This commit is contained in:
雅诺狐
2025-10-05 17:50:13 +08:00
22 changed files with 1145 additions and 458 deletions

View File

@@ -1,3 +1,4 @@
import asyncio
import hashlib
import random
import time
@@ -304,14 +305,6 @@ class ExpressionSelector:
try:
# start_time = time.time()
content, (reasoning_content, model_name, _) = await self.llm_model.generate_response_async(prompt=prompt)
# logger.info(f"LLM请求时间: {model_name} {time.time() - start_time} \n{prompt}")
# logger.info(f"模型名称: {model_name}")
# logger.info(f"LLM返回结果: {content}")
# if reasoning_content:
# logger.info(f"LLM推理: {reasoning_content}")
# else:
# logger.info(f"LLM推理: 无")
if not content:
logger.warning("LLM返回空结果")
@@ -338,7 +331,7 @@ class ExpressionSelector:
# 对选中的所有表达方式一次性更新count数
if valid_expressions:
await self.update_expressions_count_batch(valid_expressions, 0.006)
asyncio.create_task(self.update_expressions_count_batch(valid_expressions, 0.006))
# logger.info(f"LLM从{len(all_expressions)}个情境中选择了{len(valid_expressions)}个")
return valid_expressions

View File

@@ -997,7 +997,6 @@ class MemorySystem:
from src.chat.message_receive.chat_stream import get_chat_manager
chat_manager = get_chat_manager()
# get_stream 为异步方法,需要 await
chat_stream = await chat_manager.get_stream(stream_id)
if not chat_stream or not hasattr(chat_stream, "context_manager"):

View File

@@ -13,6 +13,7 @@ from src.common.data_models.database_data_model import DatabaseMessages
from src.common.data_models.message_manager_data_model import StreamContext
from src.common.logger import get_logger
from src.config.config import global_config
from src.plugin_system.base.component_types import ChatType
from .distribution_manager import stream_loop_manager
@@ -54,7 +55,13 @@ class SingleStreamContextManager:
bool: 是否成功添加
"""
try:
self.context.add_message(message)
# 直接操作上下文的消息列表
message.is_read = False
self.context.unread_messages.append(message)
# 自动检测和更新chat type
self._detect_chat_type(message)
# 在上下文管理器中计算兴趣值
await self._calculate_message_interest(message)
self.total_messages += 1
@@ -78,7 +85,28 @@ class SingleStreamContextManager:
bool: 是否成功更新
"""
try:
self.context.update_message_info(message_id, **updates)
# 直接在未读消息中查找并更新
for message in self.context.unread_messages:
if message.message_id == message_id:
if "interest_value" in updates:
message.interest_value = updates["interest_value"]
if "actions" in updates:
message.actions = updates["actions"]
if "should_reply" in updates:
message.should_reply = updates["should_reply"]
break
# 在历史消息中查找并更新
for message in self.context.history_messages:
if message.message_id == message_id:
if "interest_value" in updates:
message.interest_value = updates["interest_value"]
if "actions" in updates:
message.actions = updates["actions"]
if "should_reply" in updates:
message.should_reply = updates["should_reply"]
break
logger.debug(f"更新单流上下文消息: {self.stream_id}/{message_id}")
return True
except Exception as e:
@@ -259,36 +287,17 @@ class SingleStreamContextManager:
logger.error(f"计算消息兴趣度时发生错误: {e}", exc_info=True)
return 0.5
async def add_message_async(self, message: DatabaseMessages, skip_energy_update: bool = False) -> bool:
"""异步实现的 add_message将消息添加到 context并 await 能量更新与分发。"""
try:
self.context.add_message(message)
# 在上下文管理器中计算兴趣值
await self._calculate_message_interest(message)
self.total_messages += 1
self.last_access_time = time.time()
# 启动流的循环任务(如果还未启动)
asyncio.create_task(stream_loop_manager.start_stream_loop(self.stream_id))
logger.debug(f"添加消息到单流上下文(异步): {self.stream_id}")
return True
except Exception as e:
logger.error(f"添加消息到单流上下文失败 (async) {self.stream_id}: {e}", exc_info=True)
return False
async def update_message_async(self, message_id: str, updates: dict[str, Any]) -> bool:
"""异步实现的 update_message更新消息并在需要时 await 能量更新。"""
try:
self.context.update_message_info(message_id, **updates)
logger.debug(f"更新单流上下文消息(异步): {self.stream_id}/{message_id}")
return True
except Exception as e:
logger.error(f"更新单流上下文消息失败 (async) {self.stream_id}/{message_id}: {e}", exc_info=True)
return False
def _detect_chat_type(self, message: DatabaseMessages):
"""根据消息内容自动检测聊天类型"""
# 只有在第一次添加消息时才检测聊天类型,避免后续消息改变类型
if len(self.context.unread_messages) == 1: # 只有这条消息
# 如果消息包含群组信息,则为群聊
if hasattr(message, "chat_info_group_id") and message.chat_info_group_id:
self.context.chat_type = ChatType.GROUP
elif hasattr(message, "chat_info_group_name") and message.chat_info_group_name:
self.context.chat_type = ChatType.GROUP
else:
self.context.chat_type = ChatType.PRIVATE
async def clear_context_async(self) -> bool:
"""异步实现的 clear_context清空消息并 await 能量重算。"""

