feat:合并工具调用模型和心流模型

This commit is contained in:
SengokuCola
2025-04-24 14:18:41 +08:00
parent 2871e4efc2
commit f8450f705a
22 changed files with 973 additions and 331 deletions

View File

@@ -0,0 +1,71 @@
{
"测试时间": "2025-04-24 13:22:36",
"测试迭代次数": 3,
"不使用工具调用": {
"平均耗时": 3.1020479996999106,
"最短耗时": 2.980656862258911,
"最长耗时": 3.2487313747406006,
"标准差": 0.13581516492157006,
"所有耗时": [
2.98,
3.08,
3.25
]
},
"不使用工具调用_详细响应": [
{
"内容摘要": "那个猫猫头表情包真的太可爱了,墨墨发的表情包也好萌,感觉可以分享一下我收藏的猫猫头系列",
"推理内容摘要": ""
},
{
"内容摘要": "那个猫猫头表情包确实很魔性,我存了好多张,每次看到都觉得特别治愈。墨墨好像也喜欢这种可爱的表情包,可以分享一下我收藏的。",
"推理内容摘要": ""
},
{
"内容摘要": "那个猫猫头表情包真的超可爱,我存了好多张,每次看到都会忍不住笑出来。墨墨发的表情包也好萌,感觉可以和大家分享一下我收藏的猫猫头。\n\n工具无",
"推理内容摘要": ""
}
],
"使用工具调用": {
"平均耗时": 7.927528937657674,
"最短耗时": 5.714647531509399,
"最长耗时": 11.046205997467041,
"标准差": 2.778799784731646,
"所有耗时": [
7.02,
11.05,
5.71
]
},
"使用工具调用_详细响应": [
{
"内容摘要": "这个猫猫头表情包确实挺有意思的不过他们好像还在讨论版本问题。小千石在问3.8和3.11谁大,这挺简单的。",
"推理内容摘要": "",
"工具调用数量": 1,
"工具调用详情": [
{
"工具名称": "compare_numbers",
"参数": "{\"num1\":3.8,\"num2\":3.11}"
}
]
},
{
"内容摘要": "3.8和3.11谁大这个问题有点突然,不过可以简单比较一下。可能小千石在测试我或者真的想知道答案。现在群里的话题有点分散,既有技术讨论又有表情包的话题,我还是先回答数字比较的问题好了,毕竟比较直接。",
"推理内容摘要": "",
"工具调用数量": 1,
"工具调用详情": [
{
"工具名称": "compare_numbers",
"参数": "{\"num1\":3.8,\"num2\":3.11}"
}
]
},
{
"内容摘要": "他们还在纠结调试消息的事儿不过好像讨论得差不多了。猫猫头表情包确实挺有意思的但感觉聊得有点散了哦。小千石问3.8和3.11谁大,这个问题可以回答一下。",
"推理内容摘要": "",
"工具调用数量": 0,
"工具调用详情": []
}
],
"差异百分比": 155.56
}

View File

@@ -286,6 +286,7 @@ class BotConfig:
llm_observation: Dict[str, str] = field(default_factory=lambda: {}) llm_observation: Dict[str, str] = field(default_factory=lambda: {})
llm_sub_heartflow: Dict[str, str] = field(default_factory=lambda: {}) llm_sub_heartflow: Dict[str, str] = field(default_factory=lambda: {})
llm_heartflow: Dict[str, str] = field(default_factory=lambda: {}) llm_heartflow: Dict[str, str] = field(default_factory=lambda: {})
llm_tool_use: Dict[str, str] = field(default_factory=lambda: {})
api_urls: Dict[str, str] = field(default_factory=lambda: {}) api_urls: Dict[str, str] = field(default_factory=lambda: {})

View File

@@ -41,12 +41,11 @@ class BaseTool:
"function": {"name": cls.name, "description": cls.description, "parameters": cls.parameters}, "function": {"name": cls.name, "description": cls.description, "parameters": cls.parameters},
} }
async def execute(self, function_args: Dict[str, Any], message_txt: str = "") -> Dict[str, Any]: async def execute(self, function_args: Dict[str, Any]) -> Dict[str, Any]:
"""执行工具函数 """执行工具函数
Args: Args:
function_args: 工具调用参数 function_args: 工具调用参数
message_txt: 原始消息文本
Returns: Returns:
Dict: 工具执行结果 Dict: 工具执行结果

View File

@@ -19,7 +19,7 @@ class CompareNumbersTool(BaseTool):
"required": ["num1", "num2"], "required": ["num1", "num2"],
} }
async def execute(self, function_args: Dict[str, Any], message_txt: str = "") -> Dict[str, Any]: async def execute(self, function_args: Dict[str, Any]) -> Dict[str, Any]:
"""执行比较两个数的大小 """执行比较两个数的大小
Args: Args:

View File

@@ -21,7 +21,7 @@ class SearchKnowledgeTool(BaseTool):
"required": ["query"], "required": ["query"],
} }
async def execute(self, function_args: Dict[str, Any], message_txt: str = "") -> Dict[str, Any]: async def execute(self, function_args: Dict[str, Any]) -> Dict[str, Any]:
"""执行知识库搜索 """执行知识库搜索
Args: Args:
@@ -32,7 +32,7 @@ class SearchKnowledgeTool(BaseTool):
Dict: 工具执行结果 Dict: 工具执行结果
""" """
try: try:
query = function_args.get("query", message_txt) query = function_args.get("query")
threshold = function_args.get("threshold", 0.4) threshold = function_args.get("threshold", 0.4)
# 调用知识库搜索 # 调用知识库搜索

View File

@@ -20,7 +20,7 @@ class GetMemoryTool(BaseTool):
"required": ["topic"], "required": ["topic"],
} }
async def execute(self, function_args: Dict[str, Any], message_txt: str = "") -> Dict[str, Any]: async def execute(self, function_args: Dict[str, Any]) -> Dict[str, Any]:
"""执行记忆获取 """执行记忆获取
Args: Args:
@@ -31,7 +31,7 @@ class GetMemoryTool(BaseTool):
Dict: 工具执行结果 Dict: 工具执行结果
""" """
try: try:
topic = function_args.get("topic", message_txt) topic = function_args.get("topic")
max_memory_num = function_args.get("max_memory_num", 2) max_memory_num = function_args.get("max_memory_num", 2)
# 将主题字符串转换为列表 # 将主题字符串转换为列表

View File

@@ -17,7 +17,7 @@ class GetCurrentDateTimeTool(BaseTool):
"required": [], "required": [],
} }
async def execute(self, function_args: Dict[str, Any], message_txt: str = "") -> Dict[str, Any]: async def execute(self, function_args: Dict[str, Any]) -> Dict[str, Any]:
"""执行获取当前时间、日期、年份和星期 """执行获取当前时间、日期、年份和星期
Args: Args:

View File

@@ -24,7 +24,7 @@ class SearchKnowledgeFromLPMMTool(BaseTool):
"required": ["query"], "required": ["query"],
} }
async def execute(self, function_args: Dict[str, Any], message_txt: str = "") -> Dict[str, Any]: async def execute(self, function_args: Dict[str, Any]) -> Dict[str, Any]:
"""执行知识库搜索 """执行知识库搜索
Args: Args:
@@ -35,7 +35,7 @@ class SearchKnowledgeFromLPMMTool(BaseTool):
Dict: 工具执行结果 Dict: 工具执行结果
""" """
try: try:
query = function_args.get("query", message_txt) query = function_args.get("query")
# threshold = function_args.get("threshold", 0.4) # threshold = function_args.get("threshold", 0.4)
# 调用知识库搜索 # 调用知识库搜索

View File

@@ -50,8 +50,8 @@ class ToolUser:
prompt += message_txt prompt += message_txt
# prompt += f"你注意到{sender_name}刚刚说:{message_txt}\n" # prompt += f"你注意到{sender_name}刚刚说:{message_txt}\n"
prompt += f"注意你就是{bot_name}{bot_name}是你的名字。根据之前的聊天记录补充问题信息,搜索时避开你的名字。\n" prompt += f"注意你就是{bot_name}{bot_name}是你的名字。根据之前的聊天记录补充问题信息,搜索时避开你的名字。\n"
prompt += "必须调用 'lpmm_get_knowledge' 工具来获取知识。\n" # prompt += "必须调用 'lpmm_get_knowledge' 工具来获取知识。\n"
prompt += "你现在需要对群里的聊天内容进行回复,现在选择工具来对消息和你的回复进行处理,你是否需要额外的信息,比如回忆或者搜寻已有的知识,改变关系和情感,或者了解你现在正在做什么。" prompt += "你现在需要对群里的聊天内容进行回复,请你思考应该使用什么工具,然后选择工具来对消息和你的回复进行处理,你是否需要额外的信息,比如回忆或者搜寻已有的知识,改变关系和情感,或者了解你现在正在做什么。"
prompt = await relationship_manager.convert_all_person_sign_to_person_name(prompt) prompt = await relationship_manager.convert_all_person_sign_to_person_name(prompt)
prompt = parse_text_timestamps(prompt, mode="lite") prompt = parse_text_timestamps(prompt, mode="lite")
@@ -68,7 +68,7 @@ class ToolUser:
return get_all_tool_definitions() return get_all_tool_definitions()
@staticmethod @staticmethod
async def _execute_tool_call(tool_call, message_txt: str): async def _execute_tool_call(tool_call):
"""执行特定的工具调用 """执行特定的工具调用
Args: Args:
@@ -89,7 +89,7 @@ class ToolUser:
return None return None
# 执行工具 # 执行工具
result = await tool_instance.execute(function_args, message_txt) result = await tool_instance.execute(function_args)
if result: if result:
# 直接使用 function_name 作为 tool_type # 直接使用 function_name 作为 tool_type
tool_type = function_name tool_type = function_name
@@ -159,13 +159,13 @@ class ToolUser:
tool_calls_str = "" tool_calls_str = ""
for tool_call in tool_calls: for tool_call in tool_calls:
tool_calls_str += f"{tool_call['function']['name']}\n" tool_calls_str += f"{tool_call['function']['name']}\n"
logger.info(f"根据:\n{prompt}\n模型请求调用{len(tool_calls)}个工具: {tool_calls_str}") logger.info(f"根据:\n{prompt}\n\n内容:{content}\n\n模型请求调用{len(tool_calls)}个工具: {tool_calls_str}")
tool_results = [] tool_results = []
structured_info = {} # 动态生成键 structured_info = {} # 动态生成键
# 执行所有工具调用 # 执行所有工具调用
for tool_call in tool_calls: for tool_call in tool_calls:
result = await self._execute_tool_call(tool_call, message_txt) result = await self._execute_tool_call(tool_call)
if result: if result:
tool_results.append(result) tool_results.append(result)
# 使用工具名称作为键 # 使用工具名称作为键

