fix:调整目录结构,优化hfc prompt,移除日程,移除动态和llm判断willing模式,

This commit is contained in:
SengokuCola
2025-05-13 18:37:55 +08:00
parent 6376da0682
commit fed71bccad
131 changed files with 422 additions and 1500 deletions

View File

@@ -0,0 +1,970 @@
import asyncio
import contextlib
import json # <--- 确保导入 json
import random # <--- 添加导入
import time
import traceback
from collections import deque
from typing import List, Optional, Dict, Any, Deque, Callable, Coroutine
from src.chat.message_receive.chat_stream import ChatStream
from src.chat.message_receive.chat_stream import chat_manager
from rich.traceback import install
from src.common.logger_manager import get_logger
from src.chat.models.utils_model import LLMRequest
from src.config.config import global_config
from src.chat.utils.timer_calculator import Timer
from src.heart_flow.observation.observation import Observation
from src.chat.focus_chat.heartflow_prompt_builder import prompt_builder
from src.chat.focus_chat.heartFC_Cycleinfo import CycleDetail
from src.heart_flow.observation.chatting_observation import ChattingObservation
from src.heart_flow.utils_chat import get_chat_type_and_target_info
from src.chat.focus_chat.info.info_base import InfoBase
from src.chat.focus_chat.info.obs_info import ObsInfo
from src.chat.focus_chat.info.cycle_info import CycleInfo
from src.chat.focus_chat.info.mind_info import MindInfo
from src.chat.focus_chat.info.structured_info import StructuredInfo
from src.chat.focus_chat.info_processors.chattinginfo_processor import ChattingInfoProcessor
from src.chat.focus_chat.info_processors.mind_processor import MindProcessor
from src.heart_flow.observation.memory_observation import MemoryObservation
from src.heart_flow.observation.hfcloop_observation import HFCloopObservation
from src.heart_flow.observation.working_observation import WorkingObservation
from src.chat.focus_chat.info_processors.tool_processor import ToolProcessor
from src.chat.focus_chat.expressors.default_expressor import DefaultExpressor
from src.chat.focus_chat.hfc_utils import _create_empty_anchor_message
from src.chat.focus_chat.memory_activator import MemoryActivator
install(extra_lines=3)
WAITING_TIME_THRESHOLD = 300 # 等待新消息时间阈值,单位秒
EMOJI_SEND_PRO = 0.3 # 设置一个概率,比如 30% 才真的发
CONSECUTIVE_NO_REPLY_THRESHOLD = 3 # 连续不回复的阈值
logger = get_logger("hfc") # Logger Name Changed
# 默认动作定义
DEFAULT_ACTIONS = {"no_reply": "不操作,继续浏览", "reply": "表达想法,可以只包含文本、表情或两者都有"}
class ActionManager:
"""动作管理器:控制每次决策可以使用的动作"""
def __init__(self):
# 初始化为新的默认动作集
self._available_actions: Dict[str, str] = DEFAULT_ACTIONS.copy()
self._original_actions_backup: Optional[Dict[str, str]] = None
def get_available_actions(self) -> Dict[str, str]:
"""获取当前可用的动作集"""
return self._available_actions.copy() # 返回副本以防外部修改
def add_action(self, action_name: str, description: str) -> bool:
"""
添加新的动作
参数:
action_name: 动作名称
description: 动作描述
返回:
bool: 是否添加成功
"""
if action_name in self._available_actions:
return False
self._available_actions[action_name] = description
return True
def remove_action(self, action_name: str) -> bool:
"""
移除指定动作
参数:
action_name: 动作名称
返回:
bool: 是否移除成功
"""
if action_name not in self._available_actions:
return False
del self._available_actions[action_name]
return True
def temporarily_remove_actions(self, actions_to_remove: List[str]):
"""
临时移除指定的动作,备份原始动作集。
如果已经有备份,则不重复备份。
"""
if self._original_actions_backup is None:
self._original_actions_backup = self._available_actions.copy()
actions_actually_removed = []
for action_name in actions_to_remove:
if action_name in self._available_actions:
del self._available_actions[action_name]
actions_actually_removed.append(action_name)
# logger.debug(f"临时移除了动作: {actions_actually_removed}") # 可选日志
def restore_actions(self):
"""
恢复之前备份的原始动作集。
"""
if self._original_actions_backup is not None:
self._available_actions = self._original_actions_backup.copy()
self._original_actions_backup = None
# logger.debug("恢复了原始动作集") # 可选日志
async def _handle_cycle_delay(action_taken_this_cycle: bool, cycle_start_time: float, log_prefix: str):
"""处理循环延迟"""
cycle_duration = time.monotonic() - cycle_start_time
try:
sleep_duration = 0.0
if not action_taken_this_cycle and cycle_duration < 1:
sleep_duration = 1 - cycle_duration
elif cycle_duration < 0.2:
sleep_duration = 0.2
if sleep_duration > 0:
await asyncio.sleep(sleep_duration)
except asyncio.CancelledError:
logger.info(f"{log_prefix} Sleep interrupted, loop likely cancelling.")
