refactor(affinity_flow): 重构规划器架构并简化日志输出

- 移除ChatterManager中不必要的ActionPlanner实例化
- 在MessageManager中设置默认聊天模式为FOCUS
- 重构BaseChatter构造函数,移除planner依赖
- 统一ChatMode枚举定义,移除GROUP/PRIVATE模式
- 重构AffinityChatter内部planner初始化逻辑
- 大幅简化兴趣评分系统的日志输出
- 修复plan_filter中的动作解析逻辑,支持新格式
- 更新planner_prompts提示词模板,移除私聊限制
- 优化关系追踪器的错误处理和日志输出
This commit is contained in:
Windpicker-owo
2025-09-23 22:18:03 +08:00
parent 68bf0972df
commit ebc4feebd9
16 changed files with 151 additions and 139 deletions

View File

@@ -99,8 +99,7 @@ class ChatterManager:
raise ValueError(f"No chatter registered for chat type {chat_type}") raise ValueError(f"No chatter registered for chat type {chat_type}")
if stream_id not in self.instances: if stream_id not in self.instances:
planner = ActionPlanner(stream_id, self.action_manager) self.instances[stream_id] = chatter_class(stream_id=stream_id, action_manager=self.action_manager)
self.instances[stream_id] = chatter_class(stream_id=stream_id, planner=planner, action_manager=self.action_manager)
logger.info(f"创建新的聊天流实例: {stream_id} 使用 {chatter_class.__name__} (类型: {chat_type.value})") logger.info(f"创建新的聊天流实例: {stream_id} 使用 {chatter_class.__name__} (类型: {chat_type.value})")
self.stats["streams_processed"] += 1 self.stats["streams_processed"] += 1

View File

@@ -13,6 +13,7 @@ from src.common.data_models.database_data_model import DatabaseMessages
from src.common.data_models.message_manager_data_model import StreamContext, MessageManagerStats, StreamStats from src.common.data_models.message_manager_data_model import StreamContext, MessageManagerStats, StreamStats
from src.chat.chatter_manager import ChatterManager from src.chat.chatter_manager import ChatterManager
from src.chat.planner_actions.action_manager import ChatterActionManager from src.chat.planner_actions.action_manager import ChatterActionManager
from src.plugin_system.base.component_types import ChatMode
if TYPE_CHECKING: if TYPE_CHECKING:
from src.common.data_models.message_manager_data_model import StreamContext from src.common.data_models.message_manager_data_model import StreamContext
@@ -72,6 +73,7 @@ class MessageManager:
self.stats.total_streams += 1 self.stats.total_streams += 1
context = self.stream_contexts[stream_id] context = self.stream_contexts[stream_id]
context.set_chat_mode(ChatMode.FOCUS)
context.add_message(message) context.add_message(message)
logger.debug(f"添加消息到聊天流 {stream_id}: {message.message_id}") logger.debug(f"添加消息到聊天流 {stream_id}: {message.message_id}")

View File

@@ -1,5 +1,7 @@
from dataclasses import dataclass, field from dataclasses import dataclass, field
from typing import Optional, Dict, List, TYPE_CHECKING from typing import Optional, Dict, List, TYPE_CHECKING
from src.plugin_system.base.component_types import ChatType
from . import BaseDataModel from . import BaseDataModel
if TYPE_CHECKING: if TYPE_CHECKING:
@@ -46,6 +48,7 @@ class Plan(BaseDataModel):
chat_id: str chat_id: str
mode: "ChatMode" mode: "ChatMode"
chat_type: "ChatType"
# Generator 填充 # Generator 填充
available_actions: Dict[str, "ActionInfo"] = field(default_factory=dict) available_actions: Dict[str, "ActionInfo"] = field(default_factory=dict)
chat_history: List["DatabaseMessages"] = field(default_factory=list) chat_history: List["DatabaseMessages"] = field(default_factory=list)