View File

@@ -13,7 +13,8 @@ mai_state_config = LogConfig(
logger = get_module_logger("mai_state_manager", config=mai_state_config) logger = get_module_logger("mai_state_manager", config=mai_state_config)
enable_unlimited_hfc_chat = False enable_unlimited_hfc_chat = True
# enable_unlimited_hfc_chat = False
class MaiState(enum.Enum): class MaiState(enum.Enum):

View File

@@ -78,29 +78,33 @@ class ChattingObservation(Observation):
return self.talking_message_str return self.talking_message_str
async def observe(self): async def observe(self):
# 自上一次观察的新消息
new_messages_list = get_raw_msg_by_timestamp_with_chat( new_messages_list = get_raw_msg_by_timestamp_with_chat(
chat_id=self.chat_id, chat_id=self.chat_id,
timestamp_start=self.last_observe_time, timestamp_start=self.last_observe_time,
timestamp_end=datetime.now().timestamp(), # 使用当前时间作为结束时间戳 timestamp_end=datetime.now().timestamp(),
limit=self.max_now_obs_len, limit=self.max_now_obs_len,
limit_mode="latest", limit_mode="latest",
) )
if new_messages_list: # 检查列表是否为空
last_obs_time_mark = self.last_observe_time last_obs_time_mark = self.last_observe_time
if new_messages_list:
self.last_observe_time = new_messages_list[-1]["time"] self.last_observe_time = new_messages_list[-1]["time"]
self.talking_message.extend(new_messages_list) self.talking_message.extend(new_messages_list)
if len(self.talking_message) > self.max_now_obs_len: if len(self.talking_message) > self.max_now_obs_len:
# 计算需要移除的消息数量,保留最新的 max_now_obs_len 条 # 计算需要移除的消息数量,保留最新的 max_now_obs_len 条
messages_to_remove_count = len(self.talking_message) - self.max_now_obs_len messages_to_remove_count = len(self.talking_message) - self.max_now_obs_len
oldest_messages = self.talking_message[:messages_to_remove_count] oldest_messages = self.talking_message[:messages_to_remove_count]
self.talking_message = self.talking_message[messages_to_remove_count:] # 保留后半部分,即最新的 self.talking_message = self.talking_message[messages_to_remove_count:] # 保留后半部分,即最新的
oldest_messages_str = await build_readable_messages( oldest_messages_str = await build_readable_messages(
messages=oldest_messages, messages=oldest_messages,
timestamp_mode="normal", timestamp_mode="normal",
read_mark=last_obs_time_mark, read_mark=0
) )
# 调用 LLM 总结主题 # 调用 LLM 总结主题
prompt = ( prompt = (
@@ -137,7 +141,11 @@ class ChattingObservation(Observation):
) )
self.mid_memory_info = mid_memory_str self.mid_memory_info = mid_memory_str
self.talking_message_str = await build_readable_messages(messages=self.talking_message, timestamp_mode="normal") self.talking_message_str = await build_readable_messages(
messages=self.talking_message,
timestamp_mode="normal",
read_mark=last_obs_time_mark,
)
logger.trace( logger.trace(
f"Chat {self.chat_id} - 压缩早期记忆:{self.mid_memory_info}\n现在聊天内容:{self.talking_message_str}" f"Chat {self.chat_id} - 压缩早期记忆:{self.mid_memory_info}\n现在聊天内容:{self.talking_message_str}"

View File

@@ -18,10 +18,9 @@ from src.plugins.chat.chat_stream import chat_manager
import math import math
from src.plugins.heartFC_chat.heartFC_chat import HeartFChatting from src.plugins.heartFC_chat.heartFC_chat import HeartFChatting
from src.plugins.heartFC_chat.normal_chat import NormalChat from src.plugins.heartFC_chat.normal_chat import NormalChat
from src.do_tool.tool_use import ToolUser
# from src.do_tool.tool_use import ToolUser
from src.heart_flow.mai_state_manager import MaiStateInfo from src.heart_flow.mai_state_manager import MaiStateInfo
from src.plugins.utils.json_utils import safe_json_dumps, process_llm_tool_response, normalize_llm_response, process_llm_tool_calls
# 定义常量 (从 interest.py 移动过来) # 定义常量 (从 interest.py 移动过来)
MAX_INTEREST = 15.0 MAX_INTEREST = 15.0
@@ -54,8 +53,9 @@ def init_prompt():
# prompt += "你注意到{sender_name}刚刚说:{message_txt}\n" # prompt += "你注意到{sender_name}刚刚说:{message_txt}\n"
prompt += "现在请你根据刚刚的想法继续思考,思考时可以想想如何对群聊内容进行回复,要不要对群里的话题进行回复,关注新话题,可以适当转换话题,大家正在说的话才是聊天的主题。\n" prompt += "现在请你根据刚刚的想法继续思考,思考时可以想想如何对群聊内容进行回复,要不要对群里的话题进行回复,关注新话题,可以适当转换话题,大家正在说的话才是聊天的主题。\n"
prompt += "回复的要求是:平淡一些,简短一些,说中文,如果你要回复,最好只回复一个人的一个话题\n" prompt += "回复的要求是:平淡一些,简短一些,说中文,如果你要回复,最好只回复一个人的一个话题\n"
prompt += "请注意不要输出多余内容(包括前后缀,冒号和引号,括号, 表情,等),不要带有括号和动作描写。不要回复自己的发言,尽量不要说你说过的话。" prompt += "请注意不要输出多余内容(包括前后缀,冒号和引号,括号, 表情,等),不要带有括号和动作描写。不要回复自己的发言,尽量不要说你说过的话。\n"
prompt += "现在请你{hf_do_next},不要分点输出,生成内心想法,文字不要浮夸" prompt += "现在请你{hf_do_next},不要分点输出,生成内心想法,文字不要浮夸"
prompt += "在输出完想法后,请你思考应该使用什么工具。如果你需要做某件事,来对消息和你的回复进行处理,请使用工具。\n"
Prompt(prompt, "sub_heartflow_prompt_before") Prompt(prompt, "sub_heartflow_prompt_before")
@@ -114,6 +114,8 @@ class InterestChatting:
self.above_threshold = False self.above_threshold = False
self.start_hfc_probability = 0.0 self.start_hfc_probability = 0.0
def add_interest_dict(self, message: MessageRecv, interest_value: float, is_mentioned: bool): def add_interest_dict(self, message: MessageRecv, interest_value: float, is_mentioned: bool):
self.interest_dict[message.message_info.message_id] = (message, interest_value, is_mentioned) self.interest_dict[message.message_info.message_id] = (message, interest_value, is_mentioned)
@@ -291,6 +293,8 @@ class SubHeartflow:
) )
self.log_prefix = chat_manager.get_stream_name(self.subheartflow_id) or self.subheartflow_id self.log_prefix = chat_manager.get_stream_name(self.subheartflow_id) or self.subheartflow_id
self.structured_info = {}
async def add_time_current_state(self, add_time: float): async def add_time_current_state(self, add_time: float):
self.current_state_time += add_time self.current_state_time += add_time
@@ -477,58 +481,63 @@ class SubHeartflow:
logger.info(f"{self.log_prefix} 子心流后台任务已停止。") logger.info(f"{self.log_prefix} 子心流后台任务已停止。")
async def do_thinking_before_reply( async def do_thinking_before_reply(self):
self, """
extra_info: str, 在回复前进行思考,生成内心想法并收集工具调用结果
obs_id: list[str] = None,
): 返回:
tuple: (current_mind, past_mind) 当前想法和过去的想法列表
"""
# 更新活跃时间
self.last_active_time = time.time() self.last_active_time = time.time()
# ---------- 1. 准备基础数据 ----------
# 获取现有想法和情绪状态
current_thinking_info = self.current_mind current_thinking_info = self.current_mind
mood_info = self.chat_state.mood mood_info = self.chat_state.mood
# 获取观察对象
observation = self._get_primary_observation() observation = self._get_primary_observation()
if not observation:
chat_observe_info = "" logger.error(f"[{self.subheartflow_id}] 无法获取观察对象")
if obs_id: self.update_current_mind("(我没看到任何聊天内容...)")
try: return self.current_mind, self.past_mind
chat_observe_info = observation.get_observe_info(obs_id)
logger.debug(f"[{self.subheartflow_id}] Using specific observation IDs: {obs_id}") # 获取观察内容
except Exception as e: chat_observe_info = observation.get_observe_info()
logger.error(
f"[{self.subheartflow_id}] Error getting observe info with IDs {obs_id}: {e}. Falling back." # ---------- 2. 准备工具和个性化数据 ----------
) # 初始化工具
chat_observe_info = observation.get_observe_info() tool_instance = ToolUser()
else: tools = tool_instance._define_tools()
chat_observe_info = observation.get_observe_info()
# logger.debug(f"[{self.subheartflow_id}] Using default observation info.") # 获取个性化信息
extra_info_prompt = ""
if extra_info:
for tool_name, tool_data in extra_info.items():
extra_info_prompt += f"{tool_name} 相关信息:\n"
for item in tool_data:
extra_info_prompt += f"- {item['name']}: {item['content']}\n"
else:
extra_info_prompt = "无工具信息。\n"
individuality = Individuality.get_instance() individuality = Individuality.get_instance()
# 构建个性部分
prompt_personality = f"你的名字是{individuality.personality.bot_nickname},你" prompt_personality = f"你的名字是{individuality.personality.bot_nickname},你"
prompt_personality += individuality.personality.personality_core prompt_personality += individuality.personality.personality_core
# 随机添加个性侧面
if individuality.personality.personality_sides: if individuality.personality.personality_sides:
random_side = random.choice(individuality.personality.personality_sides) random_side = random.choice(individuality.personality.personality_sides)
prompt_personality += f"{random_side}" prompt_personality += f"{random_side}"
# 随机添加身份细节
if individuality.identity.identity_detail: if individuality.identity.identity_detail:
random_detail = random.choice(individuality.identity.identity_detail) random_detail = random.choice(individuality.identity.identity_detail)
prompt_personality += f"{random_detail}" prompt_personality += f"{random_detail}"
# 获取当前时间
time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
# ---------- 3. 构建思考指导部分 ----------
# 创建本地随机数生成器,基于分钟数作为种子
local_random = random.Random() local_random = random.Random()
current_minute = int(time.strftime("%M")) current_minute = int(time.strftime("%M"))
local_random.seed(current_minute) local_random.seed(current_minute)
# 思考指导选项和权重
hf_options = [ hf_options = [
("继续生成你在这个聊天中的想法,在原来想法的基础上继续思考", 0.7), ("继续生成你在这个聊天中的想法,在原来想法的基础上继续思考", 0.7),
("生成你在这个聊天中的想法,在原来的想法上尝试新的话题", 0.1), ("生成你在这个聊天中的想法,在原来的想法上尝试新的话题", 0.1),
@@ -536,12 +545,17 @@ class SubHeartflow:
("继续生成你在这个聊天中的想法,进行深入思考", 0.1), ("继续生成你在这个聊天中的想法,进行深入思考", 0.1),
] ]
# 加权随机选择思考指导
hf_do_next = local_random.choices( hf_do_next = local_random.choices(
[option[0] for option in hf_options], weights=[option[1] for option in hf_options], k=1 [option[0] for option in hf_options],
weights=[option[1] for option in hf_options],
k=1
)[0] )[0]
# ---------- 4. 构建最终提示词 ----------
# 获取提示词模板并填充数据
prompt = (await global_prompt_manager.get_prompt_async("sub_heartflow_prompt_before")).format( prompt = (await global_prompt_manager.get_prompt_async("sub_heartflow_prompt_before")).format(
extra_info=extra_info_prompt, extra_info="", # 可以在这里添加额外信息
prompt_personality=prompt_personality, prompt_personality=prompt_personality,
bot_name=individuality.personality.bot_nickname, bot_name=individuality.personality.bot_nickname,
current_thinking_info=current_thinking_info, current_thinking_info=current_thinking_info,
@@ -551,26 +565,104 @@ class SubHeartflow:
hf_do_next=hf_do_next, hf_do_next=hf_do_next,
) )
prompt = await relationship_manager.convert_all_person_sign_to_person_name(prompt) logger.debug(f"[{self.subheartflow_id}] 心流思考提示词构建完成")
prompt = parse_text_timestamps(prompt, mode="lite")
logger.debug(f"[{self.subheartflow_id}] 心流思考prompt:\n{prompt}\n")
# ---------- 5. 执行LLM请求并处理响应 ----------
content = "" # 初始化内容变量
reasoning_content = "" # 初始化推理内容变量
try: try:
response, reasoning_content = await self.llm_model.generate_response_async(prompt) # 调用LLM生成响应
response = await self.llm_model.generate_response_tool_async(prompt=prompt, tools=tools)
logger.debug(f"[{self.subheartflow_id}] 心流思考结果:\n{response}\n")
# 标准化响应格式
if not response: success, normalized_response, error_msg = normalize_llm_response(
response = "(不知道该想些什么...)" response, log_prefix=f"[{self.subheartflow_id}] "
logger.warning(f"[{self.subheartflow_id}] LLM 返回空结果,思考失败。") )
if not success:
# 处理标准化失败情况
logger.warning(f"[{self.subheartflow_id}] {error_msg}")
content = "LLM响应格式无法处理"
else:
# 从标准化响应中提取内容
if len(normalized_response) >= 2:
content = normalized_response[0]
reasoning_content = normalized_response[1] if len(normalized_response) > 1 else ""
# 处理可能的工具调用
if len(normalized_response) == 3:
# 提取并验证工具调用
success, valid_tool_calls, error_msg = process_llm_tool_calls(
normalized_response, log_prefix=f"[{self.subheartflow_id}] "
)
if success and valid_tool_calls:
# 记录工具调用信息
tool_calls_str = ", ".join([
call.get("function", {}).get("name", "未知工具")
for call in valid_tool_calls
])
logger.info(f"[{self.subheartflow_id}] 模型请求调用{len(valid_tool_calls)}个工具: {tool_calls_str}")
# 收集工具执行结果
await self._execute_tool_calls(valid_tool_calls, tool_instance)
elif not success:
logger.warning(f"[{self.subheartflow_id}] {error_msg}")
except Exception as e: except Exception as e:
logger.error(f"[{self.subheartflow_id}] 内心独白获取失败: {e}") # 处理总体异常
response = "(思考时发生错误...)" logger.error(f"[{self.subheartflow_id}] 执行LLM请求或处理响应时出错: {e}")
logger.error(traceback.format_exc())
content = "思考过程中出现错误"
self.update_current_mind(response) # 记录最终思考结果
logger.debug(f"[{self.subheartflow_id}] 心流思考结果:\n{content}\n")
# 处理空响应情况
if not content:
content = "(不知道该想些什么...)"
logger.warning(f"[{self.subheartflow_id}] LLM返回空结果思考失败。")
# ---------- 6. 更新思考状态并返回结果 ----------
# 更新当前思考内容
self.update_current_mind(content)
return self.current_mind, self.past_mind return self.current_mind, self.past_mind
async def _execute_tool_calls(self, tool_calls, tool_instance):
"""
执行一组工具调用并收集结果
参数:
tool_calls: 工具调用列表
tool_instance: 工具使用器实例
"""
tool_results = []
structured_info = {} # 动态生成键
# 执行所有工具调用
for tool_call in tool_calls:
try:
result = await tool_instance._execute_tool_call(tool_call)
if result:
tool_results.append(result)
# 使用工具名称作为键
tool_name = result["name"]
if tool_name not in structured_info:
structured_info[tool_name] = []
structured_info[tool_name].append({
"name": result["name"],
"content": result["content"]
})
except Exception as tool_e:
logger.error(f"[{self.subheartflow_id}] 工具执行失败: {tool_e}")
# 如果有工具结果,记录并更新结构化信息
if structured_info:
logger.debug(f"工具调用收集到结构化信息: {safe_json_dumps(structured_info, ensure_ascii=False)}")
self.structured_info = structured_info
def update_current_mind(self, response): def update_current_mind(self, response):
self.past_mind.append(self.current_mind) self.past_mind.append(self.current_mind)