View File

@@ -23,8 +23,6 @@ class StreamLoopManager:
def __init__(self, max_concurrent_streams: int | None = None):
# 流循环任务管理
self.stream_loops: dict[str, asyncio.Task] = {}
# 跟踪流使用的管理器类型
self.stream_management_type: dict[str, str] = {} # stream_id -> "adaptive" or "fallback"
# 统计信息
self.stats: dict[str, Any] = {
@@ -115,7 +113,6 @@ class StreamLoopManager:
return True
# 使用自适应流管理器获取槽位
use_adaptive = False
try:
from src.chat.message_manager.adaptive_stream_manager import get_adaptive_stream_manager
adaptive_manager = get_adaptive_stream_manager()
@@ -132,21 +129,14 @@ class StreamLoopManager:
)
if slot_acquired:
use_adaptive = True
logger.debug(f"成功获取流处理槽位: {stream_id} (优先级: {priority.name})")
else:
logger.debug(f"自适应管理器拒绝槽位请求: {stream_id},尝试回退方案")
else:
logger.debug("自适应管理器未运行,使用原始方法")
logger.debug("自适应管理器未运行")
except Exception as e:
logger.debug(f"自适应管理器获取槽位失败,使用原始方法: {e}")
# 如果自适应管理器失败或未运行,使用回退方案
if not use_adaptive:
if not await self._fallback_acquire_slot(stream_id, force):
logger.debug(f"回退方案也失败: {stream_id}")
return False
logger.debug(f"自适应管理器获取槽位失败: {e}")
# 创建流循环任务
try:
@@ -155,68 +145,22 @@ class StreamLoopManager:
name=f"stream_loop_{stream_id}"
)
self.stream_loops[stream_id] = loop_task
# 记录管理器类型
self.stream_management_type[stream_id] = "adaptive" if use_adaptive else "fallback"
# 更新统计信息
self.stats["active_streams"] += 1
self.stats["total_loops"] += 1
logger.info(f"启动流循环任务: {stream_id} (管理器: {'adaptive' if use_adaptive else 'fallback'})")
logger.info(f"启动流循环任务: {stream_id}")
return True
except Exception as e:
logger.error(f"启动流循环任务失败 {stream_id}: {e}")
# 释放槽位
if use_adaptive:
try:
from src.chat.message_manager.adaptive_stream_manager import get_adaptive_stream_manager
adaptive_manager = get_adaptive_stream_manager()
adaptive_manager.release_stream_slot(stream_id)
except:
pass
from src.chat.message_manager.adaptive_stream_manager import get_adaptive_stream_manager
adaptive_manager = get_adaptive_stream_manager()
adaptive_manager.release_stream_slot(stream_id)
return False
async def _fallback_acquire_slot(self, stream_id: str, force: bool) -> bool:
"""回退方案:获取槽位(原始方法)"""
# 判断是否需要强制分发
should_force = force or await self._should_force_dispatch_for_stream(stream_id)
# 检查是否超过最大并发限制
current_streams = len(self.stream_loops)
if current_streams >= self.max_concurrent_streams and not should_force:
logger.warning(
f"超过最大并发流数限制({current_streams}/{self.max_concurrent_streams}),无法启动流 {stream_id}"
)
return False
# 处理强制分发情况
if should_force and current_streams >= self.max_concurrent_streams:
logger.warning(
f"{stream_id} 未读消息积压严重(>{self.force_dispatch_unread_threshold}),突破并发限制强制启动分发 (当前: {current_streams}/{self.max_concurrent_streams})"
)
# 检查是否有现有的分发循环,如果有则先移除
if stream_id in self.stream_loops:
logger.info(f"发现现有流循环 {stream_id},将先移除再重新创建")
existing_task = self.stream_loops[stream_id]
if not existing_task.done():
existing_task.cancel()
# 创建异步任务来等待取消完成,并添加异常处理
cancel_task = asyncio.create_task(
self._wait_for_task_cancel(stream_id, existing_task),
name=f"cancel_existing_loop_{stream_id}"
)
# 为取消任务添加异常处理,避免孤儿任务
cancel_task.add_done_callback(
lambda task: logger.debug(f"取消任务完成: {stream_id}") if not task.exception()
else logger.error(f"取消任务异常: {stream_id} - {task.exception()}")
)
# 从字典中移除
del self.stream_loops[stream_id]
current_streams -= 1 # 更新当前流数量
return True
def _determine_stream_priority(self, stream_id: str) -> "StreamPriority":
"""确定流优先级"""
try:
