Merge branch 'debug' into feature
This commit is contained in:
4
.env
4
.env
@@ -1,5 +1,5 @@
|
||||
# 您不应该修改默认值,这个文件被仓库索引,请修改.env.prod
|
||||
ENVIRONMENT=dev
|
||||
ENVIRONMENT=prod
|
||||
# HOST=127.0.0.1
|
||||
# PORT=8080
|
||||
|
||||
@@ -23,4 +23,4 @@ ENVIRONMENT=dev
|
||||
# CHAT_ANY_WHERE_BASE_URL=https://api.chatanywhere.tech/v1
|
||||
# SILICONFLOW_BASE_URL=https://api.siliconflow.cn/v1/
|
||||
# DEEP_SEEK_KEY=
|
||||
# DEEP_SEEK_BASE_URL=https://api.deepseek.com/v1
|
||||
# DEEP_SEEK_BASE_URL=https://api.deepseek.com/v1
|
||||
|
||||
@@ -2,7 +2,9 @@
|
||||
|
||||
## 部署方式
|
||||
|
||||
### 🐳 Docker部署(推荐)
|
||||
如果你不知道Docker是什么,建议寻找相关教程或使用手动部署
|
||||
|
||||
### 🐳 Docker部署(推荐,但不一定是最新)
|
||||
|
||||
1. 获取配置文件:
|
||||
```bash
|
||||
@@ -25,9 +27,7 @@ NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker compose restart
|
||||
```bash
|
||||
# 创建虚拟环境(推荐)
|
||||
python -m venv venv
|
||||
source venv/bin/activate # Linux
|
||||
venv\\Scripts\\activate # Windows
|
||||
|
||||
# 安装依赖
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
@@ -41,33 +41,37 @@ pip install -r requirements.txt
|
||||
- 添加反向WS:`ws://localhost:8080/onebot/v11/ws`
|
||||
|
||||
4. **配置文件设置**
|
||||
- 复制并修改环境配置:`.env.prod`
|
||||
- 复制并修改机器人配置:`bot_config.toml`
|
||||
- 修改环境配置文件:`.env.prod`
|
||||
- 修改机器人配置文件:`bot_config.toml`
|
||||
|
||||
5. **启动服务**
|
||||
5. **启动麦麦机器人**
|
||||
- 打开命令行,cd到对应路径
|
||||
```bash
|
||||
nb run
|
||||
```
|
||||
|
||||
6. **其他组件**
|
||||
- `run_thingking.bat`: 启动可视化推理界面(未完善)和消息队列预览
|
||||
- `knowledge.bat`: 将`/data/raw_info`下的文本文档载入数据库
|
||||
- `run_thingking.bat`: 启动可视化推理界面(未完善)
|
||||
|
||||
- ~~`knowledge.bat`: 将`/data/raw_info`下的文本文档载入数据库~~
|
||||
- 直接运行 knowledge.py生成知识库
|
||||
|
||||
## ⚙️ 配置说明
|
||||
|
||||
### 环境配置 (.env.prod)
|
||||
```ini
|
||||
# API配置(必填)
|
||||
# API配置,你可以在这里定义你的密钥和base_url
|
||||
# 你可以选择定义其他服务商提供的KEY,完全可以自定义
|
||||
SILICONFLOW_KEY=your_key
|
||||
SILICONFLOW_BASE_URL=https://api.siliconflow.cn/v1/
|
||||
DEEP_SEEK_KEY=your_key
|
||||
DEEP_SEEK_BASE_URL=https://api.deepseek.com/v1
|
||||
|
||||
# 服务配置
|
||||
# 服务配置,如果你不知道这是什么,保持默认
|
||||
HOST=127.0.0.1
|
||||
PORT=8080
|
||||
|
||||
# 数据库配置
|
||||
# 数据库配置,如果你不知道这是什么,保持默认
|
||||
MONGODB_HOST=127.0.0.1
|
||||
MONGODB_PORT=27017
|
||||
DATABASE_NAME=MegBot
|
||||
@@ -80,19 +84,58 @@ qq = "你的机器人QQ号"
|
||||
nickname = "麦麦"
|
||||
|
||||
[message]
|
||||
min_text_length = 2
|
||||
max_context_size = 15
|
||||
emoji_chance = 0.2
|
||||
|
||||
[emoji]
|
||||
check_interval = 120
|
||||
register_interval = 10
|
||||
|
||||
[cq_code]
|
||||
enable_pic_translate = false
|
||||
|
||||
[response]
|
||||
api_using = "siliconflow" # 或 "deepseek"
|
||||
#现已移除deepseek或硅基流动选项,可以直接切换分别配置任意模型
|
||||
model_r1_probability = 0.8 #推理模型权重
|
||||
model_v3_probability = 0.1 #非推理模型权重
|
||||
model_r1_distill_probability = 0.1
|
||||
|
||||
[memory]
|
||||
build_memory_interval = 300
|
||||
|
||||
[others]
|
||||
enable_advance_output = false # 是否启用详细日志输出
|
||||
enable_advance_output = true # 是否启用详细日志输出
|
||||
|
||||
[groups]
|
||||
talk_allowed = [] # 允许回复的群号列表
|
||||
talk_frequency_down = [] # 降低回复频率的群号列表
|
||||
ban_user_id = [] # 禁止回复的用户QQ号列表
|
||||
|
||||
[model.llm_reasoning]
|
||||
name = "Pro/deepseek-ai/DeepSeek-R1"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.llm_reasoning_minor]
|
||||
name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.llm_normal]
|
||||
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.llm_normal_minor]
|
||||
name = "deepseek-ai/DeepSeek-V2.5"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.vlm]
|
||||
name = "deepseek-ai/deepseek-vl2"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
```
|
||||
|
||||
## ⚠️ 注意事项
|
||||
|
||||
@@ -97,8 +97,13 @@ class ChatBot:
|
||||
|
||||
current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(message.time))
|
||||
|
||||
topic = topic_identifier.identify_topic_jieba(message.processed_plain_text)
|
||||
print(f"\033[1;32m[主题识别]\033[0m 主题: {topic}")
|
||||
topic1 = topic_identifier.identify_topic_jieba(message.processed_plain_text)
|
||||
topic2 = await topic_identifier.identify_topic_llm(message.processed_plain_text)
|
||||
topic3 = topic_identifier.identify_topic_snownlp(message.processed_plain_text)
|
||||
print(f"\033[1;32m[主题识别]\033[0m 使用jieba主题: {topic1}")
|
||||
print(f"\033[1;32m[主题识别]\033[0m 使用llm主题: {topic2}")
|
||||
print(f"\033[1;32m[主题识别]\033[0m 使用snownlp主题: {topic3}")
|
||||
topic = topic3
|
||||
|
||||
all_num = 0
|
||||
interested_num = 0
|
||||
|
||||
@@ -4,19 +4,18 @@ from .message import Message
|
||||
import jieba
|
||||
from nonebot import get_driver
|
||||
from .config import global_config
|
||||
from snownlp import SnowNLP
|
||||
from ..models.utils_model import LLM_request
|
||||
|
||||
driver = get_driver()
|
||||
config = driver.config
|
||||
|
||||
class TopicIdentifier:
|
||||
def __init__(self):
|
||||
self.client = OpenAI(
|
||||
api_key=config.siliconflow_key,
|
||||
base_url=config.siliconflow_base_url
|
||||
)
|
||||
self.llm_client = LLM_request(model=global_config.llm_normal)
|
||||
|
||||
def identify_topic_llm(self, text: str) -> Optional[str]:
|
||||
"""识别消息主题"""
|
||||
async def identify_topic_llm(self, text: str) -> Optional[List[str]]:
|
||||
"""识别消息主题,返回主题列表"""
|
||||
|
||||
prompt = f"""判断这条消息的主题,如果没有明显主题请回复"无主题",要求:
|
||||
1. 主题通常2-4个字,必须简短,要求精准概括,不要太具体。
|
||||
@@ -24,33 +23,20 @@ class TopicIdentifier:
|
||||
|
||||
消息内容:{text}"""
|
||||
|
||||
response = self.client.chat.completions.create(
|
||||
model=global_config.SILICONFLOW_MODEL_V3,
|
||||
messages=[{"role": "user", "content": prompt}],
|
||||
temperature=0.8,
|
||||
max_tokens=10
|
||||
)
|
||||
# 使用 LLM_request 类进行请求
|
||||
topic, _ = await self.llm_client.generate_response(prompt)
|
||||
|
||||
if not response or not response.choices:
|
||||
print(f"\033[1;31m[错误]\033[0m OpenAI API 返回为空")
|
||||
if not topic:
|
||||
print(f"\033[1;31m[错误]\033[0m LLM API 返回为空")
|
||||
return None
|
||||
|
||||
# 从 OpenAI API 响应中获取第一个选项的消息内容,并去除首尾空白字符
|
||||
topic = response.choices[0].message.content.strip() if response.choices[0].message.content else None
|
||||
|
||||
if topic == "无主题":
|
||||
return None
|
||||
else:
|
||||
# print(f"[主题分析结果]{text[:20]}... : {topic}")
|
||||
split_topic = self.parse_topic(topic)
|
||||
return split_topic
|
||||
|
||||
|
||||
def parse_topic(self, topic: str) -> List[str]:
|
||||
"""解析主题,返回主题列表"""
|
||||
# 直接在这里处理主题解析
|
||||
if not topic or topic == "无主题":
|
||||
return []
|
||||
return [t.strip() for t in topic.split(",") if t.strip()]
|
||||
return None
|
||||
|
||||
# 解析主题字符串为列表
|
||||
topic_list = [t.strip() for t in topic.split(",") if t.strip()]
|
||||
return topic_list if topic_list else None
|
||||
|
||||
def identify_topic_jieba(self, text: str) -> Optional[str]:
|
||||
"""使用jieba识别主题"""
|
||||
@@ -80,9 +66,12 @@ class TopicIdentifier:
|
||||
filtered_words = []
|
||||
for word in words:
|
||||
if word not in stop_words and not word.strip() in {
|
||||
'。', ',', '、', ':', ';', '!', '?', '"', '"', ''', ''',
|
||||
'(', ')', '【', '】', '《', '》', '…', '—', '·', '、', '~',
|
||||
'~', '+', '=', '-','[',']'
|
||||
'。', ',', '、', ':', ';', '!', '?', '"', '"', ''', ''',
|
||||
'(', ')', '【', '】', '《', '》', '…', '—', '·', '、', '~',
|
||||
'~', '+', '=', '-', '/', '\\', '|', '*', '#', '@', '$', '%',
|
||||
'^', '&', '[', ']', '{', '}', '<', '>', '`', '_', '.', ',',
|
||||
';', ':', '\'', '"', '(', ')', '?', '!', '±', '×', '÷', '≠',
|
||||
'≈', '∈', '∉', '⊆', '⊇', '⊂', '⊃', '∪', '∩', '∧', '∨'
|
||||
}:
|
||||
filtered_words.append(word)
|
||||
|
||||
@@ -97,4 +86,25 @@ class TopicIdentifier:
|
||||
|
||||
return top_words if top_words else None
|
||||
|
||||
topic_identifier = TopicIdentifier()
|
||||
def identify_topic_snownlp(self, text: str) -> Optional[List[str]]:
|
||||
"""使用 SnowNLP 进行主题识别
|
||||
|
||||
Args:
|
||||
text (str): 需要识别主题的文本
|
||||
|
||||
Returns:
|
||||
Optional[List[str]]: 返回识别出的主题关键词列表,如果无法识别则返回 None
|
||||
"""
|
||||
if not text or len(text.strip()) == 0:
|
||||
return None
|
||||
|
||||
try:
|
||||
s = SnowNLP(text)
|
||||
# 提取前3个关键词作为主题
|
||||
keywords = s.keywords(3)
|
||||
return keywords if keywords else None
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m SnowNLP 处理失败: {str(e)}")
|
||||
return None
|
||||
|
||||
topic_identifier = TopicIdentifier()
|
||||
|
||||
@@ -2,7 +2,6 @@
|
||||
import os
|
||||
import sys
|
||||
import jieba
|
||||
from llm_module import LLMModel
|
||||
import networkx as nx
|
||||
import matplotlib.pyplot as plt
|
||||
import math
|
||||
@@ -10,10 +9,76 @@ from collections import Counter
|
||||
import datetime
|
||||
import random
|
||||
import time
|
||||
# from chat.config import global_config
|
||||
from dotenv import load_dotenv
|
||||
import sys
|
||||
import asyncio
|
||||
import aiohttp
|
||||
from typing import Tuple
|
||||
|
||||
sys.path.append("C:/GitHub/MaiMBot") # 添加项目根目录到 Python 路径
|
||||
from src.common.database import Database # 使用正确的导入语法
|
||||
|
||||
# 加载.env.dev文件
|
||||
env_path = os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))), '.env.dev')
|
||||
load_dotenv(env_path)
|
||||
|
||||
class LLMModel:
|
||||
def __init__(self, model_name=os.getenv("SILICONFLOW_MODEL_V3"), **kwargs):
|
||||
self.model_name = model_name
|
||||
self.params = kwargs
|
||||
self.api_key = os.getenv("SILICONFLOW_KEY")
|
||||
self.base_url = os.getenv("SILICONFLOW_BASE_URL")
|
||||
|
||||
async def generate_response(self, prompt: str) -> Tuple[str, str]:
|
||||
"""根据输入的提示生成模型的响应"""
|
||||
headers = {
|
||||
"Authorization": f"Bearer {self.api_key}",
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
|
||||
# 构建请求体
|
||||
data = {
|
||||
"model": self.model_name,
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
"temperature": 0.5,
|
||||
**self.params
|
||||
}
|
||||
|
||||
# 发送请求到完整的chat/completions端点
|
||||
api_url = f"{self.base_url.rstrip('/')}/chat/completions"
|
||||
|
||||
max_retries = 3
|
||||
base_wait_time = 15
|
||||
|
||||
for retry in range(max_retries):
|
||||
try:
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(api_url, headers=headers, json=data) as response:
|
||||
if response.status == 429:
|
||||
wait_time = base_wait_time * (2 ** retry) # 指数退避
|
||||
print(f"遇到请求限制(429),等待{wait_time}秒后重试...")