View File

@@ -78,13 +78,15 @@ class ChatBot:
groupinfo = message.message_info.group_info groupinfo = message.message_info.group_info
userinfo = message.message_info.user_info userinfo = message.message_info.user_info
if userinfo.user_id in global_config.ban_user_id: if userinfo.user_id in global_config.ban_user_id:
logger.debug(f"用户{userinfo.user_id}被禁止回复") logger.debug(f"用户{userinfo.user_id}被禁止回复")
return return
if groupinfo.group_id not in global_config.talk_allowed_groups: if groupinfo:
logger.debug(f"{groupinfo.group_id}被禁止回复") if groupinfo.group_id not in global_config.talk_allowed_groups:
return logger.trace(f"{groupinfo.group_id}被禁止回复")
return
if message.message_info.template_info and not message.message_info.template_info.template_default: if message.message_info.template_info and not message.message_info.template_info.template_default:
template_group_name = message.message_info.template_info.template_name template_group_name = message.message_info.template_info.template_name

View File

@@ -327,8 +327,8 @@ def split_into_sentences_w_remove_punctuation(text: str) -> List[str]:
# 提取最终的句子内容 # 提取最终的句子内容
final_sentences = [content for content, sep in merged_segments if content] # 只保留有内容的段 final_sentences = [content for content, sep in merged_segments if content] # 只保留有内容的段
# 清理可能引入的空字符串 # 清理可能引入的空字符串和仅包含空白的字符串
final_sentences = [s for s in final_sentences if s] final_sentences = [s for s in final_sentences if s.strip()] # 过滤掉空字符串以及仅包含空白(如换行符、空格)的字符串
logger.debug(f"分割并合并后的句子: {final_sentences}") logger.debug(f"分割并合并后的句子: {final_sentences}")
return final_sentences return final_sentences