@@ -237,20 +181,6 @@ class StreamLoopManager:
from src.chat.message_manager.adaptive_stream_manager import StreamPriority
return StreamPriority.NORMAL
# 创建流循环任务
try:
task = asyncio.create_task(
self._stream_loop(stream_id),
name=f"stream_loop_{stream_id}" # 为任务添加名称,便于调试
)
self.stream_loops[stream_id] = task
self.stats["total_loops"] += 1
logger.info(f"启动流循环: {stream_id} (当前总数: {len(self.stream_loops)})")
return True
except Exception as e:
logger.error(f"创建流循环任务失败: {stream_id} - {e}")
return False
async def stop_stream_loop(self, stream_id: str) -> bool:
"""停止指定流的循环任务
@@ -342,17 +272,6 @@ class StreamLoopManager:
# 4. 计算下次检查间隔
interval = await self._calculate_interval(stream_id, has_messages)
if has_messages:
updated_unread_count = self._get_unread_count(context)
if self._needs_force_dispatch_for_context(context, updated_unread_count):
interval = min(interval, max(self.force_dispatch_min_interval, 0.0))
logger.debug(
"%s 未读消息仍有 %d 条,使用加速分发间隔 %.2fs",
stream_id,
updated_unread_count,
interval,
)
# 5. sleep等待下次检查
logger.info(f"{stream_id} 等待 {interval:.2f}s")
await asyncio.sleep(interval)
@@ -378,23 +297,14 @@ class StreamLoopManager:
del self.stream_loops[stream_id]
logger.debug(f"清理流循环标记: {stream_id}")
# 根据管理器类型释放相应的槽位
management_type = self.stream_management_type.get(stream_id, "fallback")
if management_type == "adaptive":
# 释放自适应管理器的槽位
try:
from src.chat.message_manager.adaptive_stream_manager import get_adaptive_stream_manager
adaptive_manager = get_adaptive_stream_manager()
adaptive_manager.release_stream_slot(stream_id)
logger.debug(f"释放自适应流处理槽位: {stream_id}")
except Exception as e:
logger.debug(f"释放自适应流处理槽位失败: {e}")
else:
logger.debug(f"{stream_id} 使用回退方案,无需释放自适应槽位")
# 清理管理器类型记录
if stream_id in self.stream_management_type:
del self.stream_management_type[stream_id]
# 释放自适应管理器的槽位
try:
from src.chat.message_manager.adaptive_stream_manager import get_adaptive_stream_manager
adaptive_manager = get_adaptive_stream_manager()
adaptive_manager.release_stream_slot(stream_id)
logger.debug(f"释放自适应流处理槽位: {stream_id}")
except Exception as e:
logger.debug(f"释放自适应流处理槽位失败: {e}")
logger.info(f"流循环结束: {stream_id}")
@@ -417,7 +327,7 @@ class StreamLoopManager:
logger.error(f"获取流上下文失败 {stream_id}: {e}")
return None
async def _has_messages_to_process(self, context: Any) -> bool:
async def _has_messages_to_process(self, context: StreamContext) -> bool:
"""检查是否有消息需要处理
Args:
@@ -464,7 +374,7 @@ class StreamLoopManager:
success = results.get("success", False)
if success:
await self._refresh_focus_energy(stream_id)
asyncio.create_task(self._refresh_focus_energy(stream_id))
process_time = time.time() - start_time
logger.debug(f"流处理成功: {stream_id} (耗时: {process_time:.2f}s)")
else:
@@ -553,16 +463,16 @@ class StreamLoopManager:
logger.debug(f"检查流 {stream_id} 是否需要强制分发失败: {e}")
return False
def _get_unread_count(self, context: Any) -> int:
def _get_unread_count(self, context: StreamContext) -> int:
try:
unread_messages = getattr(context, "unread_messages", None)
unread_messages = context.unread_messages
if unread_messages is None:
return 0
return len(unread_messages)
except Exception:
return 0
def _needs_force_dispatch_for_context(self, context: Any, unread_count: int | None = None) -> bool:
def _needs_force_dispatch_for_context(self, context: StreamContext, unread_count: int | None = None) -> bool:
if not self.force_dispatch_unread_threshold or self.force_dispatch_unread_threshold <= 0:
return False