View File

@@ -10,7 +10,7 @@ from enum import Enum
from typing import List, Optional, TYPE_CHECKING from typing import List, Optional, TYPE_CHECKING
from . import BaseDataModel from . import BaseDataModel
from src.plugin_system.base.component_types import ChatType from src.plugin_system.base.component_types import ChatMode, ChatType
if TYPE_CHECKING: if TYPE_CHECKING:
from .database_data_model import DatabaseMessages from .database_data_model import DatabaseMessages
@@ -30,6 +30,7 @@ class StreamContext(BaseDataModel):
stream_id: str stream_id: str
chat_type: ChatType = ChatType.PRIVATE # 聊天类型,默认为私聊 chat_type: ChatType = ChatType.PRIVATE # 聊天类型,默认为私聊
chat_mode: ChatMode = ChatMode.NORMAL # 聊天模式,默认为普通模式
unread_messages: List["DatabaseMessages"] = field(default_factory=list) unread_messages: List["DatabaseMessages"] = field(default_factory=list)
history_messages: List["DatabaseMessages"] = field(default_factory=list) history_messages: List["DatabaseMessages"] = field(default_factory=list)
last_check_time: float = field(default_factory=time.time) last_check_time: float = field(default_factory=time.time)
@@ -60,6 +61,10 @@ class StreamContext(BaseDataModel):
"""手动更新聊天类型""" """手动更新聊天类型"""
self.chat_type = chat_type self.chat_type = chat_type
def set_chat_mode(self, chat_mode: ChatMode):
"""设置聊天模式"""
self.chat_mode = chat_mode
def is_group_chat(self) -> bool: def is_group_chat(self) -> bool:
"""检查是否为群聊""" """检查是否为群聊"""
return self.chat_type == ChatType.GROUP return self.chat_type == ChatType.GROUP

View File

@@ -15,17 +15,15 @@ class BaseChatter(ABC):
"""Chatter组件的描述""" """Chatter组件的描述"""
chat_types: List[ChatType] = [ChatType.PRIVATE, ChatType.GROUP] chat_types: List[ChatType] = [ChatType.PRIVATE, ChatType.GROUP]
def __init__(self, stream_id: str, planner: 'ActionPlanner', action_manager: 'ChatterActionManager'): def __init__(self, stream_id: str, action_manager: 'ChatterActionManager'):
""" """
初始化聊天处理器 初始化聊天处理器
Args: Args:
stream_id: 聊天流ID stream_id: 聊天流ID
planner: 动作规划器
action_manager: 动作管理器 action_manager: 动作管理器
""" """
self.stream_id = stream_id self.stream_id = stream_id
self.planner = planner
self.action_manager = action_manager self.action_manager = action_manager
@abstractmethod @abstractmethod

View File

@@ -41,8 +41,7 @@ class ActionActivationType(Enum):
class ChatMode(Enum): class ChatMode(Enum):
"""聊天模式枚举""" """聊天模式枚举"""
GROUP = "group" # 群聊模式 FOCUS = "focus" # 专注模式
PRIVATE = "private" # 私聊模式
NORMAL = "normal" # Normal聊天模式 NORMAL = "normal" # Normal聊天模式
PROACTIVE = "proactive" # 主动思考模式 PROACTIVE = "proactive" # 主动思考模式
PRIORITY = "priority" # 优先级聊天模式 PRIORITY = "priority" # 优先级聊天模式

View File

@@ -9,9 +9,9 @@ from datetime import datetime
from typing import Dict, Any from typing import Dict, Any
from src.plugin_system.base.base_chatter import BaseChatter from src.plugin_system.base.base_chatter import BaseChatter
from src.plugin_system.base.component_types import ChatType, ChatMode from src.plugin_system.base.component_types import ChatType
from src.common.data_models.message_manager_data_model import StreamContext from src.common.data_models.message_manager_data_model import StreamContext
from src.plugins.built_in.affinity_flow_chatter.planner import ChatterActionPlanner as ActionPlanner from src.plugins.built_in.affinity_flow_chatter.planner import ChatterActionPlanner
from src.chat.planner_actions.action_manager import ChatterActionManager from src.chat.planner_actions.action_manager import ChatterActionManager
from src.common.logger import get_logger from src.common.logger import get_logger
@@ -20,11 +20,12 @@ logger = get_logger("affinity_chatter")
class AffinityChatter(BaseChatter): class AffinityChatter(BaseChatter):
"""亲和力聊天处理器""" """亲和力聊天处理器"""
chatter_name: str = "AffinityChatter" chatter_name: str = "AffinityChatter"
chatter_description: str = "基于亲和力模型的智能聊天处理器,支持多种聊天类型" chatter_description: str = "基于亲和力模型的智能聊天处理器,支持多种聊天类型"
chat_types: list[ChatType] = [ChatType.ALL] # 支持所有聊天类型 chat_types: list[ChatType] = [ChatType.ALL] # 支持所有聊天类型
def __init__(self, stream_id: str, planner: ActionPlanner, action_manager: ChatterActionManager): def __init__(self, stream_id: str, action_manager: ChatterActionManager):
""" """
初始化亲和力聊天处理器 初始化亲和力聊天处理器
@@ -33,7 +34,8 @@ class AffinityChatter(BaseChatter):
planner: 动作规划器 planner: 动作规划器
action_manager: 动作管理器 action_manager: 动作管理器
""" """
super().__init__(stream_id, planner, action_manager) super().__init__(stream_id, action_manager)
self.planner = ChatterActionPlanner(stream_id, action_manager)
# 处理器统计 # 处理器统计
self.stats = { self.stats = {
@@ -59,7 +61,7 @@ class AffinityChatter(BaseChatter):
unread_messages = context.get_unread_messages() unread_messages = context.get_unread_messages()
# 使用增强版规划器处理消息 # 使用增强版规划器处理消息
actions, target_message = await self.planner.plan(mode=ChatMode.GROUP, context=context) actions, target_message = await self.planner.plan(context=context)
self.stats["plans_created"] += 1 self.stats["plans_created"] += 1
# 执行动作(如果规划器返回了动作) # 执行动作(如果规划器返回了动作)

