feat:合并工具调用模型和心流模型
This commit is contained in:
@@ -2,7 +2,7 @@ import asyncio
|
||||
import time
|
||||
import traceback
|
||||
from typing import List, Optional, Dict, Any, TYPE_CHECKING
|
||||
import json
|
||||
# import json # 移除,因为使用了json_utils
|
||||
from src.plugins.chat.message import MessageRecv, BaseMessageInfo, MessageThinking, MessageSending
|
||||
from src.plugins.chat.message import MessageSet, Seg # Local import needed after move
|
||||
from src.plugins.chat.chat_stream import ChatStream
|
||||
@@ -17,6 +17,7 @@ from src.plugins.heartFC_chat.heartFC_generator import HeartFCGenerator
|
||||
from src.do_tool.tool_use import ToolUser
|
||||
from ..chat.message_sender import message_manager # <-- Import the global manager
|
||||
from src.plugins.chat.emoji_manager import emoji_manager
|
||||
from src.plugins.utils.json_utils import extract_tool_call_arguments, safe_json_dumps, process_llm_tool_response # 导入新的JSON工具
|
||||
# --- End import ---
|
||||
|
||||
|
||||
@@ -245,9 +246,6 @@ class HeartFChatting:
|
||||
action = planner_result.get("action", "error")
|
||||
reasoning = planner_result.get("reasoning", "Planner did not provide reasoning.")
|
||||
emoji_query = planner_result.get("emoji_query", "")
|
||||
# current_mind = planner_result.get("current_mind", "[Mind unavailable]")
|
||||
# send_emoji_from_tools = planner_result.get("send_emoji_from_tools", "") # Emoji from tools
|
||||
observed_messages = planner_result.get("observed_messages", [])
|
||||
llm_error = planner_result.get("llm_error", False)
|
||||
|
||||
if llm_error:
|
||||
@@ -259,7 +257,7 @@ class HeartFChatting:
|
||||
elif action == "text_reply":
|
||||
logger.debug(f"{log_prefix} HeartFChatting: 麦麦决定回复文本. 理由: {reasoning}")
|
||||
action_taken_this_cycle = True
|
||||
anchor_message = await self._get_anchor_message(observed_messages)
|
||||
anchor_message = await self._get_anchor_message()
|
||||
if not anchor_message:
|
||||
logger.error(f"{log_prefix} 循环: 无法获取锚点消息用于回复. 跳过周期.")
|
||||
else:
|
||||
@@ -304,7 +302,7 @@ class HeartFChatting:
|
||||
f"{log_prefix} HeartFChatting: 麦麦决定回复表情 ('{emoji_query}'). 理由: {reasoning}"
|
||||
)
|
||||
action_taken_this_cycle = True
|
||||
anchor = await self._get_anchor_message(observed_messages)
|
||||
anchor = await self._get_anchor_message()
|
||||
if anchor:
|
||||
try:
|
||||
# --- Handle Emoji (Moved) --- #
|
||||
@@ -329,11 +327,6 @@ class HeartFChatting:
|
||||
with Timer("Wait New Msg", cycle_timers): # <--- Start Wait timer
|
||||
wait_start_time = time.monotonic()
|
||||
while True:
|
||||
# Removed timer check within wait loop
|
||||
# async with self._timer_lock:
|
||||
# if self._loop_timer <= 0:
|
||||
# logger.info(f"{log_prefix} HeartFChatting: 等待新消息时计时器耗尽。")
|
||||
# break # 计时器耗尽,退出等待
|
||||
|
||||
# 检查是否有新消息
|
||||
has_new = await observation.has_new_messages_since(planner_start_db_time)
|
||||
@@ -395,14 +388,6 @@ class HeartFChatting:
|
||||
self._processing_lock.release()
|
||||
# logger.trace(f"{log_prefix} 循环释放了处理锁.") # Reduce noise
|
||||
|
||||
# --- Timer Decrement Logging Removed ---
|
||||
# async with self._timer_lock:
|
||||
# self._loop_timer -= cycle_duration
|
||||
# # Log timer decrement less aggressively
|
||||
# if cycle_duration > 0.1 or not action_taken_this_cycle:
|
||||
# logger.debug(
|
||||
# f"{log_prefix} HeartFChatting: 周期耗时 {cycle_duration:.2f}s. 剩余时间: {self._loop_timer:.1f}s."
|
||||
# )
|
||||
if cycle_duration > 0.1:
|
||||
logger.debug(f"{log_prefix} HeartFChatting: 周期耗时 {cycle_duration:.2f}s.")
