fix:调整目录结构,优化hfc prompt,移除日程,移除动态和llm判断willing模式,

This commit is contained in:
SengokuCola
2025-05-13 18:37:55 +08:00
parent 6376da0682
commit fed71bccad
131 changed files with 422 additions and 1500 deletions

760
src/chat/utils/statistic.py Normal file
View File

@@ -0,0 +1,760 @@
from collections import defaultdict
from datetime import datetime, timedelta
from typing import Any, Dict, Tuple, List
from src.common.logger import get_module_logger
from src.manager.async_task_manager import AsyncTask
from ...common.database import db
from src.manager.local_store_manager import local_storage
logger = get_module_logger("maibot_statistic")
# 统计数据的键
TOTAL_REQ_CNT = "total_requests"
TOTAL_COST = "total_cost"
REQ_CNT_BY_TYPE = "requests_by_type"
REQ_CNT_BY_USER = "requests_by_user"
REQ_CNT_BY_MODEL = "requests_by_model"
IN_TOK_BY_TYPE = "in_tokens_by_type"
IN_TOK_BY_USER = "in_tokens_by_user"
IN_TOK_BY_MODEL = "in_tokens_by_model"
OUT_TOK_BY_TYPE = "out_tokens_by_type"
OUT_TOK_BY_USER = "out_tokens_by_user"
OUT_TOK_BY_MODEL = "out_tokens_by_model"
TOTAL_TOK_BY_TYPE = "tokens_by_type"
TOTAL_TOK_BY_USER = "tokens_by_user"
TOTAL_TOK_BY_MODEL = "tokens_by_model"
COST_BY_TYPE = "costs_by_type"
COST_BY_USER = "costs_by_user"
COST_BY_MODEL = "costs_by_model"
ONLINE_TIME = "online_time"
TOTAL_MSG_CNT = "total_messages"
MSG_CNT_BY_CHAT = "messages_by_chat"
class OnlineTimeRecordTask(AsyncTask):
"""在线时间记录任务"""
def __init__(self):
super().__init__(task_name="Online Time Record Task", run_interval=60)
self.record_id: str | None = None
"""记录ID"""
self._init_database() # 初始化数据库
@staticmethod
def _init_database():
"""初始化数据库"""
if "online_time" not in db.list_collection_names():
# 初始化数据库(在线时长)
db.create_collection("online_time")
# 创建索引
if ("end_timestamp", 1) not in db.online_time.list_indexes():
db.online_time.create_index([("end_timestamp", 1)])
async def run(self):
try:
if self.record_id:
# 如果有记录,则更新结束时间
db.online_time.update_one(
{"_id": self.record_id},
{
"$set": {
"end_timestamp": datetime.now() + timedelta(minutes=1),
}
},
)
else:
# 如果没有记录,检查一分钟以内是否已有记录
current_time = datetime.now()
recent_record = db.online_time.find_one(
{"end_timestamp": {"$gte": current_time - timedelta(minutes=1)}}
)
if not recent_record:
# 若没有记录,则插入新的在线时间记录
self.record_id = db.online_time.insert_one(
{
"start_timestamp": current_time,
"end_timestamp": current_time + timedelta(minutes=1),
}
).inserted_id
else:
# 如果有记录,则更新结束时间
self.record_id = recent_record["_id"]
db.online_time.update_one(
{"_id": self.record_id},
{
"$set": {
"end_timestamp": current_time + timedelta(minutes=1),
}
},
)
except Exception:
logger.exception("在线时间记录失败")
def _format_online_time(online_seconds: int) -> str:
"""
格式化在线时间
:param online_seconds: 在线时间(秒)
:return: 格式化后的在线时间字符串
"""
total_oneline_time = timedelta(seconds=online_seconds)
days = total_oneline_time.days
hours = total_oneline_time.seconds // 3600
minutes = (total_oneline_time.seconds // 60) % 60
seconds = total_oneline_time.seconds % 60
if days > 0:
# 如果在线时间超过1天则格式化为"X天X小时X分钟"
total_oneline_time_str = f"{total_oneline_time.days}{hours}小时{minutes}分钟{seconds}"
elif hours > 0:
# 如果在线时间超过1小时则格式化为"X小时X分钟X秒"
total_oneline_time_str = f"{hours}小时{minutes}分钟{seconds}"
else:
# 其他情况格式化为"X分钟X秒"
total_oneline_time_str = f"{minutes}分钟{seconds}"