View File

@@ -1,5 +1,6 @@
import os
import re
import time
import traceback
from typing import Any
@@ -468,55 +469,110 @@ class ChatBot:
template_group_name = None
async def preprocess():
# 存储消息到数据库
from .storage import MessageStorage
try:
await MessageStorage.store_message(message, message.chat_stream)
logger.debug(f"消息已存储到数据库: {message.message_info.message_id}")
except Exception as e:
logger.error(f"存储消息到数据库失败: {e}")
traceback.print_exc()
# 使用消息管理器处理消息(保持原有功能)
from src.common.data_models.database_data_model import DatabaseMessages
message_info = message.message_info
msg_user_info = getattr(message_info, "user_info", None)
stream_user_info = getattr(message.chat_stream, "user_info", None)
group_info = getattr(message.chat_stream, "group_info", None)
message_id = message_info.message_id or ""
message_time = message_info.time if message_info.time is not None else time.time()
is_mentioned = None
if isinstance(message.is_mentioned, bool):
is_mentioned = message.is_mentioned
elif isinstance(message.is_mentioned, (int, float)):
is_mentioned = message.is_mentioned != 0
user_id = ""
user_nickname = ""
user_cardname = None
user_platform = ""
if msg_user_info:
user_id = str(getattr(msg_user_info, "user_id", "") or "")
user_nickname = getattr(msg_user_info, "user_nickname", "") or ""
user_cardname = getattr(msg_user_info, "user_cardname", None)
user_platform = getattr(msg_user_info, "platform", "") or ""
elif stream_user_info:
user_id = str(getattr(stream_user_info, "user_id", "") or "")
user_nickname = getattr(stream_user_info, "user_nickname", "") or ""
user_cardname = getattr(stream_user_info, "user_cardname", None)
user_platform = getattr(stream_user_info, "platform", "") or ""
chat_user_id = str(getattr(stream_user_info, "user_id", "") or "")
chat_user_nickname = getattr(stream_user_info, "user_nickname", "") or ""
chat_user_cardname = getattr(stream_user_info, "user_cardname", None)
chat_user_platform = getattr(stream_user_info, "platform", "") or ""
group_id = getattr(group_info, "group_id", None)
group_name = getattr(group_info, "group_name", None)
group_platform = getattr(group_info, "platform", None)
# 创建数据库消息对象
db_message = DatabaseMessages(
message_id=message.message_info.message_id,
time=message.message_info.time,
message_id=message_id,
time=float(message_time),
chat_id=message.chat_stream.stream_id,
processed_plain_text=message.processed_plain_text,
display_message=message.processed_plain_text,
is_mentioned=message.is_mentioned,
is_at=message.is_at,
is_emoji=message.is_emoji,
is_picid=message.is_picid,
is_command=message.is_command,
is_notify=message.is_notify,
user_id=message.message_info.user_info.user_id,
user_nickname=message.message_info.user_info.user_nickname,
user_cardname=message.message_info.user_info.user_cardname,
user_platform=message.message_info.user_info.platform,
is_mentioned=is_mentioned,
is_at=bool(message.is_at) if message.is_at is not None else None,
is_emoji=bool(message.is_emoji),