|
||||
|
||||
@@ -437,77 +422,34 @@ class HeartFChatting:
|
||||
"""
|
||||
log_prefix = self._get_log_prefix()
|
||||
observed_messages: List[dict] = []
|
||||
tool_result_info = {}
|
||||
get_mid_memory_id = []
|
||||
# send_emoji_from_tools = "" # Emoji suggested by tools
|
||||
current_mind: Optional[str] = None
|
||||
llm_error = False # Flag for LLM failure
|
||||
|
||||
# --- Ensure SubHeartflow is available ---
|
||||
if not self.sub_hf:
|
||||
# Attempt to re-fetch if missing (might happen if initialization order changes)
|
||||
self.sub_hf = heartflow.get_subheartflow(self.stream_id)
|
||||
if not self.sub_hf:
|
||||
logger.error(f"{log_prefix}[Planner] SubHeartflow is not available. Cannot proceed.")
|
||||
return {
|
||||
"action": "error",
|
||||
"reasoning": "SubHeartflow unavailable",
|
||||
"llm_error": True,
|
||||
"observed_messages": [],
|
||||
}
|
||||
current_mind: Optional[str] = None
|
||||
llm_error = False
|
||||
|
||||
try:
|
||||
# Access observation via self.sub_hf
|
||||
observation = self.sub_hf._get_primary_observation()
|
||||
await observation.observe()
|
||||
observed_messages = observation.talking_message
|
||||
observed_messages_str = observation.talking_message_str
|
||||
except Exception as e:
|
||||
logger.error(f"{log_prefix}[Planner] 获取观察信息时出错: {e}")
|
||||
# Handle error gracefully, maybe return an error state
|
||||
observed_messages_str = "[Error getting observation]"
|
||||
# Consider returning error here if observation is critical
|
||||
# --- 结束获取观察信息 --- #
|
||||
|
||||
# --- (Moved from _replier_work) 1. 思考前使用工具 --- #
|
||||
|
||||
try:
|
||||
# Access tool_user directly
|
||||
tool_result = await self.tool_user.use_tool(
|
||||
message_txt=observed_messages_str,
|
||||
chat_stream=self.chat_stream,
|
||||
observation=self.sub_hf._get_primary_observation(),
|
||||
)
|
||||
if tool_result.get("used_tools", False):
|
||||
tool_result_info = tool_result.get("structured_info", {})
|
||||
logger.debug(f"{log_prefix}[Planner] 规划前工具结果: {tool_result_info}")
|
||||
|
||||
get_mid_memory_id = [
|
||||
mem["content"] for mem in tool_result_info.get("mid_chat_mem", []) if "content" in mem
|
||||
]
|
||||
|
||||
except Exception as e_tool:
|
||||
logger.error(f"{log_prefix}[Planner] 规划前工具使用失败: {e_tool}")
|
||||
# --- 结束工具使用 --- #
|
||||
|
||||
# --- (Moved from _replier_work) 2. SubHeartflow 思考 --- #
|
||||
try:
|
||||
current_mind, _past_mind = await self.sub_hf.do_thinking_before_reply(
|
||||
extra_info=tool_result_info,
|
||||
obs_id=get_mid_memory_id,
|
||||
)
|
||||
# logger.debug(f"{log_prefix}[Planner] SubHF Mind: {current_mind}")
|
||||
current_mind, _past_mind = await self.sub_hf.do_thinking_before_reply()
|
||||
except Exception as e_subhf:
|
||||
logger.error(f"{log_prefix}[Planner] SubHeartflow 思考失败: {e_subhf}")
|
||||
current_mind = "[思考时出错]"
|
||||
# --- 结束 SubHeartflow 思考 --- #
|
||||
|
||||
|
||||
# --- 使用 LLM 进行决策 --- #
|
||||
action = "no_reply" # Default action
|
||||
emoji_query = "" # Default emoji query (used if action is emoji_reply or text_reply with emoji)
|
||||
reasoning = "默认决策或获取决策失败"
|
||||
action = "no_reply" # 默认动作
|
||||
emoji_query = "" # 默认表情查询
|
||||
reasoning = "默认决策或获取决策失败"
|
||||
llm_error = False # LLM错误标志
|
||||
|
||||
try:
|
||||
prompt = await self._build_planner_prompt(observed_messages_str, current_mind)
|
||||
prompt = await self._build_planner_prompt(observed_messages_str, current_mind, self.sub_hf.structured_info)
|
||||
payload = {
|