raise
class HeartFChatting:
"""
管理一个连续的Plan-Replier-Sender循环
用于在特定聊天流中生成回复。
其生命周期现在由其关联的 SubHeartflow 的 FOCUSED 状态控制。
"""
def __init__(
self,
chat_id: str,
observations: list[Observation],
on_consecutive_no_reply_callback: Callable[[], Coroutine[None, None, None]],
):
"""
HeartFChatting 初始化函数
参数:
chat_id: 聊天流唯一标识符(如stream_id)
observations: 关联的观察列表
on_consecutive_no_reply_callback: 连续不回复达到阈值时调用的异步回调函数
"""
# 基础属性
self.stream_id: str = chat_id # 聊天流ID
self.chat_stream: Optional[ChatStream] = None # 关联的聊天流
self.observations: List[Observation] = observations # 关联的观察列表,用于监控聊天流状态
self.on_consecutive_no_reply_callback = on_consecutive_no_reply_callback
self.chatting_info_processor = ChattingInfoProcessor()
self.mind_processor = MindProcessor(subheartflow_id=self.stream_id)
self.memory_observation = MemoryObservation(observe_id=self.stream_id)
self.hfcloop_observation = HFCloopObservation(observe_id=self.stream_id)
self.tool_processor = ToolProcessor(subheartflow_id=self.stream_id)
self.working_observation = WorkingObservation(observe_id=self.stream_id)
self.memory_activator = MemoryActivator()
# 日志前缀
self.log_prefix: str = str(chat_id) # Initial default, will be updated
# --- Initialize attributes (defaults) ---
self.is_group_chat: bool = False
self.chat_target_info: Optional[dict] = None
# --- End Initialization ---
self.expressor = DefaultExpressor(chat_id=self.stream_id)
# 动作管理器
self.action_manager = ActionManager()
# 初始化状态控制
self._initialized = False
self._processing_lock = asyncio.Lock()
# LLM规划器配置
self.planner_llm = LLMRequest(
model=global_config.llm_plan,
max_tokens=1000,
request_type="action_planning", # 用于动作规划
)
# 循环控制内部状态
self._loop_active: bool = False # 循环是否正在运行
self._loop_task: Optional[asyncio.Task] = None # 主循环任务
# 添加循环信息管理相关的属性
self._cycle_counter = 0
self._cycle_history: Deque[CycleDetail] = deque(maxlen=10) # 保留最近10个循环的信息
self._current_cycle: Optional[CycleDetail] = None
self._lian_xu_bu_hui_fu_ci_shu: int = 0 # <--- 新增:连续不回复计数器
self._shutting_down: bool = False # <--- 新增:关闭标志位
self._lian_xu_deng_dai_shi_jian: float = 0.0 # <--- 新增:累计等待时间
async def _initialize(self) -> bool:
"""
执行懒初始化操作
功能:
1. 获取聊天类型(群聊/私聊)和目标信息
2. 获取聊天流对象
3. 设置日志前缀
返回:
bool: 初始化是否成功
注意:
- 如果已经初始化过会直接返回True
- 需要获取chat_stream对象才能继续后续操作
"""
# 如果已经初始化过,直接返回成功
if self._initialized:
return True
try:
self.is_group_chat, self.chat_target_info = await get_chat_type_and_target_info(self.stream_id)
await self.expressor.initialize()
self.chat_stream = await asyncio.to_thread(chat_manager.get_stream, self.stream_id)
self.expressor.chat_stream = self.chat_stream
self.log_prefix = f"[{chat_manager.get_stream_name(self.stream_id) or self.stream_id}]"
except Exception as e:
logger.error(f"[HFC:{self.stream_id}] 初始化HFC时发生错误: {e}")
return False
# 标记初始化完成
self._initialized = True
logger.debug(f"{self.log_prefix} 初始化完成,准备开始处理消息")
return True
async def start(self):
"""
启动 HeartFChatting 的主循环。
注意:调用此方法前必须确保已经成功初始化。
"""
logger.info(f"{self.log_prefix} 开始认真水群(HFC)...")
await self._start_loop_if_needed()
async def _start_loop_if_needed(self):
"""检查是否需要启动主循环,如果未激活则启动。"""
# 如果循环已经激活,直接返回
if self._loop_active:
return
# 标记为活动状态,防止重复启动
self._loop_active = True
# 检查是否已有任务在运行(理论上不应该,因为 _loop_active=False
if self._loop_task and not self._loop_task.done():
logger.warning(f"{self.log_prefix} 发现之前的循环任务仍在运行(不符合预期)。取消旧任务。")
self._loop_task.cancel()
try:
# 等待旧任务确实被取消
await asyncio.wait_for(self._loop_task, timeout=0.5)
except (asyncio.CancelledError, asyncio.TimeoutError):
pass # 忽略取消或超时错误
self._loop_task = None # 清理旧任务引用
logger.debug(f"{self.log_prefix} 启动认真水群(HFC)主循环...")