View File

@@ -52,21 +52,16 @@ class ChatterInterestScoringSystem:
user_messages = [msg for msg in messages if str(msg.user_info.user_id) != str(global_config.bot.qq_account)] user_messages = [msg for msg in messages if str(msg.user_info.user_id) != str(global_config.bot.qq_account)]
if not user_messages: if not user_messages:
return [] return []
logger.info(f"正在为 {len(user_messages)} 条用户消息计算兴趣度...")
scores = [] scores = []
for i, msg in enumerate(user_messages, 1): for _, msg in enumerate(user_messages, 1):
logger.debug(f"[{i}/{len(user_messages)}] 处理消息 ID: {msg.message_id}")
score = await self._calculate_single_message_score(msg, bot_nickname) score = await self._calculate_single_message_score(msg, bot_nickname)
scores.append(score) scores.append(score)
logger.info(f"{len(scores)} 条消息生成了兴趣度评分。")
return scores return scores
async def _calculate_single_message_score(self, message: DatabaseMessages, bot_nickname: str) -> InterestScore: async def _calculate_single_message_score(self, message: DatabaseMessages, bot_nickname: str) -> InterestScore:
"""计算单条消息的兴趣度评分""" """计算单条消息的兴趣度评分"""
message_preview = f"\033[96m{message.processed_plain_text[:30].replace('\n', ' ')}...\033[0m"
logger.info(f"计算消息 {message.message_id} 的分数 | 内容: {message_preview}")
keywords = self._extract_keywords_from_database(message) keywords = self._extract_keywords_from_database(message)
interest_match_score = await self._calculate_interest_match_score(message.processed_plain_text, keywords) interest_match_score = await self._calculate_interest_match_score(message.processed_plain_text, keywords)
@@ -86,8 +81,7 @@ class ChatterInterestScoringSystem:
} }
logger.info( logger.info(
f"消息 {message.message_id} 得分: {total_score:.3f} " f"消息得分: {total_score:.3f} (匹配: {interest_match_score:.2f}, 关系: {relationship_score:.2f}, 提及: {mentioned_score:.2f})"
f"(匹配: {interest_match_score:.2f}, 关系: {relationship_score:.2f}, 提及: {mentioned_score:.2f})"
) )
return InterestScore( return InterestScore(
@@ -109,51 +103,31 @@ class ChatterInterestScoringSystem:
return await self._calculate_smart_interest_match(content, keywords) return await self._calculate_smart_interest_match(content, keywords)
else: else:
# 智能匹配未初始化,返回默认分数 # 智能匹配未初始化,返回默认分数
logger.warning("智能兴趣匹配系统未初始化,返回默认分数")
return 0.3 return 0.3
async def _calculate_smart_interest_match(self, content: str, keywords: List[str] = None) -> float: async def _calculate_smart_interest_match(self, content: str, keywords: List[str] = None) -> float:
"""使用embedding计算智能兴趣匹配""" """使用embedding计算智能兴趣匹配"""
try: try:
logger.debug("🧠 开始智能兴趣匹配计算...")
# 如果没有传入关键词,则提取 # 如果没有传入关键词,则提取
if not keywords: if not keywords:
logger.debug("🔍 从内容中提取关键词...")
keywords = self._extract_keywords_from_content(content) keywords = self._extract_keywords_from_content(content)
logger.debug(f"🏷️ 提取到 {len(keywords)} 个关键词")
# 使用机器人兴趣管理器计算匹配度 # 使用机器人兴趣管理器计算匹配度
logger.debug("🤖 调用机器人兴趣管理器计算匹配度...")
match_result = await bot_interest_manager.calculate_interest_match(content, keywords) match_result = await bot_interest_manager.calculate_interest_match(content, keywords)
