fix:调整目录结构,优化hfc prompt,移除日程,移除动态和llm判断willing模式,

This commit is contained in:
SengokuCola
2025-05-13 18:37:55 +08:00
parent 6376da0682
commit fed71bccad
131 changed files with 422 additions and 1500 deletions

View File

@@ -0,0 +1,559 @@
from src.common.logger_manager import get_logger
from ...common.database import db
import copy
import hashlib
from typing import Any, Callable, Dict
import datetime
import asyncio
import numpy as np
from src.chat.models.utils_model import LLMRequest
from src.config.config import global_config
from src.individuality.individuality import Individuality
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
from pathlib import Path
import pandas as pd
import json
import re
"""
PersonInfoManager 类方法功能摘要:
1. get_person_id - 根据平台和用户ID生成MD5哈希的唯一person_id
2. create_person_info - 创建新个人信息文档(自动合并默认值)
3. update_one_field - 更新单个字段值(若文档不存在则创建)
4. del_one_document - 删除指定person_id的文档
5. get_value - 获取单个字段值(返回实际值或默认值)
6. get_values - 批量获取字段值(任一字段无效则返回空字典)
7. del_all_undefined_field - 清理全集合中未定义的字段
8. get_specific_value_list - 根据指定条件返回person_id,value字典
9. personal_habit_deduction - 定时推断个人习惯
"""
logger = get_logger("person_info")
person_info_default = {
"person_id": None,
"person_name": None,
"name_reason": None,
"platform": None,
"user_id": None,
"nickname": None,
# "age" : 0,
"relationship_value": 0,
# "saved" : True,
# "impression" : None,
# "gender" : Unkown,
"konw_time": 0,
"msg_interval": 2000,
"msg_interval_list": [],
"user_cardname": None, # 添加群名片
"user_avatar": None, # 添加头像信息例如URL或标识符
} # 个人信息的各项与默认值在此定义,以下处理会自动创建/补全每一项
class PersonInfoManager:
def __init__(self):
self.person_name_list = {}
self.qv_name_llm = LLMRequest(
model=global_config.llm_normal,
max_tokens=256,
request_type="qv_name",
)
if "person_info" not in db.list_collection_names():
db.create_collection("person_info")
db.person_info.create_index("person_id", unique=True)
# 初始化时读取所有person_name
cursor = db.person_info.find({"person_name": {"$exists": True}}, {"person_id": 1, "person_name": 1, "_id": 0})
for doc in cursor:
if doc.get("person_name"):
self.person_name_list[doc["person_id"]] = doc["person_name"]
logger.debug(f"已加载 {len(self.person_name_list)} 个用户名称")
@staticmethod
def get_person_id(platform: str, user_id: int):
"""获取唯一id"""
# 如果platform中存在-,就截取-后面的部分
if "-" in platform:
platform = platform.split("-")[1]
components = [platform, str(user_id)]
key = "_".join(components)
return hashlib.md5(key.encode()).hexdigest()
def is_person_known(self, platform: str, user_id: int):
"""判断是否认识某人"""
person_id = self.get_person_id(platform, user_id)
document = db.person_info.find_one({"person_id": person_id})
if document:
return True
else:
return False
@staticmethod
async def create_person_info(person_id: str, data: dict = None):
"""创建一个项"""
if not person_id:
logger.debug("创建失败personid不存在")
return
_person_info_default = copy.deepcopy(person_info_default)
_person_info_default["person_id"] = person_id
if data:
for key in _person_info_default:
if key != "person_id" and key in data:
_person_info_default[key] = data[key]
db.person_info.insert_one(_person_info_default)
async def update_one_field(self, person_id: str, field_name: str, value, data: dict = None):
"""更新某一个字段,会补全"""
if field_name not in person_info_default.keys():
logger.debug(f"更新'{field_name}'失败,未定义的字段")
return
document = db.person_info.find_one({"person_id": person_id})
if document:
db.person_info.update_one({"person_id": person_id}, {"$set": {field_name: value}})
else:
data[field_name] = value
logger.debug(f"更新时{person_id}不存在,已新建")