# 创建新的循环任务
self._loop_task = asyncio.create_task(self._hfc_loop())
# 添加完成回调
self._loop_task.add_done_callback(self._handle_loop_completion)
def _handle_loop_completion(self, task: asyncio.Task):
"""当 _hfc_loop 任务完成时执行的回调。"""
try:
exception = task.exception()
if exception:
logger.error(f"{self.log_prefix} HeartFChatting: 麦麦脱离了聊天(异常): {exception}")
logger.error(traceback.format_exc()) # Log full traceback for exceptions
else:
# Loop completing normally now means it was cancelled/shutdown externally
logger.info(f"{self.log_prefix} HeartFChatting: 麦麦脱离了聊天 (外部停止)")
except asyncio.CancelledError:
logger.info(f"{self.log_prefix} HeartFChatting: 麦麦脱离了聊天(任务取消)")
finally:
self._loop_active = False
self._loop_task = None
if self._processing_lock.locked():
logger.warning(f"{self.log_prefix} HeartFChatting: 处理锁在循环结束时仍被锁定,强制释放。")
self._processing_lock.release()
async def _hfc_loop(self):
"""主循环,持续进行计划并可能回复消息,直到被外部取消。"""
try:
while True: # 主循环
logger.debug(f"{self.log_prefix} 开始第{self._cycle_counter}次循环")
# --- 在循环开始处检查关闭标志 ---
if self._shutting_down:
logger.info(f"{self.log_prefix} 检测到关闭标志,退出 HFC 循环。")
break
# --------------------------------
# 创建新的循环信息
self._cycle_counter += 1
self._current_cycle = CycleDetail(self._cycle_counter)
# 初始化周期状态
cycle_timers = {}
loop_cycle_start_time = time.monotonic()
# 执行规划和处理阶段
async with self._get_cycle_context() as acquired_lock:
if not acquired_lock:
# 如果未能获取锁(理论上不太可能,除非 shutdown 过程中释放了但又被抢了?)
# 或者也可以在这里再次检查 self._shutting_down
if self._shutting_down:
break # 再次检查,确保退出
logger.warning(f"{self.log_prefix} 未能获取循环处理锁,跳过本次循环。")
await asyncio.sleep(0.1) # 短暂等待避免空转
continue
# 记录规划开始时间点
planner_start_db_time = time.time()
# 主循环:思考->决策->执行
action_taken, thinking_id = await self._think_plan_execute_loop(cycle_timers, planner_start_db_time)
# 更新循环信息
self._current_cycle.set_thinking_id(thinking_id)
self._current_cycle.timers = cycle_timers
# 防止循环过快消耗资源
await _handle_cycle_delay(action_taken, loop_cycle_start_time, self.log_prefix)
# 完成当前循环并保存历史
self._current_cycle.complete_cycle()
self._cycle_history.append(self._current_cycle)
# 保存CycleInfo到文件
try:
filepath = CycleDetail.save_to_file(self._current_cycle, self.stream_id)
logger.info(f"{self.log_prefix} 已保存循环信息到文件: {filepath}")
except Exception as e:
logger.error(f"{self.log_prefix} 保存循环信息到文件时出错: {e}")
# 记录循环信息和计时器结果
timer_strings = []
for name, elapsed in cycle_timers.items():
formatted_time = f"{elapsed * 1000:.2f}毫秒" if elapsed < 1 else f"{elapsed:.2f}"
timer_strings.append(f"{name}: {formatted_time}")
logger.debug(
f"{self.log_prefix} 第 #{self._current_cycle.cycle_id}次思考完成,"
f"耗时: {self._current_cycle.end_time - self._current_cycle.start_time:.2f}秒, "
f"动作: {self._current_cycle.action_type}"
+ (f"\n计时器详情: {'; '.join(timer_strings)}" if timer_strings else "")
)
except asyncio.CancelledError:
# 设置了关闭标志位后被取消是正常流程
if not self._shutting_down:
logger.warning(f"{self.log_prefix} HeartFChatting: 麦麦的认真水群(HFC)循环意外被取消")
else:
logger.info(f"{self.log_prefix} HeartFChatting: 麦麦的认真水群(HFC)循环已取消 (正常关闭)")
except Exception as e:
logger.error(f"{self.log_prefix} HeartFChatting: 意外错误: {e}")
logger.error(traceback.format_exc())
@contextlib.asynccontextmanager
async def _get_cycle_context(self):
"""
循环周期的上下文管理器
用于确保资源的正确获取和释放:
1. 获取处理锁
2. 执行操作
3. 释放锁
"""
acquired = False
try:
await self._processing_lock.acquire()
acquired = True
yield acquired
finally:
if acquired and self._processing_lock.locked():
self._processing_lock.release()
async def _think_plan_execute_loop(self, cycle_timers: dict, planner_start_db_time: float) -> tuple[bool, str]:
try:
await asyncio.sleep(1)
with Timer("观察", cycle_timers):
await self.observations[0].observe()