|
||||
await asyncio.sleep(wait_time)
|
||||
continue
|
||||
|
||||
response.raise_for_status() # 检查其他响应状态
|
||||
|
||||
result = await response.json()
|
||||
if "choices" in result and len(result["choices"]) > 0:
|
||||
content = result["choices"][0]["message"]["content"]
|
||||
reasoning_content = result["choices"][0]["message"].get("reasoning_content", "")
|
||||
return content, reasoning_content
|
||||
return "没有返回结果", ""
|
||||
|
||||
except Exception as e:
|
||||
if retry < max_retries - 1: # 如果还有重试机会
|
||||
wait_time = base_wait_time * (2 ** retry)
|
||||
print(f"请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
|
||||
await asyncio.sleep(wait_time)
|
||||
else:
|
||||
return f"请求失败: {str(e)}", ""
|
||||
|
||||
return "达到最大重试次数,请求仍然失败", ""
|
||||
|
||||
|
||||
class Memory_graph:
|
||||
def __init__(self):
|
||||
@@ -158,12 +223,12 @@ class Memory_graph:
|
||||
def main():
|
||||
# 初始化数据库
|
||||
Database.initialize(
|
||||
host= os.getenv("MONGODB_HOST"),
|
||||
port= int(os.getenv("MONGODB_PORT")),
|
||||
db_name= os.getenv("DATABASE_NAME"),
|
||||
username= os.getenv("MONGODB_USERNAME"),
|
||||
password= os.getenv("MONGODB_PASSWORD"),
|
||||
auth_source=os.getenv("MONGODB_AUTH_SOURCE")
|
||||
host=os.getenv("MONGODB_HOST", "127.0.0.1"),
|
||||
port=int(os.getenv("MONGODB_PORT", "27017")),
|
||||
db_name=os.getenv("DATABASE_NAME", "MegBot"),
|
||||
username=os.getenv("MONGODB_USERNAME", ""),
|
||||
password=os.getenv("MONGODB_PASSWORD", ""),
|
||||
auth_source=os.getenv("MONGODB_AUTH_SOURCE", "")
|
||||
)
|
||||
|
||||
memory_graph = Memory_graph()
|
||||
@@ -185,11 +250,14 @@ def main():
|
||||
query = input("请输入新的查询概念(输入'退出'以结束):")
|
||||
if query.lower() == '退出':
|
||||
break
|
||||
items_list = memory_graph.get_related_item(query)
|
||||
if items_list:
|
||||
# print(items_list)
|
||||
for memory_item in items_list:
|
||||
print(memory_item)
|
||||
first_layer_items, second_layer_items = memory_graph.get_related_item(query)
|
||||
if first_layer_items or second_layer_items:
|
||||
print("\n第一层记忆:")
|
||||
for item in first_layer_items:
|
||||
print(item)
|
||||
print("\n第二层记忆:")
|
||||
for item in second_layer_items:
|
||||
print(item)
|
||||
else:
|
||||
print("未找到相关记忆。")
|
||||
|
||||
|
||||
@@ -1,70 +0,0 @@
|
||||
from textblob import TextBlob
|
||||
import jieba
|
||||
from translate import Translator
|
||||
|
||||
def analyze_emotion(text):
|
||||
"""
|
||||
分析文本的情感,返回情感极性和主观性得分
|
||||
:param text: 输入文本
|
||||
:return: (情感极性, 主观性) 元组
|
||||
情感极性: -1(非常消极) 到 1(非常积极)
|
||||
主观性: 0(客观) 到 1(主观)
|
||||
"""
|
||||
try:
|
||||
# 创建翻译器
|
||||
translator = Translator(to_lang="en", from_lang="zh")
|
||||
|
||||
# 如果是中文文本,先翻译成英文
|
||||
# 因为TextBlob的情感分析主要基于英文
|
||||
translated_text = translator.translate(text)
|
||||
|
||||
# 创建TextBlob对象
|
||||
blob = TextBlob(translated_text)
|
||||
|
||||
# 获取情感极性和主观性
|
||||
polarity = blob.sentiment.polarity
|
||||
subjectivity = blob.sentiment.subjectivity
|
||||
|
||||
return polarity, subjectivity
|
||||
|
||||
except Exception as e:
|
||||
print(f"分析过程中出现错误: {str(e)}")
|
||||
return None, None
|
||||
|
||||
def get_emotion_description(polarity, subjectivity):
|
||||
"""
|
||||
根据情感极性和主观性生成描述性文字
|
||||
"""
|
||||
if polarity is None or subjectivity is None:
|
||||
return "无法分析情感"
|
||||
|
||||
# 情感极性描述
|
||||
if polarity > 0.5:
|
||||
emotion = "非常积极"
|
||||
elif polarity > 0:
|
||||
emotion = "较为积极"
|
||||
elif polarity == 0:
|
||||
emotion = "中性"
|
||||
elif polarity > -0.5:
|
||||
emotion = "较为消极"
|
||||
else:
|
||||
emotion = "非常消极"
|
||||
|
||||
# 主观性描述
|
||||
if subjectivity > 0.7:
|
||||
subj = "非常主观"
|
||||
elif subjectivity > 0.3:
|
||||
subj = "较为主观"
|
||||
else:
|
||||
subj = "较为客观"
|
||||
|
||||
return f"情感倾向: {emotion}, 表达方式: {subj}"
|
||||
|
||||
if __name__ == "__main__":
|
||||
# 测试样例
|
||||
test_text = "今天天气真好,我感到非常开心!"
|
||||
polarity, subjectivity = analyze_emotion(test_text)
|
||||
print(f"测试文本: {test_text}")
|
||||
print(f"情感极性: {polarity:.2f}")
|
||||
print(f"主观性得分: {subjectivity:.2f}")
|
||||
print(get_emotion_description(polarity, subjectivity))
|
||||
@@ -1,74 +0,0 @@
|
||||
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
||||
|
||||
def setup_bert_analyzer():
|
||||
"""
|
||||
设置中文BERT情感分析器
|
||||
"""
|
||||
# 使用专门针对中文情感分析的模型
|
||||
model_name = "uer/roberta-base-finetuned-jd-binary-chinese"
|
||||
|
||||
try:
|
||||
# 加载模型和分词器
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
||||
|
||||
# 创建情感分析pipeline
|
||||
analyzer = pipeline("sentiment-analysis",
|
||||
model=model,
|
||||
tokenizer=tokenizer)
|
||||
|
||||
return analyzer
|
||||
except Exception as e:
|
||||
print(f"模型加载错误: {str(e)}")
|
||||
return None
|
||||
|
||||
def analyze_emotion_bert(text, analyzer):
|
||||
"""
|
||||
使用BERT模型进行中文情感分析
|
||||
"""
|
||||
try:
|
||||
if not analyzer:
|
||||
return None
|
||||
|
||||
# 进行情感分析
|
||||
result = analyzer(text)[0]
|
||||
|
||||
return {
|
||||
'label': result['label'],
|
||||
'score': result['score']
|
||||
}
|
||||
except Exception as e:
|
||||
print(f"分析过程中出现错误: {str(e)}")
|
||||
return None
|
||||
|
||||
def get_emotion_description_bert(result):
|
||||
"""
|
||||
将BERT的情感分析结果转换为描述性文字
|
||||
"""
|
||||
if not result:
|
||||
return "无法分析情感"
|
||||
|
||||
label = "积极" if result['label'] == 'positive' else "消极"
|
||||
confidence = result['score']
|
||||
|
||||
if confidence > 0.9:
|
||||
strength = "强烈"
|
||||
elif confidence > 0.7:
|
||||
strength = "明显"
|
||||
else:
|
||||
strength = "轻微"
|
||||
|
||||
return f"{strength}{label}"
|
||||
|
||||
if __name__ == "__main__":
|
||||
# 初始化分析器
|
||||
analyzer = setup_bert_analyzer()
|
||||
|
||||
# 测试样例
|
||||
test_text = "这个产品质量很好,使用起来非常方便,推荐购买!"