await self.create_person_info(person_id, data)
@staticmethod
async def has_one_field(person_id: str, field_name: str):
"""判断是否存在某一个字段"""
document = db.person_info.find_one({"person_id": person_id}, {field_name: 1})
if document:
return True
else:
return False
@staticmethod
def _extract_json_from_text(text: str) -> dict:
"""从文本中提取JSON数据的高容错方法"""
try:
# 尝试直接解析
parsed_json = json.loads(text)
# 如果解析结果是列表,尝试取第一个元素
if isinstance(parsed_json, list):
if parsed_json: # 检查列表是否为空
parsed_json = parsed_json[0]
else: # 如果列表为空,重置为 None走后续逻辑
parsed_json = None
# 确保解析结果是字典
if isinstance(parsed_json, dict):
return parsed_json
except json.JSONDecodeError:
# 解析失败,继续尝试其他方法
pass
except Exception as e:
logger.warning(f"尝试直接解析JSON时发生意外错误: {e}")
pass # 继续尝试其他方法
# 如果直接解析失败或结果不是字典
try:
# 尝试找到JSON对象格式的部分
json_pattern = r"\{[^{}]*\}"
matches = re.findall(json_pattern, text)
if matches:
parsed_obj = json.loads(matches[0])
if isinstance(parsed_obj, dict): # 确保是字典
return parsed_obj
# 如果上面都失败了,尝试提取键值对
nickname_pattern = r'"nickname"[:\s]+"([^"]+)"'
reason_pattern = r'"reason"[:\s]+"([^"]+)"'
nickname_match = re.search(nickname_pattern, text)
reason_match = re.search(reason_pattern, text)
if nickname_match:
return {
"nickname": nickname_match.group(1),
"reason": reason_match.group(1) if reason_match else "未提供理由",
}
except Exception as e:
logger.error(f"后备JSON提取失败: {str(e)}")
# 如果所有方法都失败了,返回默认字典
logger.warning(f"无法从文本中提取有效的JSON字典: {text}")
return {"nickname": "", "reason": ""}
async def qv_person_name(
self, person_id: str, user_nickname: str, user_cardname: str, user_avatar: str, request: str = ""
):
"""给某个用户取名"""
if not person_id:
logger.debug("取名失败person_id不能为空")
return None
old_name = await self.get_value(person_id, "person_name")
old_reason = await self.get_value(person_id, "name_reason")
max_retries = 5 # 最大重试次数
current_try = 0
existing_names = ""
while current_try < max_retries:
individuality = Individuality.get_instance()
prompt_personality = individuality.get_prompt(x_person=2, level=1)
bot_name = individuality.personality.bot_nickname
qv_name_prompt = f"你是{bot_name}{prompt_personality}"
qv_name_prompt += f"现在你想给一个用户取一个昵称用户是的qq昵称是{user_nickname}"
qv_name_prompt += f"用户的qq群昵称名是{user_cardname}"
if user_avatar:
qv_name_prompt += f"用户的qq头像是{user_avatar}"
if old_name:
qv_name_prompt += f"你之前叫他{old_name},是因为{old_reason}"
qv_name_prompt += f"\n其他取名的要求是:{request},不要太浮夸"
qv_name_prompt += (
"\n请根据以上用户信息想想你叫他什么比较好不要太浮夸请最好使用用户的qq昵称可以稍作修改"
)
if existing_names:
qv_name_prompt += f"\n请注意,以下名称已被使用,不要使用以下昵称:{existing_names}\n"
qv_name_prompt += "请用json给出你的想法并给出理由示例如下"
qv_name_prompt += """{
"nickname": "昵称",
"reason": "理由"
}"""
# logger.debug(f"取名提示词:{qv_name_prompt}")
response = await self.qv_name_llm.generate_response(qv_name_prompt)
logger.trace(f"取名提示词:{qv_name_prompt}\n取名回复:{response}")
result = self._extract_json_from_text(response[0])
if not result["nickname"]:
logger.error("生成的昵称为空,重试中...")
current_try += 1
continue
# 检查生成的昵称是否已存在
if result["nickname"] not in self.person_name_list.values():
# 更新数据库和内存中的列表
await self.update_one_field(person_id, "person_name", result["nickname"])
# await self.update_one_field(person_id, "nickname", user_nickname)
# await self.update_one_field(person_id, "avatar", user_avatar)
await self.update_one_field(person_id, "name_reason", result["reason"])
self.person_name_list[person_id] = result["nickname"]
# logger.debug(f"用户 {person_id} 的名称已更新为 {result['nickname']},原因:{result['reason']}")
return result
else:
existing_names += f"{result['nickname']}"
logger.debug(f"生成的昵称 {result['nickname']} 已存在,重试中...")