||||
"model": self.planner_llm.model_name,
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
@@ -515,83 +457,70 @@ class HeartFChatting:
|
||||
"tool_choice": {"type": "function", "function": {"name": "decide_reply_action"}},
|
||||
}
|
||||
|
||||
response = await self.planner_llm._execute_request(
|
||||
endpoint="/chat/completions", payload=payload, prompt=prompt
|
||||
)
|
||||
# 执行LLM请求
|
||||
try:
|
||||
response = await self.planner_llm._execute_request(
|
||||
endpoint="/chat/completions", payload=payload, prompt=prompt
|
||||
)
|
||||
except Exception as req_e:
|
||||
logger.error(f"{log_prefix}[Planner] LLM请求执行失败: {req_e}")
|
||||
return {
|
||||
"action": "error",
|
||||
"reasoning": f"LLM请求执行失败: {req_e}",
|
||||
"emoji_query": "",
|
||||
"current_mind": current_mind,
|
||||
"observed_messages": observed_messages,
|
||||
"llm_error": True,
|
||||
}
|
||||
|
||||
if len(response) == 3:
|
||||
_, _, tool_calls = response
|
||||
if tool_calls and isinstance(tool_calls, list) and len(tool_calls) > 0:
|
||||
tool_call = tool_calls[0]
|
||||
if (
|
||||
tool_call.get("type") == "function"
|
||||
and tool_call.get("function", {}).get("name") == "decide_reply_action"
|
||||
):
|
||||
try:
|
||||
arguments = json.loads(tool_call["function"]["arguments"])
|
||||
action = arguments.get("action", "no_reply")
|
||||
reasoning = arguments.get("reasoning", "未提供理由")
|
||||
# Planner explicitly provides emoji query if action is emoji_reply or text_reply wants emoji
|
||||
emoji_query = arguments.get("emoji_query", "")
|
||||
logger.debug(
|
||||
f"{log_prefix}[Planner] LLM Prompt: {prompt}\n决策: {action}, 理由: {reasoning}, EmojiQuery: '{emoji_query}'"
|
||||
)
|
||||
except json.JSONDecodeError as json_e:
|
||||
logger.error(
|
||||
f"{log_prefix}[Planner] 解析工具参数失败: {json_e}. Args: {tool_call['function'].get('arguments')}"
|
||||
)
|
||||
action = "error"
|
||||
reasoning = "工具参数解析失败"
|
||||
llm_error = True
|
||||
except Exception as parse_e:
|
||||
logger.error(f"{log_prefix}[Planner] 处理工具参数时出错: {parse_e}")
|
||||
action = "error"
|
||||
reasoning = "处理工具参数时出错"
|
||||
llm_error = True
|
||||
else:
|
||||
logger.warning(
|
||||
f"{log_prefix}[Planner] LLM 未按预期调用 'decide_reply_action' 工具。Tool calls: {tool_calls}"
|
||||
)
|
||||
action = "error"
|
||||
reasoning = "LLM未调用预期工具"
|
||||
llm_error = True
|
||||
else:
|
||||
logger.warning(f"{log_prefix}[Planner] LLM 响应中未包含有效的工具调用。Tool calls: {tool_calls}")
|
||||
action = "error"
|
||||
reasoning = "LLM响应无工具调用"
|
||||
llm_error = True
|
||||
# 使用辅助函数处理工具调用响应
|
||||
success, arguments, error_msg = process_llm_tool_response(
|
||||
response,
|
||||
expected_tool_name="decide_reply_action",
|
||||
log_prefix=f"{log_prefix}[Planner] "
|
||||
)
|
||||
|
||||
if success:
|
||||
# 提取决策参数
|
||||
action = arguments.get("action", "no_reply")
|
||||
reasoning = arguments.get("reasoning", "未提供理由")
|
||||
emoji_query = arguments.get("emoji_query", "")
|
||||
|
||||
# 记录决策结果
|
||||
logger.debug(
|
||||
f"{log_prefix}[Planner] 决策结果: {action}, 理由: {reasoning}, 表情查询: '{emoji_query}'"
|
||||
)
|
||||
else:
|
||||
logger.warning(f"{log_prefix}[Planner] LLM 未返回预期的工具调用响应。Response parts: {len(response)}")
|
||||
# 处理工具调用失败
|
||||
logger.warning(f"{log_prefix}[Planner] {error_msg}")
|
||||
action = "error"
|
||||
reasoning = "LLM响应格式错误"
|
||||
reasoning = error_msg
|
||||
llm_error = True
|
||||
|
||||
except Exception as llm_e:
|
||||
logger.error(f"{log_prefix}[Planner] Planner LLM 调用失败: {llm_e}")