if match_result: if match_result:
logger.debug("✅ 智能兴趣匹配成功:")
logger.debug(f" 📊 总分: {match_result.overall_score:.3f}")
logger.debug(f" 🏷️ 匹配标签: {match_result.matched_tags}")
logger.debug(f" 🎯 最佳标签: {match_result.top_tag}")
logger.debug(f" 📈 置信度: {match_result.confidence:.3f}")
logger.debug(f" 🔢 匹配详情: {match_result.match_scores}")
# 返回匹配分数,考虑置信度和匹配标签数量 # 返回匹配分数,考虑置信度和匹配标签数量
affinity_config = global_config.affinity_flow affinity_config = global_config.affinity_flow
match_count_bonus = min( match_count_bonus = min(
len(match_result.matched_tags) * affinity_config.match_count_bonus, affinity_config.max_match_bonus len(match_result.matched_tags) * affinity_config.match_count_bonus, affinity_config.max_match_bonus
) )
final_score = match_result.overall_score * 1.15 * match_result.confidence + match_count_bonus final_score = match_result.overall_score * 1.15 * match_result.confidence + match_count_bonus
logger.debug(
f"⚖️ 最终分数计算: 总分({match_result.overall_score:.3f}) × 1.3 × 置信度({match_result.confidence:.3f}) + 标签数量奖励({match_count_bonus:.3f}) = {final_score:.3f}"
)
return final_score return final_score
else: else:
logger.warning("⚠️ 智能兴趣匹配未返回结果")
return 0.0 return 0.0
except Exception as e: except Exception as e:
logger.error(f"智能兴趣匹配计算失败: {e}") logger.error(f"智能兴趣匹配计算失败: {e}")
logger.debug("🔍 错误详情:")
logger.debug(f" 💬 内容长度: {len(content)} 字符")
logger.debug(f" 🏷️ 关键词数量: {len(keywords) if keywords else 0}")
return 0.0 return 0.0
def _extract_keywords_from_database(self, message: DatabaseMessages) -> List[str]: def _extract_keywords_from_database(self, message: DatabaseMessages) -> List[str]:
@@ -225,8 +199,8 @@ class ChatterInterestScoringSystem:
# 同时更新内存缓存 # 同时更新内存缓存
self.user_relationships[user_id] = relationship_score self.user_relationships[user_id] = relationship_score
return relationship_score return relationship_score
except Exception as e: except Exception:
logger.warning(f"从关系追踪器获取关系分失败: {e}") pass
else: else:
# 尝试从全局关系追踪器获取 # 尝试从全局关系追踪器获取
try: try:
@@ -238,8 +212,8 @@ class ChatterInterestScoringSystem:
# 同时更新内存缓存 # 同时更新内存缓存
self.user_relationships[user_id] = relationship_score self.user_relationships[user_id] = relationship_score
return relationship_score return relationship_score
except Exception as e: except Exception:
logger.warning(f"从全局关系追踪器获取关系分失败: {e}") pass
# 默认新用户的基础分 # 默认新用户的基础分
return global_config.affinity_flow.base_relationship_score return global_config.affinity_flow.base_relationship_score
@@ -261,26 +235,20 @@ class ChatterInterestScoringSystem:
def should_reply(self, score: InterestScore, message: "DatabaseMessages") -> bool: def should_reply(self, score: InterestScore, message: "DatabaseMessages") -> bool:
"""判断是否应该回复""" """判断是否应该回复"""
message_preview = f"\033[96m{(message.processed_plain_text or 'N/A')[:50].replace('\n', ' ')}\033[0m"
logger.info(f"评估消息 {score.message_id} (得分: {score.total_score:.3f}) | 内容: '{message_preview}...'")
base_threshold = self.reply_threshold base_threshold = self.reply_threshold