current_try += 1
logger.error(f"{max_retries}次尝试后仍未能生成唯一昵称")
return None
@staticmethod
async def del_one_document(person_id: str):
"""删除指定 person_id 的文档"""
if not person_id:
logger.debug("删除失败person_id 不能为空")
return
result = db.person_info.delete_one({"person_id": person_id})
if result.deleted_count > 0:
logger.debug(f"删除成功person_id={person_id}")
else:
logger.debug(f"删除失败:未找到 person_id={person_id}")
@staticmethod
async def get_value(person_id: str, field_name: str):
"""获取指定person_id文档的字段值若不存在该字段则返回该字段的全局默认值"""
if not person_id:
logger.debug("get_value获取失败person_id不能为空")
return None
if field_name not in person_info_default:
logger.debug(f"get_value获取失败字段'{field_name}'未定义")
return None
document = db.person_info.find_one({"person_id": person_id}, {field_name: 1})
if document and field_name in document:
return document[field_name]
else:
default_value = copy.deepcopy(person_info_default[field_name])
logger.trace(f"获取{person_id}{field_name}失败,已返回默认值{default_value}")
return default_value
@staticmethod
async def get_values(person_id: str, field_names: list) -> dict:
"""获取指定person_id文档的多个字段值若不存在该字段则返回该字段的全局默认值"""
if not person_id:
logger.debug("get_values获取失败person_id不能为空")
return {}
# 检查所有字段是否有效
for field in field_names:
if field not in person_info_default:
logger.debug(f"get_values获取失败字段'{field}'未定义")
return {}
# 构建查询投影(所有字段都有效才会执行到这里)
projection = {field: 1 for field in field_names}
document = db.person_info.find_one({"person_id": person_id}, projection)
result = {}
for field in field_names:
result[field] = copy.deepcopy(
document.get(field, person_info_default[field]) if document else person_info_default[field]
)
return result
@staticmethod
async def del_all_undefined_field():
"""删除所有项里的未定义字段"""
# 获取所有已定义的字段名
defined_fields = set(person_info_default.keys())
try:
# 遍历集合中的所有文档
for document in db.person_info.find({}):
# 找出文档中未定义的字段
undefined_fields = set(document.keys()) - defined_fields - {"_id"}
if undefined_fields:
# 构建更新操作,使用$unset删除未定义字段
update_result = db.person_info.update_one(
{"_id": document["_id"]}, {"$unset": {field: 1 for field in undefined_fields}}
)
if update_result.modified_count > 0:
logger.debug(f"已清理文档 {document['_id']} 的未定义字段: {undefined_fields}")
return
except Exception as e:
logger.error(f"清理未定义字段时出错: {e}")
return
@staticmethod
async def get_specific_value_list(
field_name: str,
way: Callable[[Any], bool], # 接受任意类型值
) -> Dict[str, Any]:
"""
获取满足条件的字段值字典
Args:
field_name: 目标字段名
way: 判断函数 (value: Any) -> bool
Returns:
{person_id: value} | {}
Example:
# 查找所有nickname包含"admin"的用户
result = manager.specific_value_list(
"nickname",
lambda x: "admin" in x.lower()
)
"""
if field_name not in person_info_default:
logger.error(f"字段检查失败:'{field_name}'未定义")
return {}
try:
result = {}
for doc in db.person_info.find({field_name: {"$exists": True}}, {"person_id": 1, field_name: 1, "_id": 0}):
try:
value = doc[field_name]
if way(value):
result[doc["person_id"]] = value
except (KeyError, TypeError, ValueError) as e:
logger.debug(f"记录{doc.get('person_id')}处理失败: {str(e)}")
continue
return result
except Exception as e:
logger.error(f"数据库查询失败: {str(e)}", exc_info=True)
return {}
async def personal_habit_deduction(self):
"""启动个人信息推断,每天根据一定条件推断一次"""
try:
while 1:
await asyncio.sleep(600)
current_time = datetime.datetime.now()
logger.info(f"个人信息推断启动: {current_time.strftime('%Y-%m-%d %H:%M:%S')}")
# "msg_interval"推断
msg_interval_map = False
msg_interval_lists = await self.get_specific_value_list(
"msg_interval_list", lambda x: isinstance(x, list) and len(x) >= 100
)
for person_id, msg_interval_list_ in msg_interval_lists.items():
await asyncio.sleep(0.3)
try:
time_interval = []
for t1, t2 in zip(msg_interval_list_, msg_interval_list_[1:]):
delta = t2 - t1
if delta > 0:
time_interval.append(delta)
time_interval = [t for t in time_interval if 200 <= t <= 8000]
# --- 修改后的逻辑 ---
# 数据量检查 (至少需要 30 条有效间隔,并且足够进行头尾截断)
if len(time_interval) >= 30 + 10: # 至少30条有效+头尾各5条
time_interval.sort()
# 画图(log) - 这部分保留
msg_interval_map = True
log_dir = Path("logs/person_info")
log_dir.mkdir(parents=True, exist_ok=True)
plt.figure(figsize=(10, 6))
# 使用截断前的数据画图,更能反映原始分布
time_series_original = pd.Series(time_interval)
plt.hist(
time_series_original,
bins=50,
density=True,
alpha=0.4,
color="pink",
label="Histogram (Original Filtered)",
)
time_series_original.plot(
kind="kde", color="mediumpurple", linewidth=1, label="Density (Original Filtered)"
)
plt.grid(True, alpha=0.2)
plt.xlim(0, 8000)
plt.title(f"Message Interval Distribution (User: {person_id[:8]}...)")