is_picid=bool(message.is_picid),
is_command=bool(message.is_command),
is_notify=bool(message.is_notify),
user_id=user_id,
user_nickname=user_nickname,
user_cardname=user_cardname,
user_platform=user_platform,
chat_info_stream_id=message.chat_stream.stream_id,
chat_info_platform=message.chat_stream.platform,
chat_info_create_time=message.chat_stream.create_time,
chat_info_last_active_time=message.chat_stream.last_active_time,
chat_info_user_id=message.chat_stream.user_info.user_id,
chat_info_user_nickname=message.chat_stream.user_info.user_nickname,
chat_info_user_cardname=message.chat_stream.user_info.user_cardname,
chat_info_user_platform=message.chat_stream.user_info.platform,
chat_info_create_time=float(message.chat_stream.create_time),
chat_info_last_active_time=float(message.chat_stream.last_active_time),
chat_info_user_id=chat_user_id,
chat_info_user_nickname=chat_user_nickname,
chat_info_user_cardname=chat_user_cardname,
chat_info_user_platform=chat_user_platform,
chat_info_group_id=group_id,
chat_info_group_name=group_name,
chat_info_group_platform=group_platform,
)
# 如果是群聊,添加群组信息
if message.chat_stream.group_info:
db_message.chat_info_group_id = message.chat_stream.group_info.group_id
db_message.chat_info_group_name = message.chat_stream.group_info.group_name
db_message.chat_info_group_platform = message.chat_stream.group_info.platform
# 兼容历史逻辑:显式设置群聊相关属性,便于后续逻辑通过 hasattr 判断
if group_info:
setattr(db_message, "chat_info_group_id", group_id)
setattr(db_message, "chat_info_group_name", group_name)
setattr(db_message, "chat_info_group_platform", group_platform)
else:
setattr(db_message, "chat_info_group_id", None)
setattr(db_message, "chat_info_group_name", None)
setattr(db_message, "chat_info_group_platform", None)
# 添加消息到消息管理器
await message_manager.add_message(message.chat_stream.stream_id, db_message)
logger.debug(f"消息已添加到消息管理器: {message.chat_stream.stream_id}")
# 先交给消息管理器处理,计算兴趣度等衍生数据
try:
await message_manager.add_message(message.chat_stream.stream_id, db_message)
logger.debug(f"消息已添加到消息管理器: {message.chat_stream.stream_id}")
except Exception as e:
logger.error(f"消息添加到消息管理器失败: {e}")
# 将兴趣度结果同步回原始消息,便于后续流程使用
message.interest_value = getattr(db_message, "interest_value", getattr(message, "interest_value", 0.0))
setattr(message, "should_reply", getattr(db_message, "should_reply", getattr(message, "should_reply", False)))
setattr(message, "should_act", getattr(db_message, "should_act", getattr(message, "should_act", False)))
# 存储消息到数据库,只进行一次写入
try:
await MessageStorage.store_message(message, message.chat_stream)
logger.debug(
"消息已存储到数据库: %s (interest=%.3f, should_reply=%s, should_act=%s)",
message.message_info.message_id,
getattr(message, "interest_value", -1.0),
getattr(message, "should_reply", None),
getattr(message, "should_act", None),
)
except Exception as e:
logger.error(f"存储消息到数据库失败: {e}")
traceback.print_exc()
if template_group_name:
async with global_prompt_manager.async_message_scope(template_group_name):