# 如果被提及,降低阈值 # 如果被提及,降低阈值
if score.mentioned_score >= global_config.affinity_flow.mention_bot_adjustment_threshold: if score.mentioned_score >= global_config.affinity_flow.mention_bot_adjustment_threshold:
base_threshold = self.mention_threshold base_threshold = self.mention_threshold
logger.debug(f"机器人被提及, 使用较低阈值: {base_threshold:.3f}")
# 计算连续不回复的概率提升 # 计算连续不回复的概率提升
probability_boost = min(self.no_reply_count * self.probability_boost_per_no_reply, 0.8) probability_boost = min(self.no_reply_count * self.probability_boost_per_no_reply, 0.8)
effective_threshold = base_threshold - probability_boost effective_threshold = base_threshold - probability_boost
logger.debug(
f"基础阈值: {base_threshold:.3f}, 不回复提升: {probability_boost:.3f}, 有效阈值: {effective_threshold:.3f}"
)
# 做出决策 # 做出决策
should_reply = score.total_score >= effective_threshold should_reply = score.total_score >= effective_threshold
decision = "回复" if should_reply else "不回复" decision = "回复" if should_reply else "不回复"
logger.info(f"回复决策: {decision} (分数: {score.total_score:.3f} {' >=' if should_reply else ' <'} 阈值: {effective_threshold:.3f})") logger.info(f"决策: {decision} (分数: {score.total_score:.3f})")
return should_reply, score.total_score return should_reply, score.total_score
@@ -296,8 +264,7 @@ class ChatterInterestScoringSystem:
# 限制最大计数 # 限制最大计数
self.no_reply_count = min(self.no_reply_count, self.max_no_reply_count) self.no_reply_count = min(self.no_reply_count, self.max_no_reply_count)
logger.info(f"记录动作: {action} | 连续不回复次数: {old_count} -> {self.no_reply_count}") logger.info(f"{action} | 不回复次数: {old_count} -> {self.no_reply_count}")
logger.debug(f"📋 最大限制: {self.max_no_reply_count}")
def update_user_relationship(self, user_id: str, relationship_change: float): def update_user_relationship(self, user_id: str, relationship_change: float):
"""更新用户关系""" """更新用户关系"""
@@ -308,10 +275,7 @@ class ChatterInterestScoringSystem:
self.user_relationships[user_id] = new_score self.user_relationships[user_id] = new_score
change_direction = "📈" if relationship_change > 0 else "📉" if relationship_change < 0 else "" logger.info(f"用户关系: {user_id} | {old_score:.3f}{new_score:.3f}")
logger.info(f"{change_direction} 更新用户关系: {user_id}")
logger.info(f"💝 关系分: {old_score:.3f}{new_score:.3f} (变化: {relationship_change:+.3f})")
logger.debug(f"👥 当前追踪用户数: {len(self.user_relationships)}")
def get_user_relationship(self, user_id: str) -> float: def get_user_relationship(self, user_id: str) -> float:
"""获取用户关系分""" """获取用户关系分"""
@@ -342,12 +306,7 @@ class ChatterInterestScoringSystem:
logger.info("智能兴趣系统初始化完成。") logger.info("智能兴趣系统初始化完成。")
# 显示初始化后的统计信息 # 显示初始化后的统计信息
stats = bot_interest_manager.get_interest_stats() bot_interest_manager.get_interest_stats()
logger.info(
f"兴趣系统统计: 总标签={stats.get('total_tags', 0)}, "
f"缓存大小={stats.get('cache_size', 0)}, "
f"模型='{stats.get('embedding_model', '未知')}'"
)
except Exception as e: except Exception as e:
logger.error(f"初始化智能兴趣系统失败: {e}") logger.error(f"初始化智能兴趣系统失败: {e}")