|
||||
result = analyze_emotion_bert(test_text, analyzer)
|
||||
|
||||
print(f"测试文本: {test_text}")
|
||||
if result:
|
||||
print(f"情感倾向: {get_emotion_description_bert(result)}")
|
||||
print(f"置信度: {result['score']:.2f}")
|
||||
@@ -1,62 +0,0 @@
|
||||
import hanlp
|
||||
|
||||
def analyze_emotion_hanlp(text):
|
||||
"""
|
||||
使用HanLP进行中文情感分析
|
||||
"""
|
||||
try:
|
||||
# 使用更基础的模型
|
||||
tokenizer = hanlp.load('PKU_NAME_MERGED_SIX_MONTHS_CONVSEG')
|
||||
|
||||
# 分词
|
||||
words = tokenizer(text)
|
||||
|
||||
# 简单的情感词典方法
|
||||
positive_words = {'好', '棒', '优秀', '喜欢', '开心', '快乐', '美味', '推荐', '优质', '满意'}
|
||||
negative_words = {'差', '糟', '烂', '讨厌', '失望', '难受', '恶心', '不满', '差劲', '垃圾'}
|
||||
|
||||
# 计算情感得分
|
||||
score = 0
|
||||
for word in words:
|
||||
if word in positive_words:
|
||||
score += 1
|
||||
elif word in negative_words:
|
||||
score -= 1
|
||||
|
||||
# 归一化得分
|
||||
if score > 0:
|
||||
return 1
|
||||
elif score < 0:
|
||||
return 0
|
||||
else:
|
||||
return 0.5
|
||||
|
||||
except Exception as e:
|
||||
print(f"分析过程中出现错误: {str(e)}")
|
||||
return None
|
||||
|
||||
def get_emotion_description_hanlp(score):
|
||||
"""
|
||||
将HanLP的情感分析结果转换为描述性文字
|
||||
"""
|
||||
if score is None:
|
||||
return "无法分析情感"
|
||||
elif score == 1:
|
||||
return "积极"
|
||||
elif score == 0:
|
||||
return "消极"
|
||||
else:
|
||||
return "中性"
|
||||
|
||||
if __name__ == "__main__":
|
||||
# 测试样例
|
||||
test_texts = [
|
||||
"这家餐厅的服务态度很好,菜品也很美味!",
|
||||
"这个产品质量太差了,一点都不值这个价",
|
||||
"今天天气不错,但是工作很累"
|
||||
]
|
||||
|
||||
for test_text in test_texts:
|
||||
result = analyze_emotion_hanlp(test_text)
|
||||
print(f"\n测试文本: {test_text}")
|
||||
print(f"情感倾向: {get_emotion_description_hanlp(result)}")
|
||||
488
src/test/typo_creator.py
Normal file
488
src/test/typo_creator.py
Normal file
@@ -0,0 +1,488 @@
|
||||
"""
|
||||
错别字生成器 - 流程说明
|
||||
|
||||
整体替换逻辑:
|
||||
1. 数据准备
|
||||
- 加载字频词典:使用jieba词典计算汉字使用频率
|
||||
- 创建拼音映射:建立拼音到汉字的映射关系
|
||||
- 加载词频信息:从jieba词典获取词语使用频率
|
||||
|
||||
2. 分词处理
|
||||
- 使用jieba将输入句子分词
|
||||
- 区分单字词和多字词
|
||||
- 保留标点符号和空格
|
||||
|
||||
3. 词语级别替换(针对多字词)
|
||||
- 触发条件:词长>1 且 随机概率<0.3
|
||||
- 替换流程:
|
||||
a. 获取词语拼音
|
||||
b. 生成所有可能的同音字组合
|
||||
c. 过滤条件:
|
||||
- 必须是jieba词典中的有效词
|
||||
- 词频必须达到原词频的10%以上
|
||||
- 综合评分(词频70%+字频30%)必须达到阈值
|
||||
d. 按综合评分排序,选择最合适的替换词
|
||||
|
||||
4. 字级别替换(针对单字词或未进行整词替换的多字词)
|
||||
- 单字替换概率:0.3
|
||||
- 多字词中的单字替换概率:0.3 * (0.7 ^ (词长-1))
|
||||
- 替换流程:
|
||||
a. 获取字的拼音
|
||||
b. 声调错误处理(20%概率)
|
||||
c. 获取同音字列表
|
||||
d. 过滤条件:
|
||||
- 字频必须达到最小阈值
|
||||
- 频率差异不能过大(指数衰减计算)
|
||||
e. 按频率排序选择替换字
|
||||
|
||||
5. 频率控制机制
|
||||
- 字频控制:使用归一化的字频(0-1000范围)
|
||||
- 词频控制:使用jieba词典中的词频
|
||||
- 频率差异计算:使用指数衰减函数
|
||||
- 最小频率阈值:确保替换字/词不会太生僻
|
||||
|
||||
6. 输出信息
|
||||
- 原文和错字版本的对照
|
||||
- 每个替换的详细信息(原字/词、替换后字/词、拼音、频率)
|
||||
- 替换类型说明(整词替换/声调错误/同音字替换)
|
||||
- 词语分析和完整拼音
|
||||
|
||||
注意事项:
|
||||
1. 所有替换都必须使用有意义的词语
|
||||
2. 替换词的使用频率不能过低
|
||||
3. 多字词优先考虑整词替换
|
||||
4. 考虑声调变化的情况
|
||||
5. 保持标点符号和空格不变
|
||||
"""
|
||||
|
||||
from pypinyin import pinyin, Style
|
||||
from collections import defaultdict
|
||||
import json
|
||||
import os
|
||||
import unicodedata
|
||||
import jieba
|
||||
import jieba.posseg as pseg
|
||||
from pathlib import Path
|
||||
import random
|
||||
import math
|
||||
import time
|
||||
|
||||
def load_or_create_char_frequency():
|
||||
"""
|
||||
加载或创建汉字频率字典
|
||||
"""
|
||||
cache_file = Path("char_frequency.json")
|
||||
|
||||
# 如果缓存文件存在,直接加载
|
||||
if cache_file.exists():
|
||||
with open(cache_file, 'r', encoding='utf-8') as f:
|
||||
return json.load(f)
|
||||
|
||||
# 使用内置的词频文件
|
||||
char_freq = defaultdict(int)
|
||||
dict_path = os.path.join(os.path.dirname(jieba.__file__), 'dict.txt')
|
||||
|
||||
# 读取jieba的词典文件
|
||||
with open(dict_path, 'r', encoding='utf-8') as f:
|
||||
for line in f:
|
||||
word, freq = line.strip().split()[:2]
|
||||
# 对词中的每个字进行频率累加
|
||||
for char in word:
|
||||
if is_chinese_char(char):
|
||||
char_freq[char] += int(freq)
|
||||
|
||||
# 归一化频率值
|
||||
max_freq = max(char_freq.values())
|
||||
normalized_freq = {char: freq/max_freq * 1000 for char, freq in char_freq.items()}
|
||||
|
||||
# 保存到缓存文件
|
||||
with open(cache_file, 'w', encoding='utf-8') as f:
|
||||
json.dump(normalized_freq, f, ensure_ascii=False, indent=2)
|
||||
|
||||
return normalized_freq
|
||||
|
||||
# 创建拼音到汉字的映射字典
|
||||
def create_pinyin_dict():
|
||||
"""
|
||||
创建拼音到汉字的映射字典
|
||||
"""
|
||||
# 常用汉字范围
|
||||
chars = [chr(i) for i in range(0x4e00, 0x9fff)]
|
||||
pinyin_dict = defaultdict(list)
|
||||
|
||||
# 为每个汉字建立拼音映射
|
||||
for char in chars:
|
||||
try:
|
||||
py = pinyin(char, style=Style.TONE3)[0][0]
|
||||
pinyin_dict[py].append(char)
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
return pinyin_dict
