message(message)
# except Exception as e:
# raise ValueError(f"未找到平台:{message.message_info.platform} 的url配置请检查配置文件") from e
# async def send_message(
# self,
# chat_stream: ChatStream,
# content: str,
# reply_to_message: Optional[Message] = None,
# ) -> None:
# """直接发送消息到平台
# Args:
# chat_stream: 聊天流
# content: 消息内容
# reply_to_message: 要回复的消息
# """
# # 构建消息对象
# message_segment = Seg(type="text", data=content)
# bot_user_info = UserInfo(
# user_id=global_config.BOT_QQ,
# user_nickname=global_config.BOT_NICKNAME,
# platform=chat_stream.platform,
# )
# message = MessageSending(
# message_id=f"dm{round(time.time(), 2)}",
# chat_stream=chat_stream,
# bot_user_info=bot_user_info,
# sender_info=reply_to_message.message_info.user_info if reply_to_message else None,
# message_segment=message_segment,
# reply=reply_to_message,
# is_head=True,
# is_emoji=False,
# thinking_start_time=time.time(),
# )
# # 处理消息
# await message.process()
# _message_json = message.to_dict()
# # 发送消息
# try:
# await self.send_via_ws(message)
# await self.storage.store_message(message, chat_stream)
# logger.success(f"[私聊][{self.private_name}]PFC消息已发送: {content}")
# except Exception as e:
# logger.error(f"[私聊][{self.private_name}]PFC消息发送失败: {str(e)}")