|
||||
# logger.error(traceback.format_exc()) # Maybe too verbose for loop?
|
||||
logger.error(f"{log_prefix}[Planner] Planner LLM处理过程中出错: {llm_e}")
|
||||
logger.error(traceback.format_exc()) # 记录完整堆栈以便调试
|
||||
action = "error"
|
||||
reasoning = f"LLM 调用失败: {llm_e}"
|
||||
reasoning = f"LLM处理失败: {llm_e}"
|
||||
llm_error = True
|
||||
# --- 结束 LLM 决策 --- #
|
||||
|
||||
return {
|
||||
"action": action,
|
||||
"reasoning": reasoning,
|
||||
"emoji_query": emoji_query, # Explicit query from Planner/LLM
|
||||
"emoji_query": emoji_query,
|
||||
"current_mind": current_mind,
|
||||
# "send_emoji_from_tools": send_emoji_from_tools, # Emoji suggested by tools (used as fallback)
|
||||
"observed_messages": observed_messages,
|
||||
"llm_error": llm_error,
|
||||
}
|
||||
|
||||
async def _get_anchor_message(self, observed_messages: List[dict]) -> Optional[MessageRecv]:
|
||||
async def _get_anchor_message(self) -> Optional[MessageRecv]:
|
||||
"""
|
||||
重构观察到的最后一条消息作为回复的锚点,
|
||||
如果重构失败或观察为空,则创建一个占位符。
|
||||
"""
|
||||
|
||||
try:
|
||||
# --- Create Placeholder --- #
|
||||
placeholder_id = f"mid_pf_{int(time.time() * 1000)}"
|
||||
placeholder_user = UserInfo(
|
||||
user_id="system_trigger", user_nickname="System Trigger", platform=self.chat_stream.platform
|
||||
@@ -652,37 +581,41 @@ class HeartFChatting:
|
||||
raise RuntimeError("发送回复失败,_send_response_messages返回None")
|
||||
|
||||
async def shutdown(self):
|
||||
"""
|
||||
Gracefully shuts down the HeartFChatting instance by cancelling the active loop task.
|
||||
"""
|
||||
"""优雅关闭HeartFChatting实例,取消活动循环任务"""
|
||||
log_prefix = self._get_log_prefix()
|
||||
logger.info(f"{log_prefix} Shutting down HeartFChatting...")
|
||||
logger.info(f"{log_prefix} 正在关闭HeartFChatting...")
|
||||
|
||||
# 取消循环任务
|
||||
if self._loop_task and not self._loop_task.done():
|
||||
logger.info(f"{log_prefix} Cancelling active PF loop task.")
|
||||
logger.info(f"{log_prefix} 正在取消HeartFChatting循环任务")
|
||||
self._loop_task.cancel()
|
||||
try:
|
||||
await asyncio.wait_for(self._loop_task, timeout=1.0) # Shorter timeout?
|
||||
except asyncio.CancelledError:
|
||||
logger.info(f"{log_prefix} PF loop task cancelled successfully.")