|
||||
|
||||
def is_chinese_char(char):
|
||||
"""
|
||||
判断是否为汉字
|
||||
"""
|
||||
try:
|
||||
return '\u4e00' <= char <= '\u9fff'
|
||||
except:
|
||||
return False
|
||||
|
||||
def get_pinyin(sentence):
|
||||
"""
|
||||
将中文句子拆分成单个汉字并获取其拼音
|
||||
:param sentence: 输入的中文句子
|
||||
:return: 每个汉字及其拼音的列表
|
||||
"""
|
||||
# 将句子拆分成单个字符
|
||||
characters = list(sentence)
|
||||
|
||||
# 获取每个字符的拼音
|
||||
result = []
|
||||
for char in characters:
|
||||
# 跳过空格和非汉字字符
|
||||
if char.isspace() or not is_chinese_char(char):
|
||||
continue
|
||||
# 获取拼音(数字声调)
|
||||
py = pinyin(char, style=Style.TONE3)[0][0]
|
||||
result.append((char, py))
|
||||
|
||||
return result
|
||||
|
||||
def get_homophone(char, py, pinyin_dict, char_frequency, min_freq=5):
|
||||
"""
|
||||
获取同音字,按照使用频率排序
|
||||
"""
|
||||
homophones = pinyin_dict[py]
|
||||
# 移除原字并过滤低频字
|
||||
if char in homophones:
|
||||
homophones.remove(char)
|
||||
|
||||
# 过滤掉低频字
|
||||
homophones = [h for h in homophones if char_frequency.get(h, 0) >= min_freq]
|
||||
|
||||
# 按照字频排序
|
||||
sorted_homophones = sorted(homophones,
|
||||
key=lambda x: char_frequency.get(x, 0),
|
||||
reverse=True)
|
||||
|
||||
# 只返回前10个同音字,避免输出过多
|
||||
return sorted_homophones[:10]
|
||||
|
||||
def get_similar_tone_pinyin(py):
|
||||
"""
|
||||
获取相似声调的拼音
|
||||
例如:'ni3' 可能返回 'ni2' 或 'ni4'
|
||||
处理特殊情况:
|
||||
1. 轻声(如 'de5' 或 'le')
|
||||
2. 非数字结尾的拼音
|
||||
"""
|
||||
# 检查拼音是否为空或无效
|
||||
if not py or len(py) < 1:
|
||||
return py
|
||||
|
||||
# 如果最后一个字符不是数字,说明可能是轻声或其他特殊情况
|
||||
if not py[-1].isdigit():
|
||||
# 为非数字结尾的拼音添加数字声调1
|
||||
return py + '1'
|
||||
|
||||
base = py[:-1] # 去掉声调
|
||||
tone = int(py[-1]) # 获取声调
|
||||
|
||||
# 处理轻声(通常用5表示)或无效声调
|
||||
if tone not in [1, 2, 3, 4]:
|
||||
return base + str(random.choice([1, 2, 3, 4]))
|
||||
|
||||
# 正常处理声调
|
||||
possible_tones = [1, 2, 3, 4]
|
||||
possible_tones.remove(tone) # 移除原声调
|
||||
new_tone = random.choice(possible_tones) # 随机选择一个新声调
|
||||
return base + str(new_tone)
|
||||
|
||||
def calculate_replacement_probability(orig_freq, target_freq, max_freq_diff=200):
|
||||
"""
|
||||
根据频率差计算替换概率
|
||||
频率差越大,概率越低
|
||||
:param orig_freq: 原字频率
|
||||
:param target_freq: 目标字频率
|
||||
:param max_freq_diff: 最大允许的频率差
|
||||
:return: 0-1之间的概率值
|
||||
"""
|
||||
if target_freq > orig_freq:
|
||||
return 1.0 # 如果替换字频率更高,保持原有概率
|
||||
|
||||
freq_diff = orig_freq - target_freq
|
||||
if freq_diff > max_freq_diff:
|
||||
return 0.0 # 频率差太大,不替换
|
||||
|
||||
# 使用指数衰减函数计算概率
|
||||
# 频率差为0时概率为1,频率差为max_freq_diff时概率接近0
|
||||
return math.exp(-3 * freq_diff / max_freq_diff)
|
||||
|
||||
def get_similar_frequency_chars(char, py, pinyin_dict, char_frequency, num_candidates=5, min_freq=5, tone_error_rate=0.2):
|
||||
"""
|
||||
获取与给定字频率相近的同音字,可能包含声调错误
|
||||
"""
|
||||
homophones = []
|
||||
|
||||
# 有20%的概率使用错误声调
|
||||
if random.random() < tone_error_rate:
|
||||
wrong_tone_py = get_similar_tone_pinyin(py)
|
||||
homophones.extend(pinyin_dict[wrong_tone_py])
|
||||
|
||||
# 添加正确声调的同音字
|
||||
homophones.extend(pinyin_dict[py])
|
||||
|
||||
if not homophones:
|
||||
return None
|
||||
|
||||
# 获取原字的频率
|
||||
orig_freq = char_frequency.get(char, 0)
|
||||
|
||||
# 计算所有同音字与原字的频率差,并过滤掉低频字
|
||||
freq_diff = [(h, char_frequency.get(h, 0))
|
||||
for h in homophones
|
||||
if h != char and char_frequency.get(h, 0) >= min_freq]
|
||||
|
||||
if not freq_diff:
|
||||
return None
|
||||
|
||||
# 计算每个候选字的替换概率
|
||||
candidates_with_prob = []
|
||||
for h, freq in freq_diff:
|
||||
prob = calculate_replacement_probability(orig_freq, freq)
|
||||
if prob > 0: # 只保留有效概率的候选字
|
||||
candidates_with_prob.append((h, prob))
|
||||
|
||||
if not candidates_with_prob:
|
||||
return None
|
||||
|
||||
# 根据概率排序
|
||||
candidates_with_prob.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
# 返回概率最高的几个字
|
||||
return [char for char, _ in candidates_with_prob[:num_candidates]]
|
||||
|
||||
def get_word_pinyin(word):
|
||||
"""
|
||||
获取词语的拼音列表
|
||||
"""
|
||||
return [py[0] for py in pinyin(word, style=Style.TONE3)]
|
||||
|
||||
def segment_sentence(sentence):
|
||||
"""
|
||||
使用jieba分词,返回词语列表
|
||||
"""
|
||||
return list(jieba.cut(sentence))
|
||||
|
||||
def get_word_homophones(word, pinyin_dict, char_frequency, min_freq=5):
|
||||
"""
|
||||
获取整个词的同音词,只返回高频的有意义词语
|
||||
:param word: 输入词语
|
||||
:param pinyin_dict: 拼音字典
|
||||
:param char_frequency: 字频字典
|
||||
:param min_freq: 最小频率阈值
|
||||
:return: 同音词列表
|
||||
"""
|
||||
if len(word) == 1:
|
||||
return []
|
||||
|
||||
# 获取词的拼音
|
||||
word_pinyin = get_word_pinyin(word)
|
||||
word_pinyin_str = ''.join(word_pinyin)
|
||||
|
||||
# 创建词语频率字典
|
||||
word_freq = defaultdict(float)
|
||||
|
||||
# 遍历所有可能的同音字组合
|
||||
candidates = []
|
||||
for py in word_pinyin:
|
||||