View File

@@ -4,7 +4,6 @@ PlanExecutor: 接收 Plan 对象并执行其中的所有动作。
""" """
import asyncio import asyncio
import re
import time import time
from typing import Dict, List from typing import Dict, List

View File

@@ -22,7 +22,7 @@ from src.common.logger import get_logger
from src.config.config import global_config, model_config from src.config.config import global_config, model_config
from src.llm_models.utils_model import LLMRequest from src.llm_models.utils_model import LLMRequest
from src.mood.mood_manager import mood_manager from src.mood.mood_manager import mood_manager
from src.plugin_system.base.component_types import ActionInfo, ChatMode from src.plugin_system.base.component_types import ActionInfo, ChatMode, ChatType
from src.schedule.schedule_manager import schedule_manager from src.schedule.schedule_manager import schedule_manager
logger = get_logger("plan_filter") logger = get_logger("plan_filter")
@@ -41,31 +41,33 @@ class ChatterPlanFilter:
""" """
执行筛选逻辑,并填充 Plan 对象的 decided_actions 字段。 执行筛选逻辑,并填充 Plan 对象的 decided_actions 字段。
""" """
logger.debug(f"墨墨在这里加了日志 -> filter 入口 plan: {plan}")
try: try:
prompt, used_message_id_list = await self._build_prompt(plan) prompt, used_message_id_list = await self._build_prompt(plan)
plan.llm_prompt = prompt plan.llm_prompt = prompt
logger.debug(f"墨墨在这里加了日志 -> LLM prompt: {prompt}")
llm_content, _ = await self.planner_llm.generate_response_async(prompt=prompt) llm_content, _ = await self.planner_llm.generate_response_async(prompt=prompt)
if llm_content: if llm_content:
logger.debug(f"墨墨在这里加了日志 -> LLM a原始返回: {llm_content}")
try: try:
parsed_json = orjson.loads(repair_json(llm_content)) parsed_json = orjson.loads(repair_json(llm_content))
except orjson.JSONDecodeError: except orjson.JSONDecodeError:
parsed_json = {"action": "no_action", "reason": "返回内容无法解析为JSON"} parsed_json = {
logger.debug(f"墨墨在这里加了日志 -> 解析后的 JSON: {parsed_json}") "thinking": "",
"actions": {"action_type": "no_action", "reason": "返回内容无法解析为JSON"},
}
if "reply" in plan.available_actions and reply_not_available: if "reply" in plan.available_actions and reply_not_available:
# 如果reply动作不可用但llm返回的仍然有reply则改为no_reply # 如果reply动作不可用但llm返回的仍然有reply则改为no_reply
if isinstance(parsed_json, dict) and parsed_json.get("action") == "reply": if (
parsed_json["action"] = "no_reply" isinstance(parsed_json, dict)
and parsed_json.get("actions", {}).get("action_type", "") == "reply"
):
parsed_json["actions"]["action_type"] = "no_reply"
elif isinstance(parsed_json, list): elif isinstance(parsed_json, list):
for item in parsed_json: for item in parsed_json:
if isinstance(item, dict) and item.get("action") == "reply": if isinstance(item, dict) and item.get("actions", {}).get("action_type", "") == "reply":
item["action"] = "no_reply" item["actions"]["action_type"] = "no_reply"
item["reason"] += " (但由于兴趣度不足reply动作不可用已改为no_reply)" item["actions"]["reason"] += " (但由于兴趣度不足reply动作不可用已改为no_reply)"
if isinstance(parsed_json, dict): if isinstance(parsed_json, dict):
parsed_json = [parsed_json] parsed_json = [parsed_json]
@@ -81,23 +83,40 @@ class ChatterPlanFilter:
continue continue
# 预解析 action_type 来进行判断 # 预解析 action_type 来进行判断
action_type = item.get("action", "no_action") thinking = item.get("thinking", "未提供思考过程")
actions_obj = item.get("actions", {})
# 处理actions字段可能是字典或列表的情况
if isinstance(actions_obj, dict):
action_type = actions_obj.get("action_type", "no_action")
elif isinstance(actions_obj, list) and actions_obj:
# 如果是列表取第一个元素的action_type
first_action = actions_obj[0]
if isinstance(first_action, dict):
action_type = first_action.get("action_type", "no_action")
else:
action_type = "no_action"
else:
action_type = "no_action"
if action_type in reply_action_types: if action_type in reply_action_types:
if not reply_action_added: if not reply_action_added:
final_actions.extend(await self._parse_single_action(item, used_message_id_list, plan)) final_actions.extend(
await self._parse_single_action(item, used_message_id_list, plan)
)
reply_action_added = True reply_action_added = True
else: else:
# 非回复类动作直接添加 # 非回复类动作直接添加
final_actions.extend(await self._parse_single_action(item, used_message_id_list, plan)) final_actions.extend(await self._parse_single_action(item, used_message_id_list, plan))
plan.decided_actions = self._filter_no_actions(final_actions) if thinking and thinking != "未提供思考过程":
logger.info(f"思考: {thinking}")
plan.decided_actions = self._filter_no_actions(final_actions)
except Exception as e: except Exception as e:
logger.error(f"筛选 Plan 时出错: {e}\n{traceback.format_exc()}") logger.error(f"筛选 Plan 时出错: {e}\n{traceback.format_exc()}")