|
||||
except asyncio.TimeoutError:
|
||||
logger.warning(f"{log_prefix} Timeout waiting for PF loop task cancellation.")
|
||||
await asyncio.wait_for(self._loop_task, timeout=1.0)
|
||||
logger.info(f"{log_prefix} HeartFChatting循环任务已取消")
|
||||
except (asyncio.CancelledError, asyncio.TimeoutError):
|
||||
pass
|
||||
except Exception as e:
|
||||
logger.error(f"{log_prefix} Error during loop task cancellation: {e}")
|
||||
logger.error(f"{log_prefix} 取消循环任务出错: {e}")
|
||||
else:
|
||||
logger.info(f"{log_prefix} No active PF loop task found to cancel.")
|
||||
logger.info(f"{log_prefix} 没有活动的HeartFChatting循环任务")
|
||||
|
||||
# 清理状态
|
||||
self._loop_active = False
|
||||
self._loop_task = None
|
||||
if self._processing_lock.locked():
|
||||
logger.warning(f"{log_prefix} Releasing processing lock during shutdown.")
|
||||
self._processing_lock.release()
|
||||
logger.info(f"{log_prefix} HeartFChatting shutdown complete.")
|
||||
logger.warning(f"{log_prefix} 已释放处理锁")
|
||||
|
||||
logger.info(f"{log_prefix} HeartFChatting关闭完成")
|
||||
|
||||
async def _build_planner_prompt(self, observed_messages_str: str, current_mind: Optional[str]) -> str:
|
||||
async def _build_planner_prompt(self, observed_messages_str: str, current_mind: Optional[str], structured_info: Dict[str, Any]) -> str:
|
||||
"""构建 Planner LLM 的提示词"""
|
||||
|
||||
prompt = f"你的名字是 {global_config.BOT_NICKNAME}。是一个女大二学生,正在QQ聊天,正在决定是否以及如何回应当前的聊天。\n"
|
||||
|
||||
if structured_info:
|
||||
prompt += f"以下是一些额外的信息:\n{structured_info}\n"
|
||||
|
||||
if observed_messages_str:
|
||||
prompt += "观察到的最新聊天内容如下 (最近的消息在最后):\n---\n"
|
||||
prompt += observed_messages_str
|
||||
@@ -726,6 +659,7 @@ class HeartFChatting:
|
||||
response_set: Optional[List[str]] = None
|
||||
try:
|
||||
response_set = await self.gpt_instance.generate_response(
|
||||
structured_info=self.sub_hf.structured_info,
|
||||
current_mind_info=self.sub_hf.current_mind,
|
||||
reason=reason,
|
||||
message=anchor_message, # Pass anchor_message positionally (matches 'message' parameter)
|
||||
|
||||
@@ -39,6 +39,7 @@ class HeartFCGenerator:
|
||||
|
||||
async def generate_response(
|
||||
self,
|
||||
structured_info: str,
|
||||
current_mind_info: str,
|
||||
reason: str,
|
||||
message: MessageRecv,
|
||||
@@ -56,7 +57,7 @@ class HeartFCGenerator:
|
||||
current_model = self.model_normal
|
||||
current_model.temperature = global_config.llm_normal["temp"] * arousal_multiplier # 激活度越高,温度越高
|
||||
model_response = await self._generate_response_with_model(
|
||||
current_mind_info, reason, message, current_model, thinking_id
|
||||
structured_info, current_mind_info, reason, message, current_model, thinking_id
|
||||
)
|
||||
|
||||
if model_response:
|
||||
@@ -71,7 +72,7 @@ class HeartFCGenerator:
|
||||
return None
|
||||
|
||||
async def _generate_response_with_model(
|
||||
self, current_mind_info: str, reason: str, message: MessageRecv, model: LLMRequest, thinking_id: str