View File

@@ -2,7 +2,7 @@ import asyncio
import time import time
import traceback import traceback
from typing import List, Optional, Dict, Any, TYPE_CHECKING from typing import List, Optional, Dict, Any, TYPE_CHECKING
import json # import json # 移除因为使用了json_utils
from src.plugins.chat.message import MessageRecv, BaseMessageInfo, MessageThinking, MessageSending from src.plugins.chat.message import MessageRecv, BaseMessageInfo, MessageThinking, MessageSending
from src.plugins.chat.message import MessageSet, Seg # Local import needed after move from src.plugins.chat.message import MessageSet, Seg # Local import needed after move
from src.plugins.chat.chat_stream import ChatStream from src.plugins.chat.chat_stream import ChatStream
@@ -17,6 +17,7 @@ from src.plugins.heartFC_chat.heartFC_generator import HeartFCGenerator
from src.do_tool.tool_use import ToolUser from src.do_tool.tool_use import ToolUser
from ..chat.message_sender import message_manager # <-- Import the global manager from ..chat.message_sender import message_manager # <-- Import the global manager
from src.plugins.chat.emoji_manager import emoji_manager from src.plugins.chat.emoji_manager import emoji_manager
from src.plugins.utils.json_utils import extract_tool_call_arguments, safe_json_dumps, process_llm_tool_response # 导入新的JSON工具
# --- End import --- # --- End import ---
@@ -245,9 +246,6 @@ class HeartFChatting:
action = planner_result.get("action", "error") action = planner_result.get("action", "error")
reasoning = planner_result.get("reasoning", "Planner did not provide reasoning.") reasoning = planner_result.get("reasoning", "Planner did not provide reasoning.")
emoji_query = planner_result.get("emoji_query", "") emoji_query = planner_result.get("emoji_query", "")
# current_mind = planner_result.get("current_mind", "[Mind unavailable]")
# send_emoji_from_tools = planner_result.get("send_emoji_from_tools", "") # Emoji from tools
observed_messages = planner_result.get("observed_messages", [])
llm_error = planner_result.get("llm_error", False) llm_error = planner_result.get("llm_error", False)
if llm_error: if llm_error:
@@ -259,7 +257,7 @@ class HeartFChatting:
elif action == "text_reply": elif action == "text_reply":
logger.debug(f"{log_prefix} HeartFChatting: 麦麦决定回复文本. 理由: {reasoning}") logger.debug(f"{log_prefix} HeartFChatting: 麦麦决定回复文本. 理由: {reasoning}")
action_taken_this_cycle = True action_taken_this_cycle = True
anchor_message = await self._get_anchor_message(observed_messages) anchor_message = await self._get_anchor_message()
if not anchor_message: if not anchor_message:
logger.error(f"{log_prefix} 循环: 无法获取锚点消息用于回复. 跳过周期.") logger.error(f"{log_prefix} 循环: 无法获取锚点消息用于回复. 跳过周期.")
else: else:
@@ -304,7 +302,7 @@ class HeartFChatting:
f"{log_prefix} HeartFChatting: 麦麦决定回复表情 ('{emoji_query}'). 理由: {reasoning}" f"{log_prefix} HeartFChatting: 麦麦决定回复表情 ('{emoji_query}'). 理由: {reasoning}"
) )
action_taken_this_cycle = True action_taken_this_cycle = True
anchor = await self._get_anchor_message(observed_messages) anchor = await self._get_anchor_message()
if anchor: if anchor:
try: try:
# --- Handle Emoji (Moved) --- # # --- Handle Emoji (Moved) --- #
@@ -329,11 +327,6 @@ class HeartFChatting:
with Timer("Wait New Msg", cycle_timers): # <--- Start Wait timer with Timer("Wait New Msg", cycle_timers): # <--- Start Wait timer
wait_start_time = time.monotonic() wait_start_time = time.monotonic()
while True: while True:
# Removed timer check within wait loop
# async with self._timer_lock:
# if self._loop_timer <= 0:
# logger.info(f"{log_prefix} HeartFChatting: 等待新消息时计时器耗尽。")
# break # 计时器耗尽,退出等待
# 检查是否有新消息 # 检查是否有新消息
has_new = await observation.has_new_messages_since(planner_start_db_time) has_new = await observation.has_new_messages_since(planner_start_db_time)
@@ -395,14 +388,6 @@ class HeartFChatting:
self._processing_lock.release() self._processing_lock.release()
# logger.trace(f"{log_prefix} 循环释放了处理锁.") # Reduce noise # logger.trace(f"{log_prefix} 循环释放了处理锁.") # Reduce noise
# --- Timer Decrement Logging Removed ---
# async with self._timer_lock:
# self._loop_timer -= cycle_duration
# # Log timer decrement less aggressively
# if cycle_duration > 0.1 or not action_taken_this_cycle:
# logger.debug(
# f"{log_prefix} HeartFChatting: 周期耗时 {cycle_duration:.2f}s. 剩余时间: {self._loop_timer:.1f}s."
# )
if cycle_duration > 0.1: if cycle_duration > 0.1:
logger.debug(f"{log_prefix} HeartFChatting: 周期耗时 {cycle_duration:.2f}s.") logger.debug(f"{log_prefix} HeartFChatting: 周期耗时 {cycle_duration:.2f}s.")
@@ -437,77 +422,34 @@ class HeartFChatting:
""" """
log_prefix = self._get_log_prefix() log_prefix = self._get_log_prefix()
observed_messages: List[dict] = [] observed_messages: List[dict] = []
tool_result_info = {}
get_mid_memory_id = []
# send_emoji_from_tools = "" # Emoji suggested by tools
current_mind: Optional[str] = None
llm_error = False # Flag for LLM failure
# --- Ensure SubHeartflow is available --- current_mind: Optional[str] = None
if not self.sub_hf: llm_error = False
# Attempt to re-fetch if missing (might happen if initialization order changes)
self.sub_hf = heartflow.get_subheartflow(self.stream_id)
if not self.sub_hf:
logger.error(f"{log_prefix}[Planner] SubHeartflow is not available. Cannot proceed.")
return {
"action": "error",
"reasoning": "SubHeartflow unavailable",
"llm_error": True,
"observed_messages": [],
}
try: try:
# Access observation via self.sub_hf
observation = self.sub_hf._get_primary_observation() observation = self.sub_hf._get_primary_observation()
await observation.observe() await observation.observe()
observed_messages = observation.talking_message observed_messages = observation.talking_message
observed_messages_str = observation.talking_message_str observed_messages_str = observation.talking_message_str
except Exception as e: except Exception as e:
logger.error(f"{log_prefix}[Planner] 获取观察信息时出错: {e}") logger.error(f"{log_prefix}[Planner] 获取观察信息时出错: {e}")
# Handle error gracefully, maybe return an error state
observed_messages_str = "[Error getting observation]"
# Consider returning error here if observation is critical
# --- 结束获取观察信息 --- #
# --- (Moved from _replier_work) 1. 思考前使用工具 --- #
try: try:
# Access tool_user directly current_mind, _past_mind = await self.sub_hf.do_thinking_before_reply()
tool_result = await self.tool_user.use_tool(
message_txt=observed_messages_str,
chat_stream=self.chat_stream,
observation=self.sub_hf._get_primary_observation(),
)
if tool_result.get("used_tools", False):
tool_result_info = tool_result.get("structured_info", {})
logger.debug(f"{log_prefix}[Planner] 规划前工具结果: {tool_result_info}")
get_mid_memory_id = [
mem["content"] for mem in tool_result_info.get("mid_chat_mem", []) if "content" in mem
]
except Exception as e_tool:
logger.error(f"{log_prefix}[Planner] 规划前工具使用失败: {e_tool}")
# --- 结束工具使用 --- #
# --- (Moved from _replier_work) 2. SubHeartflow 思考 --- #
try:
current_mind, _past_mind = await self.sub_hf.do_thinking_before_reply(
extra_info=tool_result_info,
obs_id=get_mid_memory_id,
)
# logger.debug(f"{log_prefix}[Planner] SubHF Mind: {current_mind}")
except Exception as e_subhf: except Exception as e_subhf:
logger.error(f"{log_prefix}[Planner] SubHeartflow 思考失败: {e_subhf}") logger.error(f"{log_prefix}[Planner] SubHeartflow 思考失败: {e_subhf}")
current_mind = "[思考时出错]" current_mind = "[思考时出错]"
# --- 结束 SubHeartflow 思考 --- #
# --- 使用 LLM 进行决策 --- # # --- 使用 LLM 进行决策 --- #
action = "no_reply" # Default action action = "no_reply" # 默认动作
emoji_query = "" # Default emoji query (used if action is emoji_reply or text_reply with emoji) emoji_query = "" # 默认表情查询
reasoning = "默认决策或获取决策失败" reasoning = "默认决策或获取决策失败"
llm_error = False # LLM错误标志
try: try:
prompt = await self._build_planner_prompt(observed_messages_str, current_mind) prompt = await self._build_planner_prompt(observed_messages_str, current_mind, self.sub_hf.structured_info)
payload = { payload = {
"model": self.planner_llm.model_name, "model": self.planner_llm.model_name,
"messages": [{"role": "user", "content": prompt}], "messages": [{"role": "user", "content": prompt}],
@@ -515,83 +457,70 @@ class HeartFChatting:
"tool_choice": {"type": "function", "function": {"name": "decide_reply_action"}}, "tool_choice": {"type": "function", "function": {"name": "decide_reply_action"}},
} }
response = await self.planner_llm._execute_request( # 执行LLM请求
endpoint="/chat/completions", payload=payload, prompt=prompt try:
) response = await self.planner_llm._execute_request(
endpoint="/chat/completions", payload=payload, prompt=prompt
)
except Exception as req_e:
logger.error(f"{log_prefix}[Planner] LLM请求执行失败: {req_e}")
return {
"action": "error",
"reasoning": f"LLM请求执行失败: {req_e}",
"emoji_query": "",
"current_mind": current_mind,
"observed_messages": observed_messages,
"llm_error": True,
}
if len(response) == 3: # 使用辅助函数处理工具调用响应
_, _, tool_calls = response success, arguments, error_msg = process_llm_tool_response(
if tool_calls and isinstance(tool_calls, list) and len(tool_calls) > 0: response,
tool_call = tool_calls[0] expected_tool_name="decide_reply_action",
if ( log_prefix=f"{log_prefix}[Planner] "
tool_call.get("type") == "function" )
and tool_call.get("function", {}).get("name") == "decide_reply_action"
): if success:
try: # 提取决策参数
arguments = json.loads(tool_call["function"]["arguments"]) action = arguments.get("action", "no_reply")
action = arguments.get("action", "no_reply") reasoning = arguments.get("reasoning", "未提供理由")
reasoning = arguments.get("reasoning", "未提供理由") emoji_query = arguments.get("emoji_query", "")
# Planner explicitly provides emoji query if action is emoji_reply or text_reply wants emoji
emoji_query = arguments.get("emoji_query", "") # 记录决策结果
logger.debug( logger.debug(
f"{log_prefix}[Planner] LLM Prompt: {prompt}\n决策: {action}, 理由: {reasoning}, EmojiQuery: '{emoji_query}'" f"{log_prefix}[Planner] 决策结果: {action}, 理由: {reasoning}, 表情查询: '{emoji_query}'"
) )
except json.JSONDecodeError as json_e:
logger.error(
f"{log_prefix}[Planner] 解析工具参数失败: {json_e}. Args: {tool_call['function'].get('arguments')}"
)
action = "error"
reasoning = "工具参数解析失败"
llm_error = True
except Exception as parse_e:
logger.error(f"{log_prefix}[Planner] 处理工具参数时出错: {parse_e}")
action = "error"
reasoning = "处理工具参数时出错"
llm_error = True
else:
logger.warning(
f"{log_prefix}[Planner] LLM 未按预期调用 'decide_reply_action' 工具。Tool calls: {tool_calls}"
)
action = "error"
reasoning = "LLM未调用预期工具"
llm_error = True
else:
logger.warning(f"{log_prefix}[Planner] LLM 响应中未包含有效的工具调用。Tool calls: {tool_calls}")
action = "error"
reasoning = "LLM响应无工具调用"
llm_error = True
else: else:
logger.warning(f"{log_prefix}[Planner] LLM 未返回预期的工具调用响应。Response parts: {len(response)}") # 处理工具调用失败
logger.warning(f"{log_prefix}[Planner] {error_msg}")
action = "error" action = "error"
reasoning = "LLM响应格式错误" reasoning = error_msg
llm_error = True llm_error = True
except Exception as llm_e: except Exception as llm_e:
logger.error(f"{log_prefix}[Planner] Planner LLM 调用失败: {llm_e}") logger.error(f"{log_prefix}[Planner] Planner LLM处理过程中出错: {llm_e}")
# logger.error(traceback.format_exc()) # Maybe too verbose for loop? logger.error(traceback.format_exc()) # 记录完整堆栈以便调试
action = "error" action = "error"
reasoning = f"LLM 调用失败: {llm_e}" reasoning = f"LLM处理失败: {llm_e}"
llm_error = True llm_error = True
# --- 结束 LLM 决策 --- # # --- 结束 LLM 决策 --- #
return { return {
"action": action, "action": action,
"reasoning": reasoning, "reasoning": reasoning,
"emoji_query": emoji_query, # Explicit query from Planner/LLM "emoji_query": emoji_query,
"current_mind": current_mind, "current_mind": current_mind,
# "send_emoji_from_tools": send_emoji_from_tools, # Emoji suggested by tools (used as fallback)
"observed_messages": observed_messages, "observed_messages": observed_messages,
"llm_error": llm_error, "llm_error": llm_error,
} }
async def _get_anchor_message(self, observed_messages: List[dict]) -> Optional[MessageRecv]: async def _get_anchor_message(self) -> Optional[MessageRecv]:
""" """
重构观察到的最后一条消息作为回复的锚点, 重构观察到的最后一条消息作为回复的锚点,
如果重构失败或观察为空,则创建一个占位符。 如果重构失败或观察为空,则创建一个占位符。
""" """
try: try:
# --- Create Placeholder --- #
placeholder_id = f"mid_pf_{int(time.time() * 1000)}" placeholder_id = f"mid_pf_{int(time.time() * 1000)}"
placeholder_user = UserInfo( placeholder_user = UserInfo(
user_id="system_trigger", user_nickname="System Trigger", platform=self.chat_stream.platform user_id="system_trigger", user_nickname="System Trigger", platform=self.chat_stream.platform
@@ -652,37 +581,41 @@ class HeartFChatting:
raise RuntimeError("发送回复失败_send_response_messages返回None") raise RuntimeError("发送回复失败_send_response_messages返回None")
async def shutdown(self): async def shutdown(self):
""" """优雅关闭HeartFChatting实例取消活动循环任务"""
Gracefully shuts down the HeartFChatting instance by cancelling the active loop task.
"""
log_prefix = self._get_log_prefix() log_prefix = self._get_log_prefix()
logger.info(f"{log_prefix} Shutting down HeartFChatting...") logger.info(f"{log_prefix} 正在关闭HeartFChatting...")
# 取消循环任务
if self._loop_task and not self._loop_task.done(): if self._loop_task and not self._loop_task.done():
logger.info(f"{log_prefix} Cancelling active PF loop task.") logger.info(f"{log_prefix} 正在取消HeartFChatting循环任务")
self._loop_task.cancel() self._loop_task.cancel()
try: try:
await asyncio.wait_for(self._loop_task, timeout=1.0) # Shorter timeout? await asyncio.wait_for(self._loop_task, timeout=1.0)
except asyncio.CancelledError: logger.info(f"{log_prefix} HeartFChatting循环任务已取消")
logger.info(f"{log_prefix} PF loop task cancelled successfully.") except (asyncio.CancelledError, asyncio.TimeoutError):
except asyncio.TimeoutError: pass
logger.warning(f"{log_prefix} Timeout waiting for PF loop task cancellation.")
except Exception as e: except Exception as e:
logger.error(f"{log_prefix} Error during loop task cancellation: {e}") logger.error(f"{log_prefix} 取消循环任务出错: {e}")
else: else:
logger.info(f"{log_prefix} No active PF loop task found to cancel.") logger.info(f"{log_prefix} 没有活动的HeartFChatting循环任务")
# 清理状态
self._loop_active = False self._loop_active = False
self._loop_task = None self._loop_task = None
if self._processing_lock.locked(): if self._processing_lock.locked():
logger.warning(f"{log_prefix} Releasing processing lock during shutdown.")
self._processing_lock.release() self._processing_lock.release()
logger.info(f"{log_prefix} HeartFChatting shutdown complete.") logger.warning(f"{log_prefix} 已释放处理锁")
logger.info(f"{log_prefix} HeartFChatting关闭完成")
async def _build_planner_prompt(self, observed_messages_str: str, current_mind: Optional[str]) -> str: async def _build_planner_prompt(self, observed_messages_str: str, current_mind: Optional[str], structured_info: Dict[str, Any]) -> str:
"""构建 Planner LLM 的提示词""" """构建 Planner LLM 的提示词"""
prompt = f"你的名字是 {global_config.BOT_NICKNAME}。是一个女大二学生正在QQ聊天正在决定是否以及如何回应当前的聊天。\n" prompt = f"你的名字是 {global_config.BOT_NICKNAME}。是一个女大二学生正在QQ聊天正在决定是否以及如何回应当前的聊天。\n"
if structured_info:
prompt += f"以下是一些额外的信息:\n{structured_info}\n"
if observed_messages_str: if observed_messages_str:
prompt += "观察到的最新聊天内容如下 (最近的消息在最后)\n---\n" prompt += "观察到的最新聊天内容如下 (最近的消息在最后)\n---\n"
prompt += observed_messages_str prompt += observed_messages_str
@@ -726,6 +659,7 @@ class HeartFChatting:
response_set: Optional[List[str]] = None response_set: Optional[List[str]] = None
try: try:
response_set = await self.gpt_instance.generate_response( response_set = await self.gpt_instance.generate_response(
structured_info=self.sub_hf.structured_info,
current_mind_info=self.sub_hf.current_mind, current_mind_info=self.sub_hf.current_mind,
reason=reason, reason=reason,
message=anchor_message, # Pass anchor_message positionally (matches 'message' parameter) message=anchor_message, # Pass anchor_message positionally (matches 'message' parameter)