plan.decided_actions = [ActionPlannerInfo(action_type="no_action", reasoning=f"筛选时出错: {e}")] plan.decided_actions = [ActionPlannerInfo(action_type="no_action", reasoning=f"筛选时出错: {e}")]
logger.debug(f"墨墨在这里加了日志 -> filter 出口 decided_actions: {plan.decided_actions}")
return plan return plan
async def _build_prompt(self, plan: Plan) -> tuple[str, list]: async def _build_prompt(self, plan: Plan) -> tuple[str, list]:
@@ -186,7 +205,7 @@ class ChatterPlanFilter:
if global_config.chat.at_bot_inevitable_reply: if global_config.chat.at_bot_inevitable_reply:
mentioned_bonus = "\n- 有人提到你或者at你" mentioned_bonus = "\n- 有人提到你或者at你"
if plan.mode == ChatMode.GROUP: if plan.mode == ChatMode.FOCUS:
no_action_block = """ no_action_block = """
动作no_action 动作no_action
动作描述:不选择任何动作 动作描述:不选择任何动作
@@ -204,7 +223,7 @@ class ChatterPlanFilter:
"reason":"不回复的原因" "reason":"不回复的原因"
}} }}
""" """
else: # PRIVATE Mode else: # normal Mode
no_action_block = """重要说明: no_action_block = """重要说明:
- 'reply' 表示只进行普通聊天回复,不执行任何额外动作 - 'reply' 表示只进行普通聊天回复,不执行任何额外动作
- 其他action表示在普通回复的基础上执行相应的额外动作 - 其他action表示在普通回复的基础上执行相应的额外动作
@@ -214,7 +233,7 @@ class ChatterPlanFilter:
"reason":"回复的原因" "reason":"回复的原因"
}}""" }}"""
is_group_chat = plan.target_info.platform == "group" if plan.target_info else True is_group_chat = plan.chat_type == ChatType.GROUP
chat_context_description = "你现在正在一个群聊中" chat_context_description = "你现在正在一个群聊中"
if not is_group_chat and plan.target_info: if not is_group_chat and plan.target_info:
chat_target_name = plan.target_info.person_name or plan.target_info.user_nickname or "对方" chat_target_name = plan.target_info.person_name or plan.target_info.user_nickname or "对方"
@@ -321,7 +340,9 @@ class ChatterPlanFilter:
interest_scores = {} interest_scores = {}
try: try:
from src.plugins.built_in.affinity_flow_chatter.interest_scoring import chatter_interest_scoring_system as interest_scoring_system from src.plugins.built_in.affinity_flow_chatter.interest_scoring import (
chatter_interest_scoring_system as interest_scoring_system,
)
from src.common.data_models.database_data_model import DatabaseMessages from src.common.data_models.database_data_model import DatabaseMessages
# 转换消息格式 # 转换消息格式
@@ -364,13 +385,39 @@ class ChatterPlanFilter:
) -> List[ActionPlannerInfo]: ) -> List[ActionPlannerInfo]:
parsed_actions = [] parsed_actions = []
try: try:
action = action_json.get("action", "no_action") # 从新的actions结构中获取动作信息
reasoning = action_json.get("reason", "未提供原因") actions_obj = action_json.get("actions", {})
action_data = {k: v for k, v in action_json.items() if k not in ["action", "reason"]}
# 处理actions字段可能是字典或列表的情况
if isinstance(actions_obj, dict):
action = actions_obj.get("action_type", "no_action")
reasoning = actions_obj.get("reason", "未提供原因")
# 合并actions_obj中的其他字段作为action_data
action_data = {k: v for k, v in actions_obj.items() if k not in ["action_type", "reason"]}
elif isinstance(actions_obj, list) and actions_obj:
# 如果是列表,取第一个元素
first_action = actions_obj[0]
if isinstance(first_action, dict):
action = first_action.get("action_type", "no_action")
reasoning = first_action.get("reason", "未提供原因")
action_data = {k: v for k, v in first_action.items() if k not in ["action_type", "reason"]}
else:
action = "no_action"
reasoning = "actions格式错误"
action_data = {}
else:
action = "no_action"
reasoning = "actions格式错误"
action_data = {}
# 保留原始的thinking字段如果有
thinking = action_json.get("thinking")
if thinking:
action_data["thinking"] = thinking
target_message_obj = None target_message_obj = None
if action not in ["no_action", "no_reply", "do_nothing", "proactive_reply"]: if action not in ["no_action", "no_reply", "do_nothing", "proactive_reply"]:
if target_message_id := action_json.get("target_message_id"): if target_message_id := action_data.get("target_message_id"):
target_message_dict = self._find_message_by_id(target_message_id, message_id_list) target_message_dict = self._find_message_by_id(target_message_id, message_id_list)
else: else:
# 如果LLM没有指定target_message_id我们就默认选择最新的一条消息 # 如果LLM没有指定target_message_id我们就默认选择最新的一条消息
@@ -388,7 +435,7 @@ class ChatterPlanFilter:
# 如果找不到目标消息对于reply动作来说这是必需的应该记录警告 # 如果找不到目标消息对于reply动作来说这是必需的应该记录警告
if action == "reply": if action == "reply":
logger.warning( logger.warning(
f"reply动作找不到目标消息target_message_id: {action_json.get('target_message_id')}" f"reply动作找不到目标消息target_message_id: {action_data.get('target_message_id')}"
) )
# 将reply动作改为no_action避免后续执行时出错 # 将reply动作改为no_action避免后续执行时出错
action = "no_action" action = "no_action"