await self.memory_observation.observe()
await self.working_observation.observe()
await self.hfcloop_observation.observe()
observations: List[Observation] = []
observations.append(self.observations[0])
observations.append(self.memory_observation)
observations.append(self.working_observation)
observations.append(self.hfcloop_observation)
for observation in observations:
logger.debug(f"{self.log_prefix} 观察信息: {observation}")
with Timer("回忆", cycle_timers):
running_memorys = await self.memory_activator.activate_memory(observations)
# 记录并行任务开始时间
parallel_start_time = time.time()
logger.debug(f"{self.log_prefix} 开始信息处理器并行任务")
# 并行执行两个任务:思考和工具执行
with Timer("执行 信息处理器", cycle_timers):
# 1. 子思维思考 - 不执行工具调用
think_task = asyncio.create_task(
self.mind_processor.process_info(observations=observations, running_memorys=running_memorys)
)
logger.debug(f"{self.log_prefix} 启动子思维思考任务")
# 2. 工具执行器 - 专门处理工具调用
tool_task = asyncio.create_task(
self.tool_processor.process_info(observations=observations, running_memorys=running_memorys)
)
logger.debug(f"{self.log_prefix} 启动工具执行任务")
# 3. 聊天信息处理器
chatting_info_task = asyncio.create_task(
self.chatting_info_processor.process_info(
observations=observations, running_memorys=running_memorys
)
)
logger.debug(f"{self.log_prefix} 启动聊天信息处理器任务")
# 创建任务完成状态追踪
tasks = {"思考任务": think_task, "工具任务": tool_task, "聊天信息处理任务": chatting_info_task}
pending = set(tasks.values())
# 等待所有任务完成,同时追踪每个任务的完成情况
results: dict[str, list[InfoBase]] = {}
while pending:
# 等待任务完成
done, pending = await asyncio.wait(pending, return_when=asyncio.FIRST_COMPLETED, timeout=1.0)
# 记录完成的任务
for task in done:
for name, t in tasks.items():
if task == t:
task_end_time = time.time()
task_duration = task_end_time - parallel_start_time
logger.info(f"{self.log_prefix} {name}已完成,耗时: {task_duration:.2f}")
results[name] = task.result()
break
# 如果仍有未完成任务,记录进行中状态
if pending:
current_time = time.time()
elapsed = current_time - parallel_start_time
pending_names = [name for name, t in tasks.items() if t in pending]
logger.info(
f"{self.log_prefix} 并行处理已进行{elapsed:.2f}秒,待完成任务: {', '.join(pending_names)}"
)
# 所有任务完成,从结果中提取数据
mind_processed_infos = results.get("思考任务", [])
tool_processed_infos = results.get("工具任务", [])
chatting_info_processed_infos = results.get("聊天信息处理任务", [])
# 记录总耗时
parallel_end_time = time.time()
total_duration = parallel_end_time - parallel_start_time
logger.info(f"{self.log_prefix} 思考和工具并行任务全部完成,总耗时: {total_duration:.2f}")
all_plan_info = mind_processed_infos + tool_processed_infos + chatting_info_processed_infos
logger.debug(f"{self.log_prefix} 所有信息处理器处理后的信息: {all_plan_info}")
# 串行执行规划器 - 使用刚获取的思考结果
logger.debug(f"{self.log_prefix} 开始 规划器")
with Timer("规划器", cycle_timers):
planner_result = await self._planner(all_plan_info, cycle_timers)
action = planner_result.get("action", "error")
action_data = planner_result.get("action_data", {}) # 新增获取动作数据
reasoning = planner_result.get("reasoning", "未提供理由")
logger.debug(f"{self.log_prefix} 动作和动作信息: {action}, {action_data}, {reasoning}")
# 更新循环信息
self._current_cycle.set_action_info(
action_type=action,
action_data=action_data,
reasoning=reasoning,
action_taken=True,
)
# 处理LLM错误
if planner_result.get("llm_error"):
logger.error(f"{self.log_prefix} LLM失败: {reasoning}")
return False, ""
# 在此处添加日志记录
if action == "reply":
action_str = "回复"
elif action == "no_reply":
action_str = "不回复"
else:
action_str = "位置动作"
logger.info(f"{self.log_prefix} 麦麦决定'{action_str}', 原因'{reasoning}'")
self.hfcloop_observation.add_loop_info(self._current_cycle)
return await self._handle_action(action, reasoning, action_data, cycle_timers, planner_start_db_time)