chars = pinyin_dict.get(py, [])
|
||||
if not chars:
|
||||
return []
|
||||
candidates.append(chars)
|
||||
|
||||
# 生成所有可能的组合
|
||||
import itertools
|
||||
all_combinations = itertools.product(*candidates)
|
||||
|
||||
# 获取jieba词典和词频信息
|
||||
dict_path = os.path.join(os.path.dirname(jieba.__file__), 'dict.txt')
|
||||
valid_words = {} # 改用字典存储词语及其频率
|
||||
with open(dict_path, 'r', encoding='utf-8') as f:
|
||||
for line in f:
|
||||
parts = line.strip().split()
|
||||
if len(parts) >= 2:
|
||||
word_text = parts[0]
|
||||
word_freq = float(parts[1]) # 获取词频
|
||||
valid_words[word_text] = word_freq
|
||||
|
||||
# 获取原词的词频作为参考
|
||||
original_word_freq = valid_words.get(word, 0)
|
||||
min_word_freq = original_word_freq * 0.1 # 设置最小词频为原词频的10%
|
||||
|
||||
# 过滤和计算频率
|
||||
homophones = []
|
||||
for combo in all_combinations:
|
||||
new_word = ''.join(combo)
|
||||
if new_word != word and new_word in valid_words:
|
||||
new_word_freq = valid_words[new_word]
|
||||
# 只保留词频达到阈值的词
|
||||
if new_word_freq >= min_word_freq:
|
||||
# 计算词的平均字频(考虑字频和词频)
|
||||
char_avg_freq = sum(char_frequency.get(c, 0) for c in new_word) / len(new_word)
|
||||
# 综合评分:结合词频和字频
|
||||
combined_score = (new_word_freq * 0.7 + char_avg_freq * 0.3)
|
||||
if combined_score >= min_freq:
|
||||
homophones.append((new_word, combined_score))
|
||||
|
||||
# 按综合分数排序并限制返回数量
|
||||
sorted_homophones = sorted(homophones, key=lambda x: x[1], reverse=True)
|
||||
return [word for word, _ in sorted_homophones[:5]] # 限制返回前5个结果
|
||||
|
||||
def create_typo_sentence(sentence, pinyin_dict, char_frequency, error_rate=0.5, min_freq=5, tone_error_rate=0.2, word_replace_rate=0.3):
|
||||
"""
|
||||
创建包含同音字错误的句子,支持词语级别和字级别的替换
|
||||
只使用高频的有意义词语进行替换
|
||||
"""
|
||||
result = []
|
||||
typo_info = []
|
||||
|
||||
# 分词
|
||||
words = segment_sentence(sentence)
|
||||
|
||||
for word in words:
|
||||
# 如果是标点符号或空格,直接添加
|
||||
if all(not is_chinese_char(c) for c in word):
|
||||
result.append(word)
|
||||
continue
|
||||
|
||||
# 获取词语的拼音
|
||||
word_pinyin = get_word_pinyin(word)
|
||||
|
||||
# 尝试整词替换
|
||||
if len(word) > 1 and random.random() < word_replace_rate:
|
||||
word_homophones = get_word_homophones(word, pinyin_dict, char_frequency, min_freq)
|
||||
if word_homophones:
|
||||
typo_word = random.choice(word_homophones)
|
||||
# 计算词的平均频率
|
||||
orig_freq = sum(char_frequency.get(c, 0) for c in word) / len(word)
|
||||
typo_freq = sum(char_frequency.get(c, 0) for c in typo_word) / len(typo_word)
|
||||
|
||||
# 添加到结果中
|
||||
result.append(typo_word)
|
||||
typo_info.append((word, typo_word,
|
||||
' '.join(word_pinyin),
|
||||
' '.join(get_word_pinyin(typo_word)),
|
||||
orig_freq, typo_freq))
|
||||
continue
|
||||
|
||||
# 如果不进行整词替换,则进行单字替换
|
||||
if len(word) == 1:
|
||||
char = word
|
||||
py = word_pinyin[0]
|
||||
if random.random() < error_rate:
|
||||
similar_chars = get_similar_frequency_chars(char, py, pinyin_dict, char_frequency,
|
||||
min_freq=min_freq, tone_error_rate=tone_error_rate)
|
||||
if similar_chars:
|
||||
typo_char = random.choice(similar_chars)
|
||||
typo_freq = char_frequency.get(typo_char, 0)
|
||||
orig_freq = char_frequency.get(char, 0)
|
||||
replace_prob = calculate_replacement_probability(orig_freq, typo_freq)
|
||||
if random.random() < replace_prob:
|
||||
result.append(typo_char)
|
||||
typo_py = pinyin(typo_char, style=Style.TONE3)[0][0]
|
||||
typo_info.append((char, typo_char, py, typo_py, orig_freq, typo_freq))
|
||||
continue
|
||||
result.append(char)
|
||||
else:
|
||||
# 处理多字词的单字替换
|
||||
word_result = []
|
||||
for i, (char, py) in enumerate(zip(word, word_pinyin)):
|
||||
# 词中的字替换概率降低
|
||||
word_error_rate = error_rate * (0.7 ** (len(word) - 1))
|
||||
|
||||
if random.random() < word_error_rate:
|
||||
similar_chars = get_similar_frequency_chars(char, py, pinyin_dict, char_frequency,
|
||||
min_freq=min_freq, tone_error_rate=tone_error_rate)
|
||||
if similar_chars:
|
||||
typo_char = random.choice(similar_chars)
|
||||
typo_freq = char_frequency.get(typo_char, 0)
|
||||
orig_freq = char_frequency.get(char, 0)
|
||||
replace_prob = calculate_replacement_probability(orig_freq, typo_freq)
|
||||
if random.random() < replace_prob:
|
||||
word_result.append(typo_char)
|
||||
typo_py = pinyin(typo_char, style=Style.TONE3)[0][0]
|
||||
typo_info.append((char, typo_char, py, typo_py, orig_freq, typo_freq))
|
||||
continue
|
||||
word_result.append(char)
|
||||
result.append(''.join(word_result))
|
||||
|
||||
return ''.join(result), typo_info
|
||||
|
||||
def format_frequency(freq):
|
||||
"""
|
||||
格式化频率显示
|
||||
"""
|
||||
return f"{freq:.2f}"
|
||||
|
||||
def main():
|
||||
# 记录开始时间
|
||||
start_time = time.time()
|
||||
|
||||
# 首先创建拼音字典和加载字频统计
|
||||
print("正在加载汉字数据库,请稍候...")