View File

@@ -10,7 +10,7 @@ from src.chat.utils.utils import get_chat_type_and_target_info
from src.common.data_models.database_data_model import DatabaseMessages from src.common.data_models.database_data_model import DatabaseMessages
from src.common.data_models.info_data_model import Plan, TargetPersonInfo from src.common.data_models.info_data_model import Plan, TargetPersonInfo
from src.config.config import global_config from src.config.config import global_config
from src.plugin_system.base.component_types import ActionActivationType, ActionInfo, ChatMode, ChatType, ComponentType from src.plugin_system.base.component_types import ActionInfo, ChatMode, ChatType
from src.plugin_system.core.component_registry import component_registry from src.plugin_system.core.component_registry import component_registry
@@ -66,6 +66,7 @@ class ChatterPlanGenerator:
# 构建计划对象 # 构建计划对象
plan = Plan( plan = Plan(
chat_id=self.chat_id, chat_id=self.chat_id,
chat_type=chat_type,
mode=mode, mode=mode,
target_info=target_info, target_info=target_info,
available_actions=available_actions, available_actions=available_actions,
@@ -74,7 +75,7 @@ class ChatterPlanGenerator:
return plan return plan
except Exception as e: except Exception:
# 如果生成失败,返回一个基本的空计划 # 如果生成失败,返回一个基本的空计划
return Plan( return Plan(
chat_id=self.chat_id, chat_id=self.chat_id,
@@ -110,7 +111,7 @@ class ChatterPlanGenerator:
return filtered_actions return filtered_actions
except Exception as e: except Exception:
# 如果获取失败,返回空字典 # 如果获取失败,返回空字典
return {} return {}
@@ -124,9 +125,7 @@ class ChatterPlanGenerator:
try: try:
# 获取最近的消息记录 # 获取最近的消息记录
raw_messages = get_raw_msg_before_timestamp_with_chat( raw_messages = get_raw_msg_before_timestamp_with_chat(
chat_id=self.chat_id, chat_id=self.chat_id, timestamp=time.time(), limit=global_config.memory.short_memory_length
timestamp=time.time(),
limit=global_config.memory.short_memory_length
) )
# 转换为 DatabaseMessages 对象 # 转换为 DatabaseMessages 对象
@@ -143,13 +142,13 @@ class ChatterPlanGenerator:
user_platform=msg.get("user_platform", ""), user_platform=msg.get("user_platform", ""),
) )
recent_messages.append(db_msg) recent_messages.append(db_msg)
except Exception as e: except Exception:
# 跳过格式错误的消息 # 跳过格式错误的