except Exception as e:
logger.error(f"{self.log_prefix} 并行+串行处理失败: {e}")
logger.error(traceback.format_exc())
return False, ""
async def _handle_action(
self, action: str, reasoning: str, action_data: dict, cycle_timers: dict, planner_start_db_time: float
) -> tuple[bool, str]:
"""
处理规划动作
参数:
action: 动作类型
reasoning: 决策理由
action_data: 动作数据,包含不同动作需要的参数
cycle_timers: 计时器字典
planner_start_db_time: 规划开始时间
返回:
tuple[bool, str]: (是否执行了动作, 思考消息ID)
"""
action_handlers = {
"reply": self._handle_reply,
"no_reply": self._handle_no_reply,
}
handler = action_handlers.get(action)
if not handler:
logger.warning(f"{self.log_prefix} 未知动作: {action}, 原因: {reasoning}")
return False, ""
try:
if action == "reply":
return await handler(reasoning, action_data, cycle_timers)
else: # no_reply
return await handler(reasoning, planner_start_db_time, cycle_timers), ""
except Exception as e:
logger.error(f"{self.log_prefix} 处理{action}时出错: {e}")
# 出错时也重置计数器
self._lian_xu_bu_hui_fu_ci_shu = 0
self._lian_xu_deng_dai_shi_jian = 0.0
return False, ""
async def _handle_no_reply(self, reasoning: str, planner_start_db_time: float, cycle_timers: dict) -> bool:
"""
处理不回复的情况
工作流程:
1. 等待新消息、超时或关闭信号
2. 根据等待结果更新连续不回复计数
3. 如果达到阈值,触发回调
参数:
reasoning: 不回复的原因
planner_start_db_time: 规划开始时间
cycle_timers: 计时器字典
返回:
bool: 是否成功处理
"""
logger.info(f"{self.log_prefix} 决定不回复: {reasoning}")
observation = self.observations[0] if self.observations else None
try:
with Timer("等待新消息", cycle_timers):
# 等待新消息、超时或关闭信号,并获取结果
await self._wait_for_new_message(observation, planner_start_db_time, self.log_prefix)
# 从计时器获取实际等待时间
current_waiting = cycle_timers.get("等待新消息", 0.0)
if not self._shutting_down:
self._lian_xu_bu_hui_fu_ci_shu += 1
self._lian_xu_deng_dai_shi_jian += current_waiting # 累加等待时间
logger.debug(
f"{self.log_prefix} 连续不回复计数增加: {self._lian_xu_bu_hui_fu_ci_shu}/{CONSECUTIVE_NO_REPLY_THRESHOLD}, "
f"本次等待: {current_waiting:.2f}秒, 累计等待: {self._lian_xu_deng_dai_shi_jian:.2f}"
)
# 检查是否同时达到次数和时间阈值
time_threshold = 0.66 * WAITING_TIME_THRESHOLD * CONSECUTIVE_NO_REPLY_THRESHOLD
if (
self._lian_xu_bu_hui_fu_ci_shu >= CONSECUTIVE_NO_REPLY_THRESHOLD
and self._lian_xu_deng_dai_shi_jian >= time_threshold
):
logger.info(
f"{self.log_prefix} 连续不回复达到阈值 ({self._lian_xu_bu_hui_fu_ci_shu}次) "
f"且累计等待时间达到 {self._lian_xu_deng_dai_shi_jian:.2f}秒 (阈值 {time_threshold}秒)"
f"调用回调请求状态转换"
)
# 调用回调。注意:这里不重置计数器和时间,依赖回调函数成功改变状态来隐式重置上下文。
await self.on_consecutive_no_reply_callback()
elif self._lian_xu_bu_hui_fu_ci_shu >= CONSECUTIVE_NO_REPLY_THRESHOLD:
# 仅次数达到阈值,但时间未达到
logger.debug(
f"{self.log_prefix} 连续不回复次数达到阈值 ({self._lian_xu_bu_hui_fu_ci_shu}次) "
f"但累计等待时间 {self._lian_xu_deng_dai_shi_jian:.2f}秒 未达到时间阈值 ({time_threshold}秒),暂不调用回调"
)
# else: 次数和时间都未达到阈值,不做处理
return True
except asyncio.CancelledError:
# 如果在等待过程中任务被取消(可能是因为 shutdown
logger.info(f"{self.log_prefix} 处理 'no_reply' 时等待被中断 (CancelledError)")
# 让异常向上传播,由 _hfc_loop 的异常处理逻辑接管
raise
except Exception as e: # 捕获调用管理器或其他地方可能发生的错误
logger.error(f"{self.log_prefix} 处理 'no_reply' 时发生错误: {e}")
logger.error(traceback.format_exc())
# 发生意外错误时,可以选择是否重置计数器,这里选择不重置
return False # 表示动作未成功
async def _wait_for_new_message(self, observation, planner_start_db_time: float, log_prefix: str) -> bool:
"""
等待新消息 或 检测到关闭信号
参数:
observation: 观察实例
planner_start_db_time: 开始等待的时间
log_prefix: 日志前缀
返回:
bool: 是否检测到新消息 (如果因关闭信号退出则返回 False)
"""
wait_start_time = time.monotonic()
while True:
# --- 在每次循环开始时检查关闭标志 ---
if self._shutting_down:
logger.info(f"{log_prefix} 等待新消息时检测到关闭信号,中断等待。")
return False # 表示因为关闭而退出
# -----------------------------------
# 检查新消息
if await observation.has_new_messages_since(planner_start_db_time):