View File

@@ -33,6 +33,10 @@ class ChatterActionManager:
self._using_actions = component_registry.get_default_actions()
self.log_prefix: str = "ChatterActionManager"
# 批量存储支持
self._batch_storage_enabled = False
self._pending_actions = []
self._current_chat_id = None
# === 执行Action方法 ===
@@ -184,19 +188,29 @@ class ChatterActionManager:
reason = reasoning or "选择不回复"
logger.info(f"{log_prefix} 选择不回复,原因: {reason}")
# 存储no_reply信息到数据库
await database_api.store_action_info(
chat_stream=chat_stream,
action_build_into_prompt=False,
action_prompt_display=reason,
action_done=True,
thinking_id=thinking_id,
action_data={"reason": reason},
action_name="no_reply",
)
# 存储no_reply信息到数据库(支持批量存储)
if self._batch_storage_enabled:
self.add_action_to_batch(
action_name="no_reply",
action_data={"reason": reason},
thinking_id=thinking_id or "",
action_done=True,
action_build_into_prompt=False,
action_prompt_display=reason
)
else:
asyncio.create_task(database_api.store_action_info(
chat_stream=chat_stream,
action_build_into_prompt=False,
action_prompt_display=reason,
action_done=True,
thinking_id=thinking_id,
action_data={"reason": reason},
action_name="no_reply",
))
# 自动清空所有未读消息
await self._clear_all_unread_messages(chat_stream.stream_id, "no_reply")
asyncio.create_task(self._clear_all_unread_messages(chat_stream.stream_id, "no_reply"))
return {"action_type": "no_reply", "success": True, "reply_text": "", "command": ""}
@@ -214,12 +228,12 @@ class ChatterActionManager:
# 记录执行的动作到目标消息
if success:
await self._record_action_to_message(chat_stream, action_name, target_message, action_data)
asyncio.create_task(self._record_action_to_message(chat_stream, action_name, target_message, action_data))
# 自动清空所有未读消息
if clear_unread_messages:
await self._clear_all_unread_messages(chat_stream.stream_id, action_name)
asyncio.create_task(self._clear_all_unread_messages(chat_stream.stream_id, action_name))
# 重置打断计数
await self._reset_interruption_count_after_action(chat_stream.stream_id)
asyncio.create_task(self._reset_interruption_count_after_action(chat_stream.stream_id))
return {
"action_type": action_name,
@@ -260,13 +274,13 @@ class ChatterActionManager:
)
# 记录回复动作到目标消息
await self._record_action_to_message(chat_stream, "reply", target_message, action_data)
asyncio.create_task(self._record_action_to_message(chat_stream, "reply", target_message, action_data))
if clear_unread_messages:
await self._clear_all_unread_messages(chat_stream.stream_id, "reply")
asyncio.create_task(self._clear_all_unread_messages(chat_stream.stream_id, "reply"))
# 回复成功,重置打断计数
await self._reset_interruption_count_after_action(chat_stream.stream_id)
asyncio.create_task(self._reset_interruption_count_after_action(chat_stream.stream_id))
return {"action_type": "reply", "success": True, "reply_text": reply_text, "loop_info": loop_info}
@@ -474,16 +488,26 @@ class ChatterActionManager:
person_name = await person_info_manager.get_value(person_id, "person_name")
action_prompt_display = f"你对{person_name}进行了回复:{reply_text}"
# 存储动作信息到数据库
await database_api.store_action_info(
chat_stream=chat_stream,
action_build_into_prompt=False,
action_prompt_display=action_prompt_display,
action_done=True,
thinking_id=thinking_id,
action_data={"reply_text": reply_text},
action_name="reply",
)
# 存储动作信息到数据库(支持批量存储)
if self._batch_storage_enabled:
self.add_action_to_batch(
action_name="reply",
action_data={"reply_text": reply_text},
thinking_id=thinking_id or "",
action_done=True,
