Merge branch 'master' of https://github.com/MoFox-Studio/MoFox_Bot
This commit is contained in:
@@ -166,7 +166,8 @@ class ComponentRegistry:
|
||||
if not isinstance(action_info, ActionInfo) or not issubclass(action_class, BaseAction):
|
||||
logger.error(f"注册失败: {action_name} 不是有效的Action")
|
||||
return False
|
||||
|
||||
|
||||
action_class.plugin_name = action_info.plugin_name
|
||||
self._action_registry[action_name] = action_class
|
||||
|
||||
# 如果启用,添加到默认动作集
|
||||
@@ -184,6 +185,7 @@ class ComponentRegistry:
|
||||
logger.error(f"注册失败: {command_name} 不是有效的Command")
|
||||
return False
|
||||
|
||||
command_class.plugin_name = command_info.plugin_name
|
||||
self._command_registry[command_name] = command_class
|
||||
|
||||
# 如果启用了且有匹配模式
|
||||
@@ -213,6 +215,7 @@ class ComponentRegistry:
|
||||
if not hasattr(self, '_plus_command_registry'):
|
||||
self._plus_command_registry: Dict[str, Type[PlusCommand]] = {}
|
||||
|
||||
plus_command_class.plugin_name = plus_command_info.plugin_name
|
||||
self._plus_command_registry[plus_command_name] = plus_command_class
|
||||
|
||||
logger.debug(f"已注册PlusCommand组件: {plus_command_name}")
|
||||
@@ -222,6 +225,7 @@ class ComponentRegistry:
|
||||
"""注册Tool组件到Tool特定注册表"""
|
||||
tool_name = tool_info.name
|
||||
|
||||
tool_class.plugin_name = tool_info.plugin_name
|
||||
self._tool_registry[tool_name] = tool_class
|
||||
|
||||
# 如果是llm可用的且启用的工具,添加到 llm可用工具列表
|
||||
@@ -246,6 +250,7 @@ class ComponentRegistry:
|
||||
logger.warning(f"EventHandler组件 {handler_name} 未启用")
|
||||
return True # 未启用,但是也是注册成功
|
||||
|
||||
handler_class.plugin_name = handler_info.plugin_name
|
||||
# 使用EventManager进行事件处理器注册
|
||||
from src.plugin_system.core.event_manager import event_manager
|
||||
return event_manager.register_event_handler(handler_class)
|
||||
|
||||
@@ -7,8 +7,10 @@ from src.llm_models.utils_model import LLMRequest
|
||||
from src.llm_models.payload_content import ToolCall
|
||||
from src.config.config import global_config, model_config
|
||||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
import inspect
|
||||
from src.chat.message_receive.chat_stream import get_chat_manager
|
||||
from src.common.logger import get_logger
|
||||
from src.common.cache_manager import tool_cache
|
||||
|
||||
logger = get_logger("tool_use")
|
||||
|
||||
@@ -184,21 +186,65 @@ class ToolExecutor:
|
||||
return tool_results, used_tools
|
||||
|
||||
async def execute_tool_call(self, tool_call: ToolCall, tool_instance: Optional[BaseTool] = None) -> Optional[Dict[str, Any]]:
|
||||
# sourcery skip: use-assigned-variable
|
||||
"""执行单个工具调用
|
||||
"""执行单个工具调用,并处理缓存"""
|
||||
|
||||
function_args = tool_call.args or {}
|
||||
tool_instance = tool_instance or get_tool_instance(tool_call.func_name)
|
||||
|
||||
Args:
|
||||
tool_call: 工具调用对象
|
||||
# 如果工具不存在或未启用缓存,则直接执行
|
||||
if not tool_instance or not tool_instance.enable_cache:
|
||||
return await self._original_execute_tool_call(tool_call, tool_instance)
|
||||
|
||||
Returns:
|
||||
Optional[Dict]: 工具调用结果,如果失败则返回None
|
||||
"""
|
||||
# --- 缓存逻辑开始 ---
|
||||
try:
|
||||
tool_file_path = inspect.getfile(tool_instance.__class__)
|
||||
semantic_query = None
|
||||
if tool_instance.semantic_cache_query_key:
|
||||
semantic_query = function_args.get(tool_instance.semantic_cache_query_key)
|
||||
|
||||
cached_result = await tool_cache.get(
|
||||
tool_name=tool_call.func_name,
|
||||
function_args=function_args,
|
||||
tool_file_path=tool_file_path,
|
||||
semantic_query=semantic_query
|
||||
)
|
||||
if cached_result:
|
||||
logger.info(f"{self.log_prefix}使用缓存结果,跳过工具 {tool_call.func_name} 执行")
|
||||
return cached_result
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix}检查工具缓存时出错: {e}")
|
||||
|
||||
# 缓存未命中,执行原始工具调用
|
||||
result = await self._original_execute_tool_call(tool_call, tool_instance)
|
||||
|
||||
# 将结果存入缓存
|
||||
try:
|
||||
tool_file_path = inspect.getfile(tool_instance.__class__)
|
||||
semantic_query = None
|
||||
if tool_instance.semantic_cache_query_key:
|
||||
semantic_query = function_args.get(tool_instance.semantic_cache_query_key)
|
||||
|
||||
await tool_cache.set(
|
||||
tool_name=tool_call.func_name,
|
||||
function_args=function_args,
|
||||
tool_file_path=tool_file_path,
|
||||
data=result,
|
||||
ttl=tool_instance.cache_ttl,
|
||||
semantic_query=semantic_query
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix}设置工具缓存时出错: {e}")
|
||||
# --- 缓存逻辑结束 ---
|
||||
|
||||
return result
|
||||
|
||||
async def _original_execute_tool_call(self, tool_call: ToolCall, tool_instance: Optional[BaseTool] = None) -> Optional[Dict[str, Any]]:
|
||||
"""执行单个工具调用的原始逻辑"""
|
||||
try:
|
||||
function_name = tool_call.func_name
|
||||
function_args = tool_call.args or {}
|
||||
logger.info(f"🤖 {self.log_prefix} 正在执行工具: [bold green]{function_name}[/bold green] | 参数: {function_args}")
|
||||
logger.info(f"{self.log_prefix} 正在执行工具: [bold green]{function_name}[/bold green] | 参数: {function_args}")
|
||||
function_args["llm_called"] = True # 标记为LLM调用
|
||||
|
||||
# 获取对应工具实例
|
||||
tool_instance = tool_instance or get_tool_instance(function_name)
|
||||
if not tool_instance:
|
||||
|
||||
Reference in New Issue
Block a user