logger.info(f"{log_prefix} 检测到新消息")
return True
# 检查超时 (放在检查新消息和关闭之后)
if time.monotonic() - wait_start_time > WAITING_TIME_THRESHOLD:
logger.warning(f"{log_prefix} 等待新消息超时({WAITING_TIME_THRESHOLD}秒)")
return False
try:
# 短暂休眠,让其他任务有机会运行,并能更快响应取消或关闭
await asyncio.sleep(0.5) # 缩短休眠时间
except asyncio.CancelledError:
# 如果在休眠时被取消,再次检查关闭标志
# 如果是正常关闭,则不需要警告
if not self._shutting_down:
logger.warning(f"{log_prefix} _wait_for_new_message 的休眠被意外取消")
# 无论如何,重新抛出异常,让上层处理
raise
async def shutdown(self):
"""优雅关闭HeartFChatting实例取消活动循环任务"""
logger.info(f"{self.log_prefix} 正在关闭HeartFChatting...")
self._shutting_down = True # <-- 在开始关闭时设置标志位
# 取消循环任务
if self._loop_task and not self._loop_task.done():
logger.info(f"{self.log_prefix} 正在取消HeartFChatting循环任务")
self._loop_task.cancel()
try:
await asyncio.wait_for(self._loop_task, timeout=1.0)
logger.info(f"{self.log_prefix} HeartFChatting循环任务已取消")
except (asyncio.CancelledError, asyncio.TimeoutError):
pass
except Exception as e:
logger.error(f"{self.log_prefix} 取消循环任务出错: {e}")
else:
logger.info(f"{self.log_prefix} 没有活动的HeartFChatting循环任务")
# 清理状态
self._loop_active = False
self._loop_task = None
if self._processing_lock.locked():
self._processing_lock.release()
logger.warning(f"{self.log_prefix} 已释放处理锁")
logger.info(f"{self.log_prefix} HeartFChatting关闭完成")
def get_cycle_history(self, last_n: Optional[int] = None) -> List[Dict[str, Any]]:
"""获取循环历史记录
参数:
last_n: 获取最近n个循环的信息如果为None则获取所有历史记录
返回:
List[Dict[str, Any]]: 循环历史记录列表
"""
history = list(self._cycle_history)
if last_n is not None:
history = history[-last_n:]
return [cycle.to_dict() for cycle in history]
async def _planner(self, all_plan_info: List[InfoBase], cycle_timers: dict) -> Dict[str, Any]:
"""
规划器 (Planner): 使用LLM根据上下文决定是否和如何回复。
重构为让LLM返回结构化JSON文本然后在代码中解析。
参数:
current_mind: 子思维的当前思考结果
cycle_timers: 计时器字典
is_re_planned: 是否为重新规划 (此重构中暂时简化,不处理 is_re_planned 的特殊逻辑)
"""
logger.info(f"{self.log_prefix}开始 规划")
actions_to_remove_temporarily = []
# --- 检查历史动作并决定临时移除动作 (逻辑保持不变) ---
lian_xu_wen_ben_hui_fu = 0
probability_roll = random.random()
for cycle in reversed(self._cycle_history):
if cycle.action_taken:
if cycle.action_type == "text_reply":
lian_xu_wen_ben_hui_fu += 1
else:
break
if len(self._cycle_history) > 0 and cycle.cycle_id <= self._cycle_history[0].cycle_id + (
len(self._cycle_history) - 4
):
break
logger.debug(f"{self.log_prefix}[Planner] 检测到连续文本回复次数: {lian_xu_wen_ben_hui_fu}")
if lian_xu_wen_ben_hui_fu >= 3:
logger.info(f"{self.log_prefix}[Planner] 连续回复 >= 3 次,强制移除 text_reply 和 emoji_reply")
actions_to_remove_temporarily.extend(["text_reply", "emoji_reply"])
elif lian_xu_wen_ben_hui_fu == 2:
if probability_roll < 0.8:
logger.info(f"{self.log_prefix}[Planner] 连续回复 2 次80% 概率移除 text_reply 和 emoji_reply (触发)")
actions_to_remove_temporarily.extend(["text_reply", "emoji_reply"])
else:
logger.info(
f"{self.log_prefix}[Planner] 连续回复 2 次80% 概率移除 text_reply 和 emoji_reply (未触发)"
)
elif lian_xu_wen_ben_hui_fu == 1:
if probability_roll < 0.4:
logger.info(f"{self.log_prefix}[Planner] 连续回复 1 次40% 概率移除 text_reply (触发)")
actions_to_remove_temporarily.append("text_reply")
else:
logger.info(f"{self.log_prefix}[Planner] 连续回复 1 次40% 概率移除 text_reply (未触发)")
# --- 结束检查历史动作 ---
# 获取观察信息
for info in all_plan_info:
if isinstance(info, ObsInfo):
logger.debug(f"{self.log_prefix} 观察信息: {info}")
observed_messages = info.get_talking_message()
observed_messages_str = info.get_talking_message_str_truncate()
chat_type = info.get_chat_type()
if chat_type == "group":
is_group_chat = True
else:
is_group_chat = False
elif isinstance(info, MindInfo):
logger.debug(f"{self.log_prefix} 思维信息: {info}")
current_mind = info.get_current_mind()