View File

@@ -39,6 +39,7 @@ class HeartFCGenerator:
async def generate_response( async def generate_response(
self, self,
structured_info: str,
current_mind_info: str, current_mind_info: str,
reason: str, reason: str,
message: MessageRecv, message: MessageRecv,
@@ -56,7 +57,7 @@ class HeartFCGenerator:
current_model = self.model_normal current_model = self.model_normal
current_model.temperature = global_config.llm_normal["temp"] * arousal_multiplier # 激活度越高,温度越高 current_model.temperature = global_config.llm_normal["temp"] * arousal_multiplier # 激活度越高,温度越高
model_response = await self._generate_response_with_model( model_response = await self._generate_response_with_model(
current_mind_info, reason, message, current_model, thinking_id structured_info, current_mind_info, reason, message, current_model, thinking_id
) )
if model_response: if model_response:
@@ -71,7 +72,7 @@ class HeartFCGenerator:
return None return None
async def _generate_response_with_model( async def _generate_response_with_model(
self, current_mind_info: str, reason: str, message: MessageRecv, model: LLMRequest, thinking_id: str self, structured_info: str, current_mind_info: str, reason: str, message: MessageRecv, model: LLMRequest, thinking_id: str
) -> str: ) -> str:
sender_name = "" sender_name = ""
@@ -84,6 +85,7 @@ class HeartFCGenerator:
build_mode="focus", build_mode="focus",
reason=reason, reason=reason,
current_mind_info=current_mind_info, current_mind_info=current_mind_info,
structured_info=structured_info,
message_txt=message.processed_plain_text, message_txt=message.processed_plain_text,
sender_name=sender_name, sender_name=sender_name,
chat_stream=message.chat_stream, chat_stream=message.chat_stream,
@@ -103,106 +105,6 @@ class HeartFCGenerator:
return content return content
async def _get_emotion_tags(self, content: str, processed_plain_text: str):
"""提取情感标签,结合立场和情绪"""
try:
# 构建提示词,结合回复内容、被回复的内容以及立场分析
prompt = f"""
请严格根据以下对话内容,完成以下任务:
1. 判断回复者对被回复者观点的直接立场:
- "支持":明确同意或强化被回复者观点
- "反对":明确反驳或否定被回复者观点
- "中立":不表达明确立场或无关回应
2. 从"开心,愤怒,悲伤,惊讶,平静,害羞,恐惧,厌恶,困惑"中选出最匹配的1个情感标签
3. 按照"立场-情绪"的格式直接输出结果,例如:"反对-愤怒"
4. 考虑回复者的人格设定为{global_config.personality_core}
对话示例:
被回复「A就是笨」
回复「A明明很聪明」 → 反对-愤怒
当前对话:
被回复:「{processed_plain_text}
回复:「{content}
输出要求:
- 只需输出"立场-情绪"结果,不要解释
- 严格基于文字直接表达的对立关系判断
"""
# 调用模型生成结果
result, _, _ = await self.model_sum.generate_response(prompt)
result = result.strip()
# 解析模型输出的结果
if "-" in result:
stance, emotion = result.split("-", 1)
valid_stances = ["支持", "反对", "中立"]
valid_emotions = ["开心", "愤怒", "悲伤", "惊讶", "害羞", "平静", "恐惧", "厌恶", "困惑"]
if stance in valid_stances and emotion in valid_emotions:
return stance, emotion # 返回有效的立场-情绪组合
else:
logger.debug(f"无效立场-情感组合:{result}")
return "中立", "平静" # 默认返回中立-平静
else:
logger.debug(f"立场-情感格式错误:{result}")
return "中立", "平静" # 格式错误时返回默认值
except Exception as e:
logger.debug(f"获取情感标签时出错: {e}")
return "中立", "平静" # 出错时返回默认值
async def _get_emotion_tags_with_reason(self, content: str, processed_plain_text: str, reason: str):
"""提取情感标签,结合立场和情绪"""
try:
# 构建提示词,结合回复内容、被回复的内容以及立场分析
prompt = f"""
请严格根据以下对话内容,完成以下任务:
1. 判断回复者对被回复者观点的直接立场:
- "支持":明确同意或强化被回复者观点
- "反对":明确反驳或否定被回复者观点
- "中立":不表达明确立场或无关回应
2. 从"开心,愤怒,悲伤,惊讶,平静,害羞,恐惧,厌恶,困惑"中选出最匹配的1个情感标签
3. 按照"立场-情绪"的格式直接输出结果,例如:"反对-愤怒"
4. 考虑回复者的人格设定为{global_config.personality_core}
对话示例:
被回复「A就是笨」
回复「A明明很聪明」 → 反对-愤怒
当前对话:
被回复:「{processed_plain_text}
回复:「{content}
原因:「{reason}
输出要求:
- 只需输出"立场-情绪"结果,不要解释
- 严格基于文字直接表达的对立关系判断
"""
# 调用模型生成结果
result, _, _ = await self.model_sum.generate_response(prompt)
result = result.strip()
# 解析模型输出的结果
if "-" in result:
stance, emotion = result.split("-", 1)
valid_stances = ["支持", "反对", "中立"]
valid_emotions = ["开心", "愤怒", "悲伤", "惊讶", "害羞", "平静", "恐惧", "厌恶", "困惑"]
if stance in valid_stances and emotion in valid_emotions:
return stance, emotion # 返回有效的立场-情绪组合
else:
logger.debug(f"无效立场-情感组合:{result}")
return "中立", "平静" # 默认返回中立-平静
else:
logger.debug(f"立场-情感格式错误:{result}")
return "中立", "平静" # 格式错误时返回默认值
except Exception as e:
logger.debug(f"获取情感标签时出错: {e}")
return "中立", "平静" # 出错时返回默认值
async def _process_response(self, content: str) -> List[str]: async def _process_response(self, content: str) -> List[str]:
"""处理响应内容,返回处理后的内容和情感标签""" """处理响应内容,返回处理后的内容和情感标签"""
if not content: if not content:

View File

@@ -21,6 +21,8 @@ logger = get_module_logger("prompt")
def init_prompt(): def init_prompt():
Prompt( Prompt(
""" """
你有以下信息可供参考:
{structured_info}
{chat_target} {chat_target}
{chat_talking_prompt} {chat_talking_prompt}
现在"{sender_name}"说的:{message_txt}。引起了你的注意,你想要在群里发言发言或者回复这条消息。\n 现在"{sender_name}"说的:{message_txt}。引起了你的注意,你想要在群里发言发言或者回复这条消息。\n
@@ -79,17 +81,17 @@ class PromptBuilder:
self.activate_messages = "" self.activate_messages = ""
async def build_prompt( async def build_prompt(
self, build_mode, reason, current_mind_info, message_txt: str, sender_name: str = "某人", chat_stream=None self, build_mode, reason, current_mind_info, structured_info, message_txt: str, sender_name: str = "某人", chat_stream=None
) -> Optional[tuple[str, str]]: ) -> Optional[tuple[str, str]]:
if build_mode == "normal": if build_mode == "normal":
return await self._build_prompt_normal(chat_stream, message_txt, sender_name) return await self._build_prompt_normal(chat_stream, message_txt, sender_name)
elif build_mode == "focus": elif build_mode == "focus":
return await self._build_prompt_focus(reason, current_mind_info, chat_stream, message_txt, sender_name) return await self._build_prompt_focus(reason, current_mind_info, structured_info, chat_stream, message_txt, sender_name)
return None return None
async def _build_prompt_focus( async def _build_prompt_focus(
self, reason, current_mind_info, chat_stream, message_txt: str, sender_name: str = "某人" self, reason, current_mind_info, structured_info, chat_stream, message_txt: str, sender_name: str = "某人"
) -> tuple[str, str]: ) -> tuple[str, str]:
individuality = Individuality.get_instance() individuality = Individuality.get_instance()
prompt_personality = individuality.get_prompt(type="personality", x_person=2, level=1) prompt_personality = individuality.get_prompt(type="personality", x_person=2, level=1)
@@ -148,6 +150,7 @@ class PromptBuilder:
prompt = await global_prompt_manager.format_prompt( prompt = await global_prompt_manager.format_prompt(
"heart_flow_prompt", "heart_flow_prompt",
structured_info=structured_info,
chat_target=await global_prompt_manager.get_prompt_async("chat_target_group1") chat_target=await global_prompt_manager.get_prompt_async("chat_target_group1")
if chat_in_group if chat_in_group
else await global_prompt_manager.get_prompt_async("chat_target_private1"), else await global_prompt_manager.get_prompt_async("chat_target_private1"),

View File

@@ -83,6 +83,7 @@ class NormalChatGenerator:
build_mode="normal", build_mode="normal",
reason="", reason="",
current_mind_info="", current_mind_info="",
structured_info="",
message_txt=message.processed_plain_text, message_txt=message.processed_plain_text,
sender_name=sender_name, sender_name=sender_name,
chat_stream=message.chat_stream, chat_stream=message.chat_stream,

View File

@@ -710,6 +710,8 @@ class LLMRequest:
usage = None # 初始化usage变量避免未定义错误 usage = None # 初始化usage变量避免未定义错误
reasoning_content = "" reasoning_content = ""
content = "" content = ""
tool_calls = None # 初始化工具调用变量
async for line_bytes in response.content: async for line_bytes in response.content:
try: try:
line = line_bytes.decode("utf-8").strip() line = line_bytes.decode("utf-8").strip()
@@ -731,11 +733,20 @@ class LLMRequest:
if delta_content is None: if delta_content is None:
delta_content = "" delta_content = ""
accumulated_content += delta_content accumulated_content += delta_content
# 提取工具调用信息
if "tool_calls" in delta:
if tool_calls is None:
tool_calls = delta["tool_calls"]
else:
# 合并工具调用信息
tool_calls.extend(delta["tool_calls"])
# 检测流式输出文本是否结束 # 检测流式输出文本是否结束
finish_reason = chunk["choices"][0].get("finish_reason") finish_reason = chunk["choices"][0].get("finish_reason")
if delta.get("reasoning_content", None): if delta.get("reasoning_content", None):
reasoning_content += delta["reasoning_content"] reasoning_content += delta["reasoning_content"]
if finish_reason == "stop": if finish_reason == "stop" or finish_reason == "tool_calls":
chunk_usage = chunk.get("usage", None) chunk_usage = chunk.get("usage", None)
if chunk_usage: if chunk_usage:
usage = chunk_usage usage = chunk_usage
@@ -763,14 +774,21 @@ class LLMRequest:
if think_match: if think_match:
reasoning_content = think_match.group(1).strip() reasoning_content = think_match.group(1).strip()
content = re.sub(r"<think>.*?</think>", "", content, flags=re.DOTALL).strip() content = re.sub(r"<think>.*?</think>", "", content, flags=re.DOTALL).strip()
# 构建消息对象
message = {
"content": content,
"reasoning_content": reasoning_content,
}
# 如果有工具调用,添加到消息中
if tool_calls:
message["tool_calls"] = tool_calls
result = { result = {
"choices": [ "choices": [
{ {
"message": { "message": message
"content": content,
"reasoning_content": reasoning_content,
# 流式输出可能没有工具调用此处不需要添加tool_calls字段
}
} }
], ],
"usage": usage, "usage": usage,
@@ -1046,6 +1064,7 @@ class LLMRequest:
# 只有当tool_calls存在且不为空时才返回 # 只有当tool_calls存在且不为空时才返回
if tool_calls: if tool_calls:
logger.debug(f"检测到工具调用: {tool_calls}")
return content, reasoning_content, tool_calls return content, reasoning_content, tool_calls
else: else:
return content, reasoning_content return content, reasoning_content
@@ -1109,7 +1128,30 @@ class LLMRequest:
response = await self._execute_request(endpoint="/chat/completions", payload=data, prompt=prompt) response = await self._execute_request(endpoint="/chat/completions", payload=data, prompt=prompt)
# 原样返回响应,不做处理 # 原样返回响应,不做处理
return response return response
async def generate_response_tool_async(self, prompt: str, tools: list, **kwargs) -> Union[str, Tuple]:
"""异步方式根据输入的提示生成模型的响应"""
# 构建请求体不硬编码max_tokens
data = {
"model": self.model_name,
"messages": [{"role": "user", "content": prompt}],
**self.params,
**kwargs,
"tools": tools
}
logger.debug(f"向模型 {self.model_name} 发送工具调用请求,包含 {len(tools)} 个工具")
response = await self._execute_request(endpoint="/chat/completions", payload=data, prompt=prompt)
# 检查响应是否包含工具调用
if isinstance(response, tuple) and len(response) == 3:
content, reasoning_content, tool_calls = response
logger.debug(f"收到工具调用响应,包含 {len(tool_calls) if tool_calls else 0} 个工具调用")
return content, reasoning_content, tool_calls
else:
logger.debug(f"收到普通响应,无工具调用")
return response
async def get_embedding(self, text: str) -> Union[list, None]: async def get_embedding(self, text: str) -> Union[list, None]:
"""异步方法获取文本的embedding向量 """异步方法获取文本的embedding向量

View File

@@ -303,7 +303,7 @@ async def build_readable_messages(
) )
readable_read_mark = translate_timestamp_to_human_readable(read_mark, mode=timestamp_mode) readable_read_mark = translate_timestamp_to_human_readable(read_mark, mode=timestamp_mode)
read_mark_line = f"\n--- 以上消息已读 (标记时间: {readable_read_mark}) ---\n" read_mark_line = f"\n\n--- 以上消息已读 (标记时间: {readable_read_mark}) ---\n--- 请关注你上次思考之后以下的新消息---\n"
# 组合结果,确保空部分不引入多余的标记或换行 # 组合结果,确保空部分不引入多余的标记或换行
if formatted_before and formatted_after: if formatted_before and formatted_after:

View File

@@ -0,0 +1,297 @@
import json
import logging
from typing import Any, Dict, Optional, TypeVar, Generic, List, Union, Callable, Tuple
# 定义类型变量用于泛型类型提示
T = TypeVar('T')
# 获取logger
logger = logging.getLogger("json_utils")
def safe_json_loads(json_str: str, default_value: T = None) -> Union[Any, T]:
"""
安全地解析JSON字符串出错时返回默认值
参数:
json_str: 要解析的JSON字符串
default_value: 解析失败时返回的默认值
返回:
解析后的Python对象或在解析失败时返回default_value
"""
if not json_str:
return default_value
try:
return json.loads(json_str)
except json.JSONDecodeError as e:
logger.error(f"JSON解析失败: {e}, JSON字符串: {json_str[:100]}...")
return default_value
except Exception as e:
logger.error(f"JSON解析过程中发生意外错误: {e}")
return default_value
def extract_tool_call_arguments(tool_call: Dict[str, Any],
default_value: Dict[str, Any] = None) -> Dict[str, Any]:
"""
从LLM工具调用对象中提取参数
参数:
tool_call: 工具调用对象字典
default_value: 解析失败时返回的默认值
返回:
解析后的参数字典或在解析失败时返回default_value
"""
default_result = default_value or {}
if not tool_call or not isinstance(tool_call, dict):
logger.error(f"无效的工具调用对象: {tool_call}")
return default_result
try:
# 提取function参数
function_data = tool_call.get("function", {})
if not function_data or not isinstance(function_data, dict):
logger.error(f"工具调用缺少function字段或格式不正确: {tool_call}")
return default_result
# 提取arguments
arguments_str = function_data.get("arguments", "{}")
if not arguments_str:
return default_result
# 解析JSON
return safe_json_loads(arguments_str, default_result)
except Exception as e:
logger.error(f"提取工具调用参数时出错: {e}")
return default_result
def get_json_value(json_obj: Dict[str, Any], key_path: str,
default_value: T = None,
transform_func: Callable[[Any], T] = None) -> Union[Any, T]:
"""
从JSON对象中按照路径提取值支持点表示法路径"data.items.0.name"
参数:
json_obj: JSON对象(已解析的字典)
key_path: 键路径,使用点表示法,如"data.items.0.name"
default_value: 获取失败时返回的默认值
transform_func: 可选的转换函数,用于对获取的值进行转换
返回:
路径指向的值或在获取失败时返回default_value
"""
if not json_obj or not key_path:
return default_value
try:
# 分割路径
keys = key_path.split(".")
current = json_obj
# 遍历路径
for key in keys:
# 处理数组索引
if key.isdigit() and isinstance(current, list):
index = int(key)
if 0 <= index < len(current):
current = current[index]
else:
return default_value
# 处理字典键
elif isinstance(current, dict):
if key in current:
current = current[key]
else:
return default_value
else:
return default_value
# 应用转换函数(如果提供)
if transform_func and current is not None:
return transform_func(current)
return current
except Exception as e:
logger.error(f"从JSON获取值时出错: {e}, 路径: {key_path}")
return default_value
def safe_json_dumps(obj: Any, default_value: str = "{}", ensure_ascii: bool = False,
pretty: bool = False) -> str:
"""
安全地将Python对象序列化为JSON字符串
参数:
obj: 要序列化的Python对象
default_value: 序列化失败时返回的默认值
ensure_ascii: 是否确保ASCII编码(默认False允许中文等非ASCII字符)
pretty: 是否美化输出JSON
返回:
序列化后的JSON字符串或在序列化失败时返回default_value
"""
try:
indent = 2 if pretty else None
return json.dumps(obj, ensure_ascii=ensure_ascii, indent=indent)
except TypeError as e:
logger.error(f"JSON序列化失败(类型错误): {e}")
return default_value
except Exception as e:
logger.error(f"JSON序列化过程中发生意外错误: {e}")
return default_value
def merge_json_objects(*objects: Dict[str, Any]) -> Dict[str, Any]:
"""
合并多个JSON对象(字典)
参数:
*objects: 要合并的JSON对象(字典)
返回:
合并后的字典,后面的对象会覆盖前面对象的相同键
"""
result = {}
for obj in objects:
if obj and isinstance(obj, dict):
result.update(obj)
return result
def normalize_llm_response(response: Any, log_prefix: str = "") -> Tuple[bool, List[Any], str]:
"""
标准化LLM响应格式将各种格式如元组转换为统一的列表格式
参数:
response: 原始LLM响应
log_prefix: 日志前缀
返回:
元组 (成功标志, 标准化后的响应列表, 错误消息)
"""
# 检查是否为None
if response is None:
return False, [], "LLM响应为None"
# 记录原始类型
logger.debug(f"{log_prefix}LLM响应原始类型: {type(response).__name__}")
# 将元组转换为列表
if isinstance(response, tuple):
logger.debug(f"{log_prefix}将元组响应转换为列表")
response = list(response)
# 确保是列表类型
if not isinstance(response, list):
return False, [], f"无法处理的LLM响应类型: {type(response).__name__}"
# 处理工具调用部分(如果存在)
if len(response) == 3:
content, reasoning, tool_calls = response
# 将工具调用部分转换为列表(如果是元组)
if isinstance(tool_calls, tuple):
logger.debug(f"{log_prefix}将工具调用元组转换为列表")
tool_calls = list(tool_calls)
response[2] = tool_calls
return True, response, ""
def process_llm_tool_calls(response: List[Any], log_prefix: str = "") -> Tuple[bool, List[Dict[str, Any]], str]:
"""
处理并提取LLM响应中的工具调用列表
参数:
response: 标准化后的LLM响应列表
log_prefix: 日志前缀
返回:
元组 (成功标志, 工具调用列表, 错误消息)
"""
# 确保响应格式正确
if len(response) != 3:
return False, [], f"LLM响应元素数量不正确: 预期3个元素实际{len(response)}"
# 提取工具调用部分
tool_calls = response[2]
# 检查工具调用是否有效
if tool_calls is None:
return False, [], "工具调用部分为None"
if not isinstance(tool_calls, list):
return False, [], f"工具调用部分不是列表: {type(tool_calls).__name__}"
if len(tool_calls) == 0:
return False, [], "工具调用列表为空"
# 检查工具调用是否格式正确
valid_tool_calls = []
for i, tool_call in enumerate(tool_calls):
if not isinstance(tool_call, dict):
logger.warning(f"{log_prefix}工具调用[{i}]不是字典: {type(tool_call).__name__}")
continue
if tool_call.get("type") != "function":
logger.warning(f"{log_prefix}工具调用[{i}]不是函数类型: {tool_call.get('type', '未知')}")
continue
if "function" not in tool_call or not isinstance(tool_call["function"], dict):
logger.warning(f"{log_prefix}工具调用[{i}]缺少function字段或格式不正确")
continue
valid_tool_calls.append(tool_call)
# 检查是否有有效的工具调用
if not valid_tool_calls:
return False, [], "没有找到有效的工具调用"
return True, valid_tool_calls, ""
def process_llm_tool_response(
response: Any,
expected_tool_name: str = None,
log_prefix: str = ""
) -> Tuple[bool, Dict[str, Any], str]:
"""
处理LLM返回的工具调用响应进行常见错误检查并提取参数
参数:
response: LLM的响应预期是[content, reasoning, tool_calls]格式的列表或元组
expected_tool_name: 预期的工具名称,如不指定则不检查
log_prefix: 日志前缀,用于标识日志来源
返回:
三元组(成功标志, 参数字典, 错误描述)
- 如果成功解析,返回(True, 参数字典, "")
- 如果解析失败,返回(False, {}, 错误描述)
"""
# 使用新的标准化函数
success, normalized_response, error_msg = normalize_llm_response(response, log_prefix)
if not success:
return False, {}, error_msg
# 使用新的工具调用处理函数
success, valid_tool_calls, error_msg = process_llm_tool_calls(normalized_response, log_prefix)
if not success:
return False, {}, error_msg
# 检查是否有工具调用
if not valid_tool_calls:
return False, {}, "没有有效的工具调用"
# 获取第一个工具调用
tool_call = valid_tool_calls[0]
# 检查工具名称(如果提供了预期名称)
if expected_tool_name:
actual_name = tool_call.get("function", {}).get("name")
if actual_name != expected_tool_name:
return False, {}, f"工具名称不匹配: 预期'{expected_tool_name}',实际'{actual_name}'"
# 提取并解析参数
try:
arguments = extract_tool_call_arguments(tool_call, {})
return True, arguments, ""
except Exception as e:
logger.error(f"{log_prefix}解析工具参数时出错: {e}")
return False, {}, f"解析参数失败: {str(e)}"