return total_oneline_time_str
class StatisticOutputTask(AsyncTask):
"""统计输出任务"""
SEP_LINE = "-" * 84
def __init__(self, record_file_path: str = "maibot_statistics.html"):
# 延迟300秒启动运行间隔300秒
super().__init__(task_name="Statistics Data Output Task", wait_before_start=0, run_interval=300)
self.name_mapping: Dict[str, Tuple[str, float]] = {}
"""
联系人/群聊名称映射 {聊天ID: (联系人/群聊名称, 记录时间timestamp)}
注:设计记录时间的目的是方便更新名称,使联系人/群聊名称保持最新
"""
self.record_file_path: str = record_file_path
"""
记录文件路径
"""
now = datetime.now()
if "deploy_time" in local_storage:
# 如果存在部署时间,则使用该时间作为全量统计的起始时间
deploy_time = datetime.fromtimestamp(local_storage["deploy_time"])
else:
# 否则,使用最大时间范围,并记录部署时间为当前时间
deploy_time = datetime(2000, 1, 1)
local_storage["deploy_time"] = now.timestamp()
self.stat_period: List[Tuple[str, timedelta, str]] = [
("all_time", now - deploy_time, "自部署以来"), # 必须保留"all_time"
("last_7_days", timedelta(days=7), "最近7天"),
("last_24_hours", timedelta(days=1), "最近24小时"),
("last_hour", timedelta(hours=1), "最近1小时"),
]
"""
统计时间段 [(统计名称, 统计时间段, 统计描述), ...]
"""
def _statistic_console_output(self, stats: Dict[str, Any], now: datetime):
"""
输出统计数据到控制台
:param stats: 统计数据
:param now: 基准当前时间
"""
# 输出最近一小时的统计数据
output = [
self.SEP_LINE,
f" 最近1小时的统计数据 (自{now.strftime('%Y-%m-%d %H:%M:%S')}开始,详细信息见文件:{self.record_file_path})",
self.SEP_LINE,
self._format_total_stat(stats["last_hour"]),
"",
self._format_model_classified_stat(stats["last_hour"]),
"",
self._format_chat_stat(stats["last_hour"]),
self.SEP_LINE,
"",
]
logger.info("\n" + "\n".join(output))
async def run(self):
try:
now = datetime.now()
# 收集统计数据
stats = self._collect_all_statistics(now)
# 输出统计数据到控制台
self._statistic_console_output(stats, now)
# 输出统计数据到html文件
self._generate_html_report(stats, now)
except Exception as e:
logger.exception(f"输出统计数据过程中发生异常,错误信息:{e}")
# -- 以下为统计数据收集方法 --
@staticmethod
def _collect_model_request_for_period(collect_period: List[Tuple[str, datetime]]) -> Dict[str, Any]:
"""
收集指定时间段的LLM请求统计数据
:param collect_period: 统计时间段
"""
if len(collect_period) <= 0:
return {}
else:
# 排序-按照时间段开始时间降序排列(最晚的时间段在前)
collect_period.sort(key=lambda x: x[1], reverse=True)
stats = {
period_key: {
# 总LLM请求数
TOTAL_REQ_CNT: 0,
# 请求次数统计
REQ_CNT_BY_TYPE: defaultdict(int),
REQ_CNT_BY_USER: defaultdict(int),
REQ_CNT_BY_MODEL: defaultdict(int),
# 输入Token数
IN_TOK_BY_TYPE: defaultdict(int),
IN_TOK_BY_USER: defaultdict(int),
IN_TOK_BY_MODEL: defaultdict(int),
# 输出Token数
OUT_TOK_BY_TYPE: defaultdict(int),
OUT_TOK_BY_USER: defaultdict(int),
OUT_TOK_BY_MODEL: defaultdict(int),
# 总Token数
TOTAL_TOK_BY_TYPE: defaultdict(int),
TOTAL_TOK_BY_USER: defaultdict(int),
TOTAL_TOK_BY_MODEL: defaultdict(int),
# 总开销
TOTAL_COST: 0.0,
# 请求开销统计
COST_BY_TYPE: defaultdict(float),
COST_BY_USER: defaultdict(float),
COST_BY_MODEL: defaultdict(float),
}
for period_key, _ in collect_period
}
# 以最早的时间戳为起始时间获取记录
for record in db.llm_usage.find({"timestamp": {"$gte": collect_period[-1][1]}}):
record_timestamp = record.get("timestamp")
for idx, (_, period_start) in enumerate(collect_period):
if record_timestamp >= period_start:
# 如果记录时间在当前时间段内,则它一定在更早的时间段内
# 因此,我们可以直接跳过更早的时间段的判断,直接更新当前以及更早时间段的统计数据
for period_key, _ in collect_period[idx:]:
stats[period_key][TOTAL_REQ_CNT] += 1