|
||||
self, structured_info: str, current_mind_info: str, reason: str, message: MessageRecv, model: LLMRequest, thinking_id: str
|
||||
) -> str:
|
||||
sender_name = ""
|
||||
|
||||
@@ -84,6 +85,7 @@ class HeartFCGenerator:
|
||||
build_mode="focus",
|
||||
reason=reason,
|
||||
current_mind_info=current_mind_info,
|
||||
structured_info=structured_info,
|
||||
message_txt=message.processed_plain_text,
|
||||
sender_name=sender_name,
|
||||
chat_stream=message.chat_stream,
|
||||
@@ -103,106 +105,6 @@ class HeartFCGenerator:
|
||||
|
||||
return content
|
||||
|
||||
async def _get_emotion_tags(self, content: str, processed_plain_text: str):
|
||||
"""提取情感标签,结合立场和情绪"""
|
||||
try:
|
||||
# 构建提示词,结合回复内容、被回复的内容以及立场分析
|
||||
prompt = f"""
|
||||
请严格根据以下对话内容,完成以下任务:
|
||||
1. 判断回复者对被回复者观点的直接立场:
|
||||
- "支持":明确同意或强化被回复者观点
|
||||
- "反对":明确反驳或否定被回复者观点
|
||||
- "中立":不表达明确立场或无关回应
|
||||
2. 从"开心,愤怒,悲伤,惊讶,平静,害羞,恐惧,厌恶,困惑"中选出最匹配的1个情感标签
|
||||
3. 按照"立场-情绪"的格式直接输出结果,例如:"反对-愤怒"
|
||||
4. 考虑回复者的人格设定为{global_config.personality_core}
|
||||
|
||||
对话示例:
|
||||
被回复:「A就是笨」
|
||||
回复:「A明明很聪明」 → 反对-愤怒
|
||||
|
||||
当前对话:
|
||||
被回复:「{processed_plain_text}」
|
||||
回复:「{content}」
|
||||
|
||||
输出要求:
|
||||
- 只需输出"立场-情绪"结果,不要解释
|
||||
- 严格基于文字直接表达的对立关系判断
|
||||
"""
|
||||
|
||||
# 调用模型生成结果
|
||||
result, _, _ = await self.model_sum.generate_response(prompt)
|
||||
result = result.strip()
|
||||
|
||||
# 解析模型输出的结果
|
||||
if "-" in result:
|
||||
stance, emotion = result.split("-", 1)
|
||||
valid_stances = ["支持", "反对", "中立"]
|
||||
valid_emotions = ["开心", "愤怒", "悲伤", "惊讶", "害羞", "平静", "恐惧", "厌恶", "困惑"]
|
||||
if stance in valid_stances and emotion in valid_emotions:
|
||||
return stance, emotion # 返回有效的立场-情绪组合
|
||||
else:
|
||||
logger.debug(f"无效立场-情感组合:{result}")
|
||||
return "中立", "平静" # 默认返回中立-平静
|
||||
else:
|
||||
logger.debug(f"立场-情感格式错误:{result}")
|
||||
return "中立", "平静" # 格式错误时返回默认值
|
||||
|
||||
except Exception as e:
|
||||
logger.debug(f"获取情感标签时出错: {e}")
|
||||
return "中立", "平静" # 出错时返回默认值
|
||||
|
||||
async def _get_emotion_tags_with_reason(self, content: str, processed_plain_text: str, reason: str):
|
||||
"""提取情感标签,结合立场和情绪"""
|
||||
try:
|
||||
# 构建提示词,结合回复内容、被回复的内容以及立场分析
|
||||
prompt = f"""
|
||||
请严格根据以下对话内容,完成以下任务:
|
||||
1. 判断回复者对被回复者观点的直接立场:
|
||||
- "支持":明确同意或强化被回复者观点
|
||||
- "反对":明确反驳或否定被回复者观点
|
||||
- "中立":不表达明确立场或无关回应
|
||||
2. 从"开心,愤怒,悲伤,惊讶,平静,害羞,恐惧,厌恶,困惑"中选出最匹配的1个情感标签
|
||||
3. 按照"立场-情绪"的格式直接输出结果,例如:"反对-愤怒"
|
||||
4. 考虑回复者的人格设定为{global_config.personality_core}
|
||||
|
||||
对话示例:
|
||||
被回复:「A就是笨」
|
||||
回复:「A明明很聪明」 → 反对-愤怒
|
||||
|
||||
当前对话:
|
||||
被回复:「{processed_plain_text}」
|
||||
回复:「{content}」
|
||||
|
||||
原因:「{reason}」
|
||||
|
||||
输出要求:
|
||||
- 只需输出"立场-情绪"结果,不要解释
|
||||
- 严格基于文字直接表达的对立关系判断
|
||||
"""
|
||||
|
||||
# 调用模型生成结果
|
||||
result, _, _ = await self.model_sum.generate_response(prompt)
|
||||
result = result.strip()
|
||||
|
||||
# 解析模型输出的结果
|
||||
if "-" in result:
|
||||
stance, emotion = result.split("-", 1)
|
||||
valid_stances = ["支持", "反对", "中立"]
|
||||
valid_emotions = ["开心", "愤怒", "悲伤", "惊讶", "害羞", "平静", "恐惧", "厌恶", "困惑"]
|
||||
if stance in valid_stances and emotion in valid_emotions:
|
||||
return stance, emotion # 返回有效的立场-情绪组合
|
||||
else:
|
||||
logger.debug(f"无效立场-情感组合:{result}")
|
||||
return "中立", "平静" # 默认返回中立-平静
|
||||
else:
|
||||
logger.debug(f"立场-情感格式错误:{result}")
|
||||
return "中立", "平静" # 格式错误时返回默认值
|
||||
|
||||
except Exception as e:
|
||||
logger.debug(f"获取情感标签时出错: {e}")
|
||||
return "中立", "平静" # 出错时返回默认值
|
||||
|
||||
async def _process_response(self, content: str) -> List[str]:
|
||||
"""处理响应内容,返回处理后的内容和情感标签"""
|
||||
if not content:
|
||||
|
||||
@@ -21,6 +21,8 @@ logger = get_module_logger("prompt")
|
||||
def init_prompt():
|
||||
Prompt(
|
||||
"""
|
||||
你有以下信息可供参考:
|
||||
{structured_info}
|
||||
{chat_target}
|
||||
{chat_talking_prompt}
|
||||
现在"{sender_name}"说的:{message_txt}。引起了你的注意,你想要在群里发言发言或者回复这条消息。\n
|
||||
@@ -79,17 +81,17 @@ class PromptBuilder:
|
||||
self.activate_messages = ""
|
||||
|
||||
async def build_prompt(
|
||||
self, build_mode, reason, current_mind_info, message_txt: str, sender_name: str = "某人", chat_stream=None
|
||||
self, build_mode, reason, current_mind_info, structured_info, message_txt: str, sender_name: str = "某人", chat_stream=None
|
||||
) -> Optional[tuple[str, str]]:
|
||||
if build_mode == "normal":
|
||||
return await self._build_prompt_normal(chat_stream, message_txt, sender_name)
|
||||
|
||||
elif build_mode == "focus":
|
||||
return await self._build_prompt_focus(reason, current_mind_info, chat_stream, message_txt, sender_name)
|
||||
return await self._build_prompt_focus(reason, current_mind_info, structured_info, chat_stream, message_txt, sender_name)
|
||||
return None
|
||||
|
||||
async def _build_prompt_focus(
|
||||
self, reason, current_mind_info, chat_stream, message_txt: str, sender_name: str = "某人"
|
||||
self, reason, current_mind_info, structured_info, chat_stream, message_txt: str, sender_name: str = "某人"
|
||||
) -> tuple[str, str]:
|
||||
individuality = Individuality.get_instance()
|
||||
prompt_personality = individuality.get_prompt(type="personality", x_person=2, level=1)
|
||||
@@ -148,6 +150,7 @@ class PromptBuilder:
|
||||
|
||||
prompt = await global_prompt_manager.format_prompt(
|
||||
"heart_flow_prompt",
|
||||
structured_info=structured_info,
|
||||
chat_target=await global_prompt_manager.get_prompt_async("chat_target_group1")
|
||||
if chat_in_group
|
||||
else await global_prompt_manager.get_prompt_async("chat_target_private1"),
|
||||
|
||||
@@ -83,6 +83,7 @@ class NormalChatGenerator:
|
||||
build_mode="normal",
|
||||
reason="",
|
||||
current_mind_info="",
|
||||
structured_info="",
|
||||
message_txt=message.processed_plain_text,
|
||||
sender_name=sender_name,
|
||||
chat_stream=message.chat_stream,
|
||||
|
||||
Reference in New Issue
Block a user