elif isinstance(info, CycleInfo):
logger.debug(f"{self.log_prefix} 循环信息: {info}")
cycle_info = info.get_observe_info()
elif isinstance(info, StructuredInfo):
logger.debug(f"{self.log_prefix} 结构化信息: {info}")
structured_info = info.get_data()
# --- 使用 LLM 进行决策 (JSON 输出模式) --- #
action = "no_reply" # 默认动作
reasoning = "规划器初始化默认"
llm_error = False # LLM 请求或解析错误标志
# 获取我们将传递给 prompt 构建器和用于验证的当前可用动作
current_available_actions = self.action_manager.get_available_actions()
try:
# --- 应用临时动作移除 ---
if actions_to_remove_temporarily:
self.action_manager.temporarily_remove_actions(actions_to_remove_temporarily)
# 更新 current_available_actions 以反映移除后的状态
current_available_actions = self.action_manager.get_available_actions()
logger.debug(
f"{self.log_prefix}[Planner] 临时移除的动作: {actions_to_remove_temporarily}, 当前可用: {list(current_available_actions.keys())}"
)
# --- 构建提示词 (调用修改后的 PromptBuilder 方法) ---
prompt = await prompt_builder.build_planner_prompt(
is_group_chat=is_group_chat, # <-- Pass HFC state
chat_target_info=None,
observed_messages_str=observed_messages_str, # <-- Pass local variable
current_mind=current_mind, # <-- Pass argument
structured_info=structured_info, # <-- Pass SubMind info
current_available_actions=current_available_actions, # <-- Pass determined actions
cycle_info=cycle_info, # <-- Pass cycle info
)
# --- 调用 LLM (普通文本生成) ---
llm_content = None
try:
llm_content, _, _ = await self.planner_llm.generate_response(prompt=prompt)
logger.debug(f"{self.log_prefix}[Planner] LLM 原始 JSON 响应 (预期): {llm_content}")
except Exception as req_e:
logger.error(f"{self.log_prefix}[Planner] LLM 请求执行失败: {req_e}")
reasoning = f"LLM 请求失败: {req_e}"
llm_error = True
# 直接使用默认动作返回错误结果
action = "no_reply" # 明确设置为默认值
# --- 解析 LLM 返回的 JSON (仅当 LLM 请求未出错时进行) ---
if not llm_error and llm_content:
try:
# 尝试去除可能的 markdown 代码块标记
cleaned_content = (
llm_content.strip().removeprefix("```json").removeprefix("```").removesuffix("```").strip()
)
if not cleaned_content:
raise json.JSONDecodeError("Cleaned content is empty", cleaned_content, 0)
parsed_json = json.loads(cleaned_content)
# 提取决策,提供默认值
extracted_action = parsed_json.get("action", "no_reply")
extracted_reasoning = parsed_json.get("reasoning", "LLM未提供理由")
# extracted_emoji_query = parsed_json.get("emoji_query", "")
# 新的reply格式
if extracted_action == "reply":
action_data = {
"text": parsed_json.get("text", []),
"emojis": parsed_json.get("emojis", []),
"target": parsed_json.get("target", ""),
}
else:
action_data = {} # 其他动作可能不需要额外数据
# 验证动作是否在当前可用列表中
# !! 使用调用 prompt 时实际可用的动作列表进行验证
if extracted_action not in current_available_actions:
logger.warning(
f"{self.log_prefix}[Planner] LLM 返回了当前不可用或无效的动作: '{extracted_action}' (可用: {list(current_available_actions.keys())}),将强制使用 'no_reply'"
)
action = "no_reply"
reasoning = f"LLM 返回了当前不可用的动作 '{extracted_action}' (可用: {list(current_available_actions.keys())})。原始理由: {extracted_reasoning}"
# 检查 no_reply 是否也恰好被移除了 (极端情况)
if "no_reply" not in current_available_actions:
logger.error(
f"{self.log_prefix}[Planner] 严重错误:'no_reply' 动作也不可用!无法执行任何动作。"
)
action = "error" # 回退到错误状态
reasoning = "无法执行任何有效动作,包括 no_reply"
llm_error = True # 标记为严重错误
else:
llm_error = False # 视为逻辑修正而非 LLM 错误
else:
# 动作有效且可用
action = extracted_action
reasoning = extracted_reasoning
llm_error = False # 解析成功
logger.debug(
f"{self.log_prefix}[要做什么]\nPrompt:\n{prompt}\n\n决策结果 (来自JSON): {action}, 理由: {reasoning}"
)
logger.debug(f"{self.log_prefix}动作信息: '{action_data}'")
except Exception as json_e:
logger.warning(
f"{self.log_prefix}[Planner] 解析LLM响应JSON失败: {json_e}. LLM原始输出: '{llm_content}'"
)
reasoning = f"解析LLM响应JSON失败: {json_e}. 将使用默认动作 'no_reply'."