request_type = record.get("request_type", "unknown") # 请求类型
user_id = str(record.get("user_id", "unknown")) # 用户ID
model_name = record.get("model_name", "unknown") # 模型名称
stats[period_key][REQ_CNT_BY_TYPE][request_type] += 1
stats[period_key][REQ_CNT_BY_USER][user_id] += 1
stats[period_key][REQ_CNT_BY_MODEL][model_name] += 1
prompt_tokens = record.get("prompt_tokens", 0) # 输入Token数
completion_tokens = record.get("completion_tokens", 0) # 输出Token数
total_tokens = prompt_tokens + completion_tokens # Token总数 = 输入Token数 + 输出Token数
stats[period_key][IN_TOK_BY_TYPE][request_type] += prompt_tokens
stats[period_key][IN_TOK_BY_USER][user_id] += prompt_tokens
stats[period_key][IN_TOK_BY_MODEL][model_name] += prompt_tokens
stats[period_key][OUT_TOK_BY_TYPE][request_type] += completion_tokens
stats[period_key][OUT_TOK_BY_USER][user_id] += completion_tokens
stats[period_key][OUT_TOK_BY_MODEL][model_name] += completion_tokens
stats[period_key][TOTAL_TOK_BY_TYPE][request_type] += total_tokens
stats[period_key][TOTAL_TOK_BY_USER][user_id] += total_tokens
stats[period_key][TOTAL_TOK_BY_MODEL][model_name] += total_tokens
cost = record.get("cost", 0.0)
stats[period_key][TOTAL_COST] += cost
stats[period_key][COST_BY_TYPE][request_type] += cost
stats[period_key][COST_BY_USER][user_id] += cost
stats[period_key][COST_BY_MODEL][model_name] += cost
break # 取消更早时间段的判断
return stats
@staticmethod
def _collect_online_time_for_period(collect_period: List[Tuple[str, datetime]], now: datetime) -> Dict[str, Any]:
"""
收集指定时间段的在线时间统计数据
:param collect_period: 统计时间段
"""
if len(collect_period) <= 0:
return {}
else:
# 排序-按照时间段开始时间降序排列(最晚的时间段在前)
collect_period.sort(key=lambda x: x[1], reverse=True)
stats = {
period_key: {
# 在线时间统计
ONLINE_TIME: 0.0,
}
for period_key, _ in collect_period
}
# 统计在线时间
for record in db.online_time.find({"end_timestamp": {"$gte": collect_period[-1][1]}}):
end_timestamp: datetime = record.get("end_timestamp")
for idx, (_, period_start) in enumerate(collect_period):
if end_timestamp >= period_start:
# 由于end_timestamp会超前标记时间所以我们需要判断是否晚于当前时间如果是则使用当前时间作为结束时间
if end_timestamp > now:
end_timestamp = now
# 如果记录时间在当前时间段内,则它一定在更早的时间段内
# 因此,我们可以直接跳过更早的时间段的判断,直接更新当前以及更早时间段的统计数据
for period_key, _period_start in collect_period[idx:]:
start_timestamp: datetime = record.get("start_timestamp")
if start_timestamp < _period_start:
# 如果开始时间在查询边界之前,则使用开始时间
stats[period_key][ONLINE_TIME] += (end_timestamp - _period_start).total_seconds()
else:
# 否则,使用开始时间
stats[period_key][ONLINE_TIME] += (end_timestamp - start_timestamp).total_seconds()
break # 取消更早时间段的判断
return stats
def _collect_message_count_for_period(self, collect_period: List[Tuple[str, datetime]]) -> Dict[str, Any]:
"""
收集指定时间段的消息统计数据
:param collect_period: 统计时间段
"""
if len(collect_period) <= 0:
return {}
else:
# 排序-按照时间段开始时间降序排列(最晚的时间段在前)
collect_period.sort(key=lambda x: x[1], reverse=True)
stats = {
period_key: {
# 消息统计
TOTAL_MSG_CNT: 0,
MSG_CNT_BY_CHAT: defaultdict(int),
}
for period_key, _ in collect_period
}
# 统计消息量
for message in db.messages.find({"time": {"$gte": collect_period[-1][1].timestamp()}}):
chat_info = message.get("chat_info", None) # 聊天信息
user_info = message.get("user_info", None) # 用户信息(消息发送人)
message_time = message.get("time", 0) # 消息时间