plt.xlabel("Interval (ms)")
plt.ylabel("Density")
plt.legend(framealpha=0.9, facecolor="white")
img_path = log_dir / f"interval_distribution_{person_id[:8]}.png"
plt.savefig(img_path)
plt.close()
# 画图结束
# 去掉头尾各 5 个数据点
trimmed_interval = time_interval[5:-5]
# 计算截断后数据的 37% 分位数
if trimmed_interval: # 确保截断后列表不为空
msg_interval = int(round(np.percentile(trimmed_interval, 37)))
# 更新数据库
await self.update_one_field(person_id, "msg_interval", msg_interval)
logger.trace(f"用户{person_id}的msg_interval通过头尾截断和37分位数更新为{msg_interval}")
else:
logger.trace(f"用户{person_id}截断后数据为空无法计算msg_interval")
else:
logger.trace(
f"用户{person_id}有效消息间隔数量 ({len(time_interval)}) 不足进行推断 (需要至少 {30 + 10} 条)"
)
# --- 修改结束 ---
except Exception as e:
logger.trace(f"用户{person_id}消息间隔计算失败: {type(e).__name__}: {str(e)}")
continue
# 其他...
if msg_interval_map:
logger.trace("已保存分布图到: logs/person_info")
current_time = datetime.datetime.now()
logger.trace(f"个人信息推断结束: {current_time.strftime('%Y-%m-%d %H:%M:%S')}")
await asyncio.sleep(86400)
except Exception as e:
logger.error(f"个人信息推断运行时出错: {str(e)}")
logger.exception("详细错误信息:")
async def get_or_create_person(
self, platform: str, user_id: int, nickname: str = None, user_cardname: str = None, user_avatar: str = None
) -> str:
"""
根据 platform 和 user_id 获取 person_id。
如果对应的用户不存在,则使用提供的可选信息创建新用户。
Args:
platform: 平台标识
user_id: 用户在该平台上的ID
nickname: 用户的昵称 (可选,用于创建新用户)
user_cardname: 用户的群名片 (可选,用于创建新用户)
user_avatar: 用户的头像信息 (可选,用于创建新用户)
Returns:
对应的 person_id。
"""
person_id = self.get_person_id(platform, user_id)
# 检查用户是否已存在
# 使用静态方法 get_person_id因此可以直接调用 db
document = db.person_info.find_one({"person_id": person_id})
if document is None:
logger.info(f"用户 {platform}:{user_id} (person_id: {person_id}) 不存在,将创建新记录。")
initial_data = {
"platform": platform,
"user_id": user_id,
"nickname": nickname,
"konw_time": int(datetime.datetime.now().timestamp()), # 添加初次认识时间
# 注意:这里没有添加 user_cardname 和 user_avatar因为它们不在 person_info_default 中
# 如果需要存储它们,需要先在 person_info_default 中定义
}
# 过滤掉值为 None 的初始数据
initial_data = {k: v for k, v in initial_data.items() if v is not None}
# 注意create_person_info 是静态方法
await PersonInfoManager.create_person_info(person_id, data=initial_data)
# 创建后,可以考虑立即为其取名,但这可能会增加延迟
# await self.qv_person_name(person_id, nickname, user_cardname, user_avatar)
logger.debug(f"已为 {person_id} 创建新记录,初始数据: {initial_data}")
return person_id
async def get_person_info_by_name(self, person_name: str) -> dict | None:
"""根据 person_name 查找用户并返回基本信息 (如果找到)"""
if not person_name:
logger.debug("get_person_info_by_name 获取失败person_name 不能为空")
return None
# 优先从内存缓存查找 person_id
found_person_id = None
for pid, name in self.person_name_list.items():
if name == person_name:
found_person_id = pid
break # 找到第一个匹配就停止
if not found_person_id:
# 如果内存没有,尝试数据库查询(可能内存未及时更新或启动时未加载)
document = db.person_info.find_one({"person_name": person_name})
if document:
found_person_id = document.get("person_id")
else:
logger.debug(f"数据库中也未找到名为 '{person_name}' 的用户")
return None # 数据库也找不到
# 根据找到的 person_id 获取所需信息
if found_person_id:
required_fields = ["person_id", "platform", "user_id", "nickname", "user_cardname", "user_avatar"]
person_data = await self.get_values(found_person_id, required_fields)
if person_data: # 确保 get_values 成功返回
return person_data
else:
logger.warning(f"找到了 person_id '{found_person_id}' 但获取详细信息失败")
return None
else:
# 这理论上不应该发生,因为上面已经处理了找不到的情况
logger.error(f"逻辑错误:未能为 '{person_name}' 确定 person_id")
return None
person_info_manager = PersonInfoManager()