|
||||
pinyin_dict = create_pinyin_dict()
|
||||
char_frequency = load_or_create_char_frequency()
|
||||
|
||||
# 获取用户输入
|
||||
sentence = input("请输入中文句子:")
|
||||
|
||||
# 创建包含错别字的句子
|
||||
typo_sentence, typo_info = create_typo_sentence(sentence, pinyin_dict, char_frequency,
|
||||
error_rate=0.3, min_freq=5,
|
||||
tone_error_rate=0.2, word_replace_rate=0.3)
|
||||
|
||||
# 打印结果
|
||||
print("\n原句:", sentence)
|
||||
print("错字版:", typo_sentence)
|
||||
|
||||
if typo_info:
|
||||
print("\n错别字信息:")
|
||||
for orig, typo, orig_py, typo_py, orig_freq, typo_freq in typo_info:
|
||||
# 判断是否为词语替换
|
||||
is_word = ' ' in orig_py
|
||||
if is_word:
|
||||
error_type = "整词替换"
|
||||
else:
|
||||
tone_error = orig_py[:-1] == typo_py[:-1] and orig_py[-1] != typo_py[-1]
|
||||
error_type = "声调错误" if tone_error else "同音字替换"
|
||||
|
||||
print(f"原文:{orig}({orig_py}) [频率:{format_frequency(orig_freq)}] -> "
|
||||
f"替换:{typo}({typo_py}) [频率:{format_frequency(typo_freq)}] [{error_type}]")
|
||||
|
||||
# 获取拼音结果
|
||||
result = get_pinyin(sentence)
|
||||
|
||||
# 打印完整拼音
|
||||
print("\n完整拼音:")
|
||||
print(" ".join(py for _, py in result))
|
||||
|
||||
# 打印词语分析
|
||||
print("\n词语分析:")
|
||||
words = segment_sentence(sentence)
|
||||
for word in words:
|
||||
if any(is_chinese_char(c) for c in word):
|
||||
word_pinyin = get_word_pinyin(word)
|
||||
print(f"词语:{word}")
|
||||
print(f"拼音:{' '.join(word_pinyin)}")
|
||||
print("---")
|
||||
|
||||
# 计算并打印总耗时
|
||||
end_time = time.time()
|
||||
total_time = end_time - start_time
|
||||
print(f"\n总耗时:{total_time:.2f}秒")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,301 +0,0 @@
|
||||
from pypinyin import pinyin, Style
|
||||
from collections import defaultdict
|
||||
import json
|
||||
import os
|
||||
import unicodedata
|
||||
import jieba
|
||||
import jieba.posseg as pseg
|
||||
from pathlib import Path
|
||||
import random
|
||||
import math
|
||||
|
||||
def load_or_create_char_frequency():
|
||||
"""
|
||||
加载或创建汉字频率字典
|
||||
"""
|
||||
cache_file = Path("char_frequency.json")
|
||||
|
||||
# 如果缓存文件存在,直接加载
|
||||
if cache_file.exists():
|
||||
with open(cache_file, 'r', encoding='utf-8') as f:
|
||||
return json.load(f)
|
||||
|
||||
# 使用内置的词频文件
|
||||
char_freq = defaultdict(int)
|
||||
dict_path = os.path.join(os.path.dirname(jieba.__file__), 'dict.txt')
|
||||
|
||||
# 读取jieba的词典文件
|
||||
with open(dict_path, 'r', encoding='utf-8') as f:
|
||||
for line in f:
|
||||
word, freq = line.strip().split()[:2]
|
||||
# 对词中的每个字进行频率累加
|
||||
for char in word:
|
||||
if is_chinese_char(char):
|
||||
char_freq[char] += int(freq)
|
||||
|
||||
# 归一化频率值
|
||||
max_freq = max(char_freq.values())
|
||||
normalized_freq = {char: freq/max_freq * 1000 for char, freq in char_freq.items()}
|
||||
|
||||
# 保存到缓存文件
|
||||
with open(cache_file, 'w', encoding='utf-8') as f:
|
||||
json.dump(normalized_freq, f, ensure_ascii=False, indent=2)
|
||||
|
||||
return normalized_freq
|
||||
|
||||
# 创建拼音到汉字的映射字典
|
||||
def create_pinyin_dict():
|
||||
"""
|
||||
创建拼音到汉字的映射字典
|
||||
"""
|
||||
# 常用汉字范围
|
||||
chars = [chr(i) for i in range(0x4e00, 0x9fff)]
|
||||
pinyin_dict = defaultdict(list)
|
||||
|
||||
# 为每个汉字建立拼音映射
|
||||
for char in chars:
|
||||
try:
|
||||
py = pinyin(char, style=Style.TONE3)[0][0]
|
||||
pinyin_dict[py].append(char)
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
return pinyin_dict
|
||||
|
||||
def is_chinese_char(char):
|
||||
"""
|
||||
判断是否为汉字
|
||||
"""
|
||||
try:
|
||||
return '\u4e00' <= char <= '\u9fff'
|
||||
except:
|
||||
return False
|
||||
|
||||
def get_pinyin(sentence):
|
||||
"""
|
||||
将中文句子拆分成单个汉字并获取其拼音
|
||||
:param sentence: 输入的中文句子
|
||||
:return: 每个汉字及其拼音的列表
|
||||
"""
|
||||
# 将句子拆分成单个字符
|
||||
characters = list(sentence)
|
||||
|
||||
# 获取每个字符的拼音
|
||||
result = []
|
||||
for char in characters:
|
||||
# 跳过空格和非汉字字符
|
||||
if char.isspace() or not is_chinese_char(char):
|
||||
continue
|
||||
# 获取拼音(数字声调)
|
||||
py = pinyin(char, style=Style.TONE3)[0][0]
|
||||
result.append((char, py))
|
||||
|
||||
return result
|
||||
|
||||
def get_homophone(char, py, pinyin_dict, char_frequency, min_freq=5):
|
||||
"""
|
||||
获取同音字,按照使用频率排序
|
||||
"""
|
||||
homophones = pinyin_dict[py]
|
||||
# 移除原字并过滤低频字
|
||||
if char in homophones:
|
||||
homophones.remove(char)
|
||||
|
||||
# 过滤掉低频字
|
||||
homophones = [h for h in homophones if char_frequency.get(h, 0) >= min_freq]
|
||||
|
||||
# 按照字频排序
|
||||
sorted_homophones = sorted(homophones,
|
||||
key=lambda x: char_frequency.get(x, 0),
|
||||
reverse=True)
|
||||
|
||||
# 只返回前10个同音字,避免输出过多
|
||||
return sorted_homophones[:10]
|
||||
|
||||
def get_similar_tone_pinyin(py):
|
||||
"""
|
||||
获取相似声调的拼音
|
||||
例如:'ni3' 可能返回 'ni2' 或 'ni4'
|
||||
"""
|
||||
base = py[:-1] # 去掉声调
|
||||
tone = int(py[-1]) # 获取声调
|
||||
possible_tones = [1, 2, 3, 4]
|
||||
possible_tones.remove(tone) # 移除原声调
|
||||
new_tone = random.choice(possible_tones) # 随机选择一个新声调
|
||||
return base + str(new_tone)
|
||||
|
||||
def calculate_replacement_probability(orig_freq, target_freq, max_freq_diff=200):
|
||||
"""
|
||||
根据频率差计算替换概率
|
||||
频率差越大,概率越低
|
||||
:param orig_freq: 原字频率
|
||||
:param target_freq: 目标字频率
|
||||