group_info = chat_info.get("group_info") if chat_info else None # 尝试获取群聊信息
if group_info is not None:
# 若有群聊信息
chat_id = f"g{group_info.get('group_id')}"
chat_name = group_info.get("group_name", f"{group_info.get('group_id')}")
elif user_info:
# 若没有群聊信息,则尝试获取用户信息
chat_id = f"u{user_info['user_id']}"
chat_name = user_info["user_nickname"]
else:
continue # 如果没有群组信息也没有用户信息,则跳过
if chat_id in self.name_mapping:
if chat_name != self.name_mapping[chat_id][0] and message_time > self.name_mapping[chat_id][1]:
# 如果用户名称不同,且新消息时间晚于之前记录的时间,则更新用户名称
self.name_mapping[chat_id] = (chat_name, message_time)
else:
self.name_mapping[chat_id] = (chat_name, message_time)
for idx, (_, period_start) in enumerate(collect_period):
if message_time >= period_start.timestamp():
# 如果记录时间在当前时间段内,则它一定在更早的时间段内
# 因此,我们可以直接跳过更早的时间段的判断,直接更新当前以及更早时间段的统计数据
for period_key, _ in collect_period[idx:]:
stats[period_key][TOTAL_MSG_CNT] += 1
stats[period_key][MSG_CNT_BY_CHAT][chat_id] += 1
break
return stats
def _collect_all_statistics(self, now: datetime) -> Dict[str, Dict[str, Any]]:
"""
收集各时间段的统计数据
:param now: 基准当前时间
"""
last_all_time_stat = None
if "last_full_statistics_timestamp" in local_storage and "last_full_statistics" in local_storage:
# 若存有上次完整统计的时间戳,则使用该时间戳作为"所有时间"的起始时间,进行增量统计
last_full_stat_ts: float = local_storage["last_full_statistics_timestamp"]
last_all_time_stat = local_storage["last_full_statistics"]
self.stat_period = [item for item in self.stat_period if item[0] != "all_time"] # 删除"所有时间"的统计时段
self.stat_period.append(("all_time", now - datetime.fromtimestamp(last_full_stat_ts), "自部署以来的"))
stat_start_timestamp = [(period[0], now - period[1]) for period in self.stat_period]
stat = {item[0]: {} for item in self.stat_period}
model_req_stat = self._collect_model_request_for_period(stat_start_timestamp)
online_time_stat = self._collect_online_time_for_period(stat_start_timestamp, now)
message_count_stat = self._collect_message_count_for_period(stat_start_timestamp)
# 统计数据合并
# 合并三类统计数据
for period_key, _ in stat_start_timestamp:
stat[period_key].update(model_req_stat[period_key])
stat[period_key].update(online_time_stat[period_key])
stat[period_key].update(message_count_stat[period_key])
if last_all_time_stat:
# 若存在上次完整统计数据,则将其与当前统计数据合并
for key, val in last_all_time_stat.items():
if isinstance(val, dict):
# 是字典类型,则进行合并
for sub_key, sub_val in val.items():
stat["all_time"][key][sub_key] += sub_val
else:
# 直接合并
stat["all_time"][key] += val
# 更新上次完整统计数据的时间戳
local_storage["last_full_statistics_timestamp"] = now.timestamp()
# 更新上次完整统计数据
local_storage["last_full_statistics"] = stat["all_time"]
return stat
# -- 以下为统计数据格式化方法 --
@staticmethod
def _format_total_stat(stats: Dict[str, Any]) -> str:
"""
格式化总统计数据
"""
output = [
f"总在线时间: {_format_online_time(stats[ONLINE_TIME])}",
f"总消息数: {stats[TOTAL_MSG_CNT]}",
f"总请求数: {stats[TOTAL_REQ_CNT]}",
f"总花费: {stats[TOTAL_COST]:.4f}¥",
"",
]
return "\n".join(output)
@staticmethod
def _format_model_classified_stat(stats: Dict[str, Any]) -> str:
"""
格式化按模型分类的统计数据
"""
if stats[TOTAL_REQ_CNT] > 0:
data_fmt = "{:<32} {:>10} {:>12} {:>12} {:>12} {:>9.4f}¥"
output = [
"按模型分类统计:",
" 模型名称 调用次数 输入Token 输出Token Token总量 累计花费",
]
for model_name, count in sorted(stats[REQ_CNT_BY_MODEL].items()):