289
tool_call_benchmark.py Normal file
View File

@@ -0,0 +1,289 @@
import asyncio
import time
from src.plugins.models.utils_model import LLMRequest
from src.config.config import global_config
from src.do_tool.tool_use import ToolUser
import statistics
import json
async def run_test(test_name, test_function, iterations=5):
"""
运行指定次数的测试并计算平均响应时间
参数:
test_name: 测试名称
test_function: 要执行的测试函数
iterations: 测试迭代次数
返回:
测试结果统计
"""
print(f"开始 {test_name} 测试({iterations}次迭代)...")
times = []
responses = []
for i in range(iterations):
print(f" 运行第 {i+1}/{iterations} 次测试...")
start_time = time.time()
response = await test_function()
end_time = time.time()
elapsed = end_time - start_time
times.append(elapsed)
responses.append(response)
print(f" - 耗时: {elapsed:.2f}")
results = {
"平均耗时": statistics.mean(times),
"最短耗时": min(times),
"最长耗时": max(times),
"标准差": statistics.stdev(times) if len(times) > 1 else 0,
"所有耗时": times,
"响应结果": responses
}
return results
async def test_with_tool_calls():
"""使用工具调用的LLM请求测试"""
# 创建LLM模型实例
llm_model = LLMRequest(
model=global_config.llm_sub_heartflow,
# model = global_config.llm_tool_use,
# temperature=global_config.llm_sub_heartflow["temp"],
max_tokens=800,
request_type="benchmark_test",
)
# 创建工具实例
tool_instance = ToolUser()
tools = tool_instance._define_tools()
# 简单的测试提示词
prompt = "请分析当前天气情况并查询今日历史上的重要事件。并且3.9和3.11谁比较大?请使用适当的工具来获取这些信息。"
prompt = '''
你的名字是麦麦,你包容开放,情绪敏感,有时候有些搞怪幽默, 是一个学习心理学和脑科学的女大学生,现在在读大二,你会刷贴吧,有时候会想瑟瑟,喜欢刷小红书
-----------------------------------
现在是2025-04-24 12:37:00你正在上网和qq群里的网友们聊天群里正在聊的话题是
2025-04-24 12:33:00既文横 说:这条调试消息是napcat控制台输出的还是麦麦log输出的;
2025-04-24 12:33:23麦麦(你) 说:应该是napcat吧;
2025-04-24 12:33:24麦麦(你) 说:[表达了:害羞、害羞。];
2025-04-24 12:33:25兔伽兔伽 说:就打开麦麦的那个终端发的呀;
2025-04-24 12:33:45既文横 说:那应该不是napcat输出的是麦麦输出的消息怀疑版本问题;
2025-04-24 12:34:02兔伽兔伽 说:版本05.15;
2025-04-24 12:34:07麦麦(你) 说:话说你们最近刷贴吧看到那个猫猫头表情包了吗;
2025-04-24 12:34:07麦麦(你) 说:笑死;
2025-04-24 12:34:08麦麦(你) 说:[表达了:惊讶、搞笑。];
2025-04-24 12:34:14兔伽兔伽 说:只开一个终端;
2025-04-24 12:35:45兔伽兔伽 说:回复既文横的消息(怀疑版本问题),说:因为之前你连模型的那个我用的了;
2025-04-24 12:35:56麦麦(你) 说:那个猫猫头真的魔性;
2025-04-24 12:35:56麦麦(你) 说:我存了一堆;
2025-04-24 12:35:56麦麦(你) 说:[表达了:温馨、宠爱];
2025-04-24 12:36:03小千石 说:麦麦3.8和3.11谁大;
--- 以上消息已读 (标记时间: 2025-04-24 12:36:43) ---
--- 请关注你上次思考之后以下的新消息---
2025-04-24 12:36:53墨墨 说:[表情包:开心、满足。];
你现在当前心情:平静。
现在请你根据刚刚的想法继续思考,思考时可以想想如何对群聊内容进行回复,要不要对群里的话题进行回复,关注新话题,可以适当转换话题,大家正在说的话才是聊天的主题。
回复的要求是:平淡一些,简短一些,说中文,如果你要回复,最好只回复一个人的一个话题
请注意不要输出多余内容(包括前后缀,冒号和引号,括号, 表情,等),不要带有括号和动作描写。不要回复自己的发言,尽量不要说你说过的话。
现在请你继续生成你在这个聊天中的想法,在原来想法的基础上继续思考,不要分点输出,生成内心想法,文字不要浮夸
在输出完想法后,请你思考应该使用什么工具,如果你需要做某件事,来对消息和你的回复进行处理,请使用工具。'''
# 发送带有工具调用的请求
response = await llm_model.generate_response_tool_async(prompt=prompt, tools=tools)
result_info = {}
# 简单处理工具调用结果
if len(response) == 3:
content, reasoning_content, tool_calls = response
tool_calls_count = len(tool_calls) if tool_calls else 0
print(f" 工具调用请求生成了 {tool_calls_count} 个工具调用")
# 输出内容和工具调用详情
print("\n 生成的内容:")
print(f" {content[:200]}..." if len(content) > 200 else f" {content}")
if tool_calls:
print("\n 工具调用详情:")
for i, tool_call in enumerate(tool_calls):
tool_name = tool_call['function']['name']
tool_params = tool_call['function'].get('arguments', {})
print(f" - 工具 {i+1}: {tool_name}")
print(f" 参数: {json.dumps(tool_params, ensure_ascii=False)[:100]}..."
if len(json.dumps(tool_params, ensure_ascii=False)) > 100
else f" 参数: {json.dumps(tool_params, ensure_ascii=False)}")
result_info = {
"内容": content,
"推理内容": reasoning_content,
"工具调用": tool_calls
}
else:
content, reasoning_content = response
print(" 工具调用请求未生成任何工具调用")
print("\n 生成的内容:")
print(f" {content[:200]}..." if len(content) > 200 else f" {content}")
result_info = {
"内容": content,
"推理内容": reasoning_content,
"工具调用": []
}
return result_info
async def test_without_tool_calls():
"""不使用工具调用的LLM请求测试"""
# 创建LLM模型实例
llm_model = LLMRequest(
model=global_config.llm_sub_heartflow,
temperature=global_config.llm_sub_heartflow["temp"],
max_tokens=800,
request_type="benchmark_test",
)
# 简单的测试提示词(与工具调用相同,以便公平比较)
prompt = '''
你的名字是麦麦,你包容开放,情绪敏感,有时候有些搞怪幽默, 是一个学习心理学和脑科学的女大学生,现在在读大二,你会刷贴吧,有时候会想瑟瑟,喜欢刷小红书
刚刚你的想法是:
我是麦麦,我想,('小千石问3.8和3.11谁大已经简单回答了3.11大,现在可以继续聊猫猫头表情包,毕竟大家好像对版本问题兴趣不大,而且猫猫头的话题更轻松有趣。', '')
-----------------------------------
现在是2025-04-24 12:37:00你正在上网和qq群里的网友们聊天群里正在聊的话题是
2025-04-24 12:33:00既文横 说:这条调试消息是napcat控制台输出的还是麦麦log输出的;
2025-04-24 12:33:23麦麦(你) 说:应该是napcat吧;
2025-04-24 12:33:24麦麦(你) 说:[表达了:害羞、害羞。];
2025-04-24 12:33:25兔伽兔伽 说:就打开麦麦的那个终端发的呀;
2025-04-24 12:33:45既文横 说:那应该不是napcat输出的是麦麦输出的消息怀疑版本问题;
2025-04-24 12:34:02兔伽兔伽 说:版本05.15;
2025-04-24 12:34:07麦麦(你) 说:话说你们最近刷贴吧看到那个猫猫头表情包了吗;
2025-04-24 12:34:07麦麦(你) 说:笑死;
2025-04-24 12:34:08麦麦(你) 说:[表达了:惊讶、搞笑。];
2025-04-24 12:34:14兔伽兔伽 说:只开一个终端;
2025-04-24 12:35:45兔伽兔伽 说:回复既文横的消息(怀疑版本问题),说:因为之前你连模型的那个我用的了;
2025-04-24 12:35:56麦麦(你) 说:那个猫猫头真的魔性;
2025-04-24 12:35:56麦麦(你) 说:我存了一堆;
2025-04-24 12:35:56麦麦(你) 说:[表达了:温馨、宠爱];
2025-04-24 12:36:03小千石 说:麦麦3.8和3.11谁大;
2025-04-24 12:36:22麦麦(你) 说:真的魔性那个猫猫头;
2025-04-24 12:36:22麦麦(你) 说:[表达了:害羞、可爱];
2025-04-24 12:36:43麦麦(你) 说:3.11大啦;
2025-04-24 12:36:43麦麦(你) 说:[表达了:害羞、可爱];
--- 以上消息已读 (标记时间: 2025-04-24 12:36:43) ---
--- 请关注你上次思考之后以下的新消息---
2025-04-24 12:36:53墨墨 说:[表情包:开心、满足。];
你现在当前心情:平静。
现在请你根据刚刚的想法继续思考,思考时可以想想如何对群聊内容进行回复,要不要对群里的话题进行回复,关注新话题,可以适当转换话题,大家正在说的话才是聊天的主题。
回复的要求是:平淡一些,简短一些,说中文,如果你要回复,最好只回复一个人的一个话题
请注意不要输出多余内容(包括前后缀,冒号和引号,括号, 表情,等),不要带有括号和动作描写。不要回复自己的发言,尽量不要说你说过的话。
现在请你继续生成你在这个聊天中的想法,在原来想法的基础上继续思考,不要分点输出,生成内心想法,文字不要浮夸
在输出完想法后,请你思考应该使用什么工具,如果你需要做某件事,来对消息和你的回复进行处理,请使用工具。'''
# 发送不带工具调用的请求
response, reasoning_content = await llm_model.generate_response_async(prompt)
# 输出生成的内容
print("\n 生成的内容:")
print(f" {response[:200]}..." if len(response) > 200 else f" {response}")
result_info = {
"内容": response,
"推理内容": reasoning_content,
"工具调用": []
}
return result_info
async def main():
"""主测试函数"""
print("=" * 50)
print("LLM工具调用与普通请求性能比较测试")
print("=" * 50)
# 设置测试迭代次数
iterations = 3
# 测试不使用工具调用
results_without_tools = await run_test("不使用工具调用", test_without_tool_calls, iterations)
print("\n" + "-" * 50 + "\n")
# 测试使用工具调用
results_with_tools = await run_test("使用工具调用", test_with_tool_calls, iterations)
# 显示结果比较
print("\n" + "=" * 50)
print("测试结果比较")
print("=" * 50)
print("\n不使用工具调用:")
for key, value in results_without_tools.items():
if key == "所有耗时":
print(f" {key}: {[f'{t:.2f}' for t in value]}")
elif key == "响应结果":
print(f" {key}: [内容已省略,详见结果文件]")
else:
print(f" {key}: {value:.2f}")
print("\n使用工具调用:")
for key, value in results_with_tools.items():
if key == "所有耗时":
print(f" {key}: {[f'{t:.2f}' for t in value]}")
elif key == "响应结果":
tool_calls_counts = [len(res.get("工具调用", [])) for res in value]
print(f" {key}: [内容已省略,详见结果文件]")
print(f" 工具调用数量: {tool_calls_counts}")
else:
print(f" {key}: {value:.2f}")
# 计算差异百分比
diff_percent = ((results_with_tools["平均耗时"] / results_without_tools["平均耗时"]) - 1) * 100
print(f"\n工具调用比普通请求平均耗时相差: {diff_percent:.2f}%")
# 保存结果到JSON文件
results = {
"测试时间": time.strftime("%Y-%m-%d %H:%M:%S"),
"测试迭代次数": iterations,
"不使用工具调用": {
k: (v if k != "所有耗时" else [float(f"{t:.2f}") for t in v])
for k, v in results_without_tools.items()
if k != "响应结果"
},
"不使用工具调用_详细响应": [
{
"内容摘要": resp["内容"][:200] + "..." if len(resp["内容"]) > 200 else resp["内容"],
"推理内容摘要": resp["推理内容"][:200] + "..." if len(resp["推理内容"]) > 200 else resp["推理内容"]
} for resp in results_without_tools["响应结果"]
],
"使用工具调用": {
k: (v if k != "所有耗时" else [float(f"{t:.2f}") for t in v])
for k, v in results_with_tools.items()
if k != "响应结果"
},
"使用工具调用_详细响应": [
{
"内容摘要": resp["内容"][:200] + "..." if len(resp["内容"]) > 200 else resp["内容"],
"推理内容摘要": resp["推理内容"][:200] + "..." if len(resp["推理内容"]) > 200 else resp["推理内容"],
"工具调用数量": len(resp["工具调用"]),
"工具调用详情": [
{
"工具名称": tool["function"]["name"],
"参数": tool["function"].get("arguments", {})
} for tool in resp["工具调用"]
]
} for resp in results_with_tools["响应结果"]
],
"差异百分比": float(f"{diff_percent:.2f}")
}
with open("llm_tool_benchmark_results.json", "w", encoding="utf-8") as f:
json.dump(results, f, ensure_ascii=False, indent=2)
print(f"\n测试结果已保存到 llm_tool_benchmark_results.json")
if __name__ == "__main__":
asyncio.run(main())