action_build_into_prompt=False,
action_prompt_display=action_prompt_display
)
else:
await database_api.store_action_info(
chat_stream=chat_stream,
action_build_into_prompt=False,
action_prompt_display=action_prompt_display,
action_done=True,
thinking_id=thinking_id,
action_data={"reply_text": reply_text},
action_name="reply",
)
# 构建循环信息
loop_info: dict[str, Any] = {
@@ -579,3 +603,71 @@ class ChatterActionManager:
)
return reply_text
def enable_batch_storage(self, chat_id: str):
"""启用批量存储模式"""
self._batch_storage_enabled = True
self._current_chat_id = chat_id
self._pending_actions.clear()
logger.debug(f"已启用批量存储模式chat_id: {chat_id}")
def disable_batch_storage(self):
"""禁用批量存储模式"""
self._batch_storage_enabled = False
self._current_chat_id = None
logger.debug("已禁用批量存储模式")
def add_action_to_batch(self, action_name: str, action_data: dict, thinking_id: str = "",
action_done: bool = True, action_build_into_prompt: bool = False,
action_prompt_display: str = ""):
"""添加动作到批量存储列表"""
if not self._batch_storage_enabled:
return False
action_record = {
"action_name": action_name,
"action_data": action_data,
"thinking_id": thinking_id,
"action_done": action_done,
"action_build_into_prompt": action_build_into_prompt,
"action_prompt_display": action_prompt_display,
"timestamp": time.time()
}
self._pending_actions.append(action_record)
logger.debug(f"已添加动作到批量存储列表: {action_name} (当前待处理: {len(self._pending_actions)} 个)")
return True
async def flush_batch_storage(self, chat_stream):
"""批量存储所有待处理的动作记录"""
if not self._pending_actions:
logger.debug("没有待处理的动作需要批量存储")
return
try:
logger.info(f"开始批量存储 {len(self._pending_actions)} 个动作记录")
# 批量存储所有动作
stored_count = 0
for action_data in self._pending_actions:
try:
result = await database_api.store_action_info(
chat_stream=chat_stream,
action_name=action_data.get("action_name", ""),
action_data=action_data.get("action_data", {}),
action_done=action_data.get("action_done", True),
action_build_into_prompt=action_data.get("action_build_into_prompt", False),
action_prompt_display=action_data.get("action_prompt_display", ""),
thinking_id=action_data.get("thinking_id", "")
)
if result:
stored_count += 1
except Exception as e:
logger.error(f"存储单个动作记录失败: {e}")
logger.info(f"批量存储完成: 成功存储 {stored_count}/{len(self._pending_actions)} 个动作记录")
# 清空待处理列表
self._pending_actions.clear()
except Exception as e:
logger.error(f"批量存储动作记录时发生错误: {e}")

View File

@@ -287,13 +287,13 @@ class DefaultReplyer:
try:
# 构建 Prompt
with Timer("构建Prompt", {}): # 内部计时器,可选保留
prompt = await asyncio.create_task(self.build_prompt_reply_context(
prompt = await self.build_prompt_reply_context(
reply_to=reply_to,
extra_info=extra_info,
available_actions=available_actions,
enable_tool=enable_tool,
reply_message=reply_message,
))
)
if not prompt:
logger.warning("构建prompt失败跳过回复生成")

View File

@@ -175,7 +175,6 @@ class PromptManager:
self._prompts = {}
self._counter = 0
self._context = PromptContext()
self._lock = asyncio.Lock()
@asynccontextmanager
async def async_message_scope(self, message_id: str | None = None):
@@ -190,10 +189,9 @@ class PromptManager:
logger.debug(f"从上下文中获取提示词: {name} {context_prompt}")
return context_prompt
async with self._lock:
if name not in self._prompts:
raise KeyError(f"Prompt '{name}' not found")
return self._prompts[name]
if name not in self._prompts:
raise KeyError(f"Prompt '{name}' not found")
return self._prompts[name]
def generate_name(self, template: str) -> str:
"""为未命名的prompt生成名称"""