name = model_name[:29] + "..." if len(model_name) > 32 else model_name
in_tokens = stats[IN_TOK_BY_MODEL][model_name]
out_tokens = stats[OUT_TOK_BY_MODEL][model_name]
tokens = stats[TOTAL_TOK_BY_MODEL][model_name]
cost = stats[COST_BY_MODEL][model_name]
output.append(data_fmt.format(name, count, in_tokens, out_tokens, tokens, cost))
output.append("")
return "\n".join(output)
else:
return ""
def _format_chat_stat(self, stats: Dict[str, Any]) -> str:
"""
格式化聊天统计数据
"""
if stats[TOTAL_MSG_CNT] > 0:
output = ["聊天消息统计:", " 联系人/群组名称 消息数量"]
for chat_id, count in sorted(stats[MSG_CNT_BY_CHAT].items()):
output.append(f"{self.name_mapping[chat_id][0][:32]:<32} {count:>10}")
output.append("")
return "\n".join(output)
else:
return ""
def _generate_html_report(self, stat: dict[str, Any], now: datetime):
"""
生成HTML格式的统计报告
:param stat: 统计数据
:param now: 基准当前时间
:return: HTML格式的统计报告
"""
tab_list = [
f'<button class="tab-link" onclick="showTab(event, \'{period[0]}\')">{period[2]}</button>'
for period in self.stat_period
]
def _format_stat_data(stat_data: dict[str, Any], div_id: str, start_time: datetime) -> str:
"""
格式化一个时间段的统计数据到html div块
:param stat_data: 统计数据
:param div_id: div的ID
:param start_time: 统计时间段开始时间
"""
# format总在线时间
# 按模型分类统计
model_rows = "\n".join([
f"<tr>"
f"<td>{model_name}</td>"
f"<td>{count}</td>"
f"<td>{stat_data[IN_TOK_BY_MODEL][model_name]}</td>"
f"<td>{stat_data[OUT_TOK_BY_MODEL][model_name]}</td>"
f"<td>{stat_data[TOTAL_TOK_BY_MODEL][model_name]}</td>"
f"<td>{stat_data[COST_BY_MODEL][model_name]:.4f} ¥</td>"
f"</tr>"
for model_name, count in sorted(stat_data[REQ_CNT_BY_MODEL].items())
])
# 按请求类型分类统计
type_rows = "\n".join([
f"<tr>"
f"<td>{req_type}</td>"
f"<td>{count}</td>"
f"<td>{stat_data[IN_TOK_BY_TYPE][req_type]}</td>"
f"<td>{stat_data[OUT_TOK_BY_TYPE][req_type]}</td>"
f"<td>{stat_data[TOTAL_TOK_BY_TYPE][req_type]}</td>"
f"<td>{stat_data[COST_BY_TYPE][req_type]:.4f} ¥</td>"
f"</tr>"
for req_type, count in sorted(stat_data[REQ_CNT_BY_TYPE].items())
])
# 按用户分类统计
user_rows = "\n".join([
f"<tr>"
f"<td>{user_id}</td>"
f"<td>{count}</td>"
f"<td>{stat_data[IN_TOK_BY_USER][user_id]}</td>"
f"<td>{stat_data[OUT_TOK_BY_USER][user_id]}</td>"
f"<td>{stat_data[TOTAL_TOK_BY_USER][user_id]}</td>"
f"<td>{stat_data[COST_BY_USER][user_id]:.4f} ¥</td>"
f"</tr>"
for user_id, count in sorted(stat_data[REQ_CNT_BY_USER].items())
])
# 聊天消息统计
chat_rows = "\n".join([
f"<tr><td>{self.name_mapping[chat_id][0]}</td><td>{count}</td></tr>"
for chat_id, count in sorted(stat_data[MSG_CNT_BY_CHAT].items())
])
# 生成HTML
return f"""
<div id=\"{div_id}\" class=\"tab-content\">
<p class=\"info-item\">
<strong>统计时段: </strong>
{start_time.strftime("%Y-%m-%d %H:%M:%S")} ~ {now.strftime("%Y-%m-%d %H:%M:%S")}
</p>
<p class=\"info-item\"><strong>总在线时间: </strong>{_format_online_time(stat_data[ONLINE_TIME])}</p>
<p class=\"info-item\"><strong>总消息数: </strong>{stat_data[TOTAL_MSG_CNT]}</p>
<p class=\"info-item\"><strong>总请求数: </strong>{stat_data[TOTAL_REQ_CNT]}</p>
<p class=\"info-item\"><strong>总花费: </strong>{stat_data[TOTAL_COST]:.4f} ¥</p>
<h2>按模型分类统计</h2>
<table>
<thead><tr><th>模型名称</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th></tr></thead>
<tbody>
{model_rows}
</tbody>
</table>
<h2>按请求类型分类统计</h2>
<table>
<thead>
<tr><th>请求类型</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th></tr>
</thead>
<tbody>
{type_rows}
</tbody>
</table>
<h2>按用户分类统计</h2>
<table>
<thead>
<tr><th>用户名称</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th></tr>
</thead>
<tbody>
{user_rows}
</tbody>
</table>
<h2>聊天消息统计</h2>
<table>
<thead>
<tr><th>联系人/群组名称</th><th>消息数量</th></tr>
</thead>
<tbody>
{chat_rows}
</tbody>
</table>
</div>
"""
tab_content_list = [
_format_stat_data(stat[period[0]], period[0], now - period[1])
for period in self.stat_period
if period[0] != "all_time"
]
tab_content_list.append(
_format_stat_data(stat["all_time"], "all_time", datetime.fromtimestamp(local_storage["deploy_time"]))
)
joined_tab_list = "\n".join(tab_list)
joined_tab_content = "\n".join(tab_content_list)
html_template = (
"""
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>MaiBot运行统计报告</title>
<style>
body {
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, sans-serif;
margin: 0;
padding: 20px;
background-color: #f4f7f6;
color: #333;
line-height: 1.6;
}
.container {
max-width: 900px;
margin: 20px auto;
background-color: #fff;
padding: 25px;
border-radius: 8px;
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
}
h1, h2 {
color: #2c3e50;
border-bottom: 2px solid #3498db;
padding-bottom: 10px;
margin-top: 0;
}
h1 {
text-align: center;
font-size: 2em;
}
h2 {
font-size: 1.5em;
margin-top: 30px;
}
p {
margin-bottom: 10px;
}
.info-item {
background-color: #ecf0f1;
padding: 8px 12px;
border-radius: 4px;
margin-bottom: 8px;
font-size: 0.95em;
}
.info-item strong {
color: #2980b9;
}
table {
width: 100%;
border-collapse: collapse;
margin-top: 15px;
font-size: 0.9em;
}
th, td {
border: 1px solid #ddd;
padding: 10px;
text-align: left;
}
th {
background-color: #3498db;
color: white;
font-weight: bold;
}
tr:nth-child(even) {
background-color: #f9f9f9;
}
.footer {
text-align: center;
margin-top: 30px;
font-size: 0.8em;
color: #7f8c8d;
}
.tabs {
overflow: hidden;
background: #ecf0f1;
display: flex;
}
.tabs button {
background: inherit; border: none; outline: none;
padding: 14px 16px; cursor: pointer;
transition: 0.3s; font-size: 16px;
}
.tabs button:hover {
background-color: #d4dbdc;
}
.tabs button.active {
background-color: #b3bbbd;
}
.tab-content {
display: none;
padding: 20px;
background-color: #fff;
border: 1px solid #ccc;
}
.tab-content.active {
display: block;
}
</style>
</head>
<body>
"""
+ f"""
<div class="container">
<h1>MaiBot运行统计报告</h1>
<p class="info-item"><strong>统计截止时间:</strong> {now.strftime("%Y-%m-%d %H:%M:%S")}</p>
<div class="tabs">
{joined_tab_list}
</div>
{joined_tab_content}
</div>
"""
+ """
<script>
let i, tab_content, tab_links;
tab_content = document.getElementsByClassName("tab-content");
tab_links = document.getElementsByClassName("tab-link");
tab_content[0].classList.add("active");
tab_links[0].classList.add("active");
function showTab(evt, tabName) {{
for (i = 0; i < tab_content.length; i++) tab_content[i].classList.remove("active");
for (i = 0; i < tab_links.length; i++) tab_links[i].classList.remove("active");
document.getElementById(tabName).classList.add("active");
evt.currentTarget.classList.add("active");
}}
</script>
</body>
</html>
"""
)
with open(self.record_file_path, "w", encoding="utf-8") as f:
f.write(html_template)