:param max_freq_diff: 最大允许的频率差
|
||||
:return: 0-1之间的概率值
|
||||
"""
|
||||
if target_freq > orig_freq:
|
||||
return 1.0 # 如果替换字频率更高,保持原有概率
|
||||
|
||||
freq_diff = orig_freq - target_freq
|
||||
if freq_diff > max_freq_diff:
|
||||
return 0.0 # 频率差太大,不替换
|
||||
|
||||
# 使用指数衰减函数计算概率
|
||||
# 频率差为0时概率为1,频率差为max_freq_diff时概率接近0
|
||||
return math.exp(-3 * freq_diff / max_freq_diff)
|
||||
|
||||
def get_similar_frequency_chars(char, py, pinyin_dict, char_frequency, num_candidates=5, min_freq=5, tone_error_rate=0.2):
|
||||
"""
|
||||
获取与给定字频率相近的同音字,可能包含声调错误
|
||||
"""
|
||||
homophones = []
|
||||
|
||||
# 有20%的概率使用错误声调
|
||||
if random.random() < tone_error_rate:
|
||||
wrong_tone_py = get_similar_tone_pinyin(py)
|
||||
homophones.extend(pinyin_dict[wrong_tone_py])
|
||||
|
||||
# 添加正确声调的同音字
|
||||
homophones.extend(pinyin_dict[py])
|
||||
|
||||
if not homophones:
|
||||
return None
|
||||
|
||||
# 获取原字的频率
|
||||
orig_freq = char_frequency.get(char, 0)
|
||||
|
||||
# 计算所有同音字与原字的频率差,并过滤掉低频字
|
||||
freq_diff = [(h, char_frequency.get(h, 0))
|
||||
for h in homophones
|
||||
if h != char and char_frequency.get(h, 0) >= min_freq]
|
||||
|
||||
if not freq_diff:
|
||||
return None
|
||||
|
||||
# 计算每个候选字的替换概率
|
||||
candidates_with_prob = []
|
||||
for h, freq in freq_diff:
|
||||
prob = calculate_replacement_probability(orig_freq, freq)
|
||||
if prob > 0: # 只保留有效概率的候选字
|
||||
candidates_with_prob.append((h, prob))
|
||||
|
||||
if not candidates_with_prob:
|
||||
return None
|
||||
|
||||
# 根据概率排序
|
||||
candidates_with_prob.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
# 返回概率最高的几个字
|
||||
return [char for char, _ in candidates_with_prob[:num_candidates]]
|
||||
|
||||
def create_typo_sentence(sentence, pinyin_dict, char_frequency, error_rate=0.5, min_freq=5, tone_error_rate=0.2):
|
||||
"""
|
||||
创建包含同音字错误的句子,保留原文标点符号
|
||||
"""
|
||||
result = []
|
||||
typo_info = []
|
||||
|
||||
# 获取每个字的拼音
|
||||
chars_with_pinyin = get_pinyin(sentence)
|
||||
|
||||
# 创建原字到拼音的映射,用于跟踪已处理的字符
|
||||
processed_chars = {char: py for char, py in chars_with_pinyin}
|
||||
|
||||
# 遍历原句中的每个字符
|
||||
char_index = 0
|
||||
for i, char in enumerate(sentence):
|
||||
if char.isspace():
|
||||
# 保留空格
|
||||
result.append(char)
|
||||
elif char in processed_chars:
|
||||
# 处理汉字
|
||||
py = processed_chars[char]
|
||||
# 基础错误率
|
||||
if random.random() < error_rate:
|
||||
# 获取频率相近的同音字(可能包含声调错误)
|
||||
similar_chars = get_similar_frequency_chars(char, py, pinyin_dict, char_frequency,
|
||||
min_freq=min_freq, tone_error_rate=tone_error_rate)
|
||||
if similar_chars:
|
||||
# 随机选择一个替换字
|
||||
typo_char = random.choice(similar_chars)
|
||||
# 获取替换字的频率
|
||||
typo_freq = char_frequency.get(typo_char, 0)
|
||||
orig_freq = char_frequency.get(char, 0)
|
||||
|
||||
# 计算实际替换概率
|
||||
replace_prob = calculate_replacement_probability(orig_freq, typo_freq)
|
||||
|
||||
# 根据频率差进行概率替换
|
||||
if random.random() < replace_prob:
|
||||
result.append(typo_char)
|
||||
# 获取替换字的实际拼音
|
||||
typo_py = pinyin(typo_char, style=Style.TONE3)[0][0]
|
||||
typo_info.append((char, typo_char, py, typo_py, orig_freq, typo_freq))
|
||||
else:
|
||||
result.append(char)
|
||||
else:
|
||||
result.append(char)
|
||||
else:
|
||||
result.append(char)
|
||||
char_index += 1
|
||||
else:
|
||||
# 保留非汉字字符(标点符号等)
|
||||
result.append(char)
|
||||
|
||||
return ''.join(result), typo_info
|
||||
|
||||
def format_frequency(freq):
|
||||
"""
|
||||
格式化频率显示
|
||||
"""
|
||||
return f"{freq:.2f}"
|
||||
|
||||
def main():
|
||||
# 首先创建拼音字典和加载字频统计
|
||||
print("正在加载汉字数据库,请稍候...")
|
||||
pinyin_dict = create_pinyin_dict()
|
||||
char_frequency = load_or_create_char_frequency()
|
||||
|
||||
# 获取用户输入
|
||||
sentence = input("请输入中文句子:")
|
||||
|
||||
# 创建包含错别字的句子
|
||||
typo_sentence, typo_info = create_typo_sentence(sentence, pinyin_dict, char_frequency,
|
||||
min_freq=5, tone_error_rate=0.2)
|
||||
|
||||
# 打印结果
|
||||
print("\n原句:", sentence)
|
||||
print("错字版:", typo_sentence)
|
||||
|
||||
if typo_info:
|
||||
print("\n错别字信息:")
|
||||
for orig, typo, orig_py, typo_py, orig_freq, typo_freq in typo_info:
|
||||
tone_error = orig_py[:-1] == typo_py[:-1] and orig_py[-1] != typo_py[-1]
|
||||
error_type = "声调错误" if tone_error else "同音字替换"
|
||||
print(f"原字:{orig}({orig_py}) [频率:{format_frequency(orig_freq)}] -> "
|
||||
f"错字:{typo}({typo_py}) [频率:{format_frequency(typo_freq)}] [{error_type}]")
|
||||
|
||||
# 获取拼音结果
|
||||
result = get_pinyin(sentence)
|
||||
|
||||
# 打印完整拼音
|
||||
print("\n完整拼音:")
|
||||
print(" ".join(py for _, py in result))
|
||||
|
||||
# 打印所有可能的同音字
|
||||
print("\n每个字的所有同音字(按频率排序,仅显示频率>=5的字):")
|
||||
for char, py in result:
|
||||
homophones = get_homophone(char, py, pinyin_dict, char_frequency, min_freq=5)
|
||||
char_freq = char_frequency.get(char, 0)
|
||||
print(f"{char}: {py} [频率:{format_frequency(char_freq)}]")
|
||||
if homophones:
|
||||
homophone_info = []
|
||||
for h in homophones:
|
||||
h_freq = char_frequency.get(h, 0)
|
||||
homophone_info.append(f"{h}[{format_frequency(h_freq)}]")
|
||||
print(f"同音字: {','.join(homophone_info)}")
|
||||
else:
|
||||
print("没有找到频率>=5的同音字")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user