action = "no_reply" # 解析失败则默认不回复
llm_error = True # 标记解析错误
elif not llm_error and not llm_content:
# LLM 请求成功但返回空内容
logger.warning(f"{self.log_prefix}[Planner] LLM 返回了空内容。")
reasoning = "LLM 返回了空内容,使用默认动作 'no_reply'."
action = "no_reply"
llm_error = True # 标记为空响应错误
except Exception as outer_e:
logger.error(f"{self.log_prefix}[Planner] Planner 处理过程中发生意外错误: {outer_e}")
traceback.print_exc()
action = "error" # 发生未知错误,标记为 error 动作
reasoning = f"Planner 内部处理错误: {outer_e}"
llm_error = True
finally:
# --- 确保动作恢复 ---
if self.action_manager._original_actions_backup is not None:
self.action_manager.restore_actions()
logger.debug(
f"{self.log_prefix}[Planner] 恢复了原始动作集, 当前可用: {list(self.action_manager.get_available_actions().keys())}"
)
# --- 概率性忽略文本回复附带的表情 (逻辑保持不变) ---
emoji = action_data.get("emojis")
if action == "reply" and emoji:
logger.debug(f"{self.log_prefix}[Planner] 大模型建议文字回复带表情: '{emoji}'")
if random.random() > EMOJI_SEND_PRO:
logger.info(f"{self.log_prefix}但是麦麦这次不想加表情 ({1 - EMOJI_SEND_PRO:.0%}),忽略表情 '{emoji}'")
action_data["emojis"] = "" # 清空表情请求
else:
logger.info(f"{self.log_prefix}好吧,加上表情 '{emoji}'")
# --- 结束概率性忽略 ---
# 返回结果字典
return {
"action": action,
"action_data": action_data,
"reasoning": reasoning,
"current_mind": current_mind,
"observed_messages": observed_messages,
"llm_error": llm_error, # 返回错误状态
}
async def _handle_reply(self, reasoning: str, reply_data: dict, cycle_timers: dict) -> tuple[bool, str]:
"""
处理统一的回复动作 - 可包含文本和表情,顺序任意
reply_data格式:
{
"text": ["你好啊", "今天天气真不错"], # 文本内容列表(可选)
"emojis": ["微笑", "阳光"] # 表情关键词列表(可选)
}
"""
# 重置连续不回复计数器
self._lian_xu_bu_hui_fu_ci_shu = 0
self._lian_xu_deng_dai_shi_jian = 0.0
# 获取锚定消息
observations: ChattingObservation = self.observations[0]
anchor_message = observations.serch_message_by_text(reply_data["target"])
# 如果没有找到锚点消息,创建一个占位符
if not anchor_message:
logger.info(f"{self.log_prefix} 未找到锚点消息,创建占位符")
anchor_message = await _create_empty_anchor_message(
self.chat_stream.platform, self.chat_stream.group_info, self.chat_stream
)
if not anchor_message:
logger.error(f"{self.log_prefix} 创建占位符失败,无法继续处理回复")
return False, ""
else:
anchor_message.update_chat_stream(self.chat_stream)
success, reply_set = await self.expressor.deal_reply(
cycle_timers=cycle_timers, action_data=reply_data, anchor_message=anchor_message, reasoning=reasoning
)
reply_text = ""
for reply in reply_set:
reply_text += reply
self._current_cycle.set_response_info(
response_text=reply_text,
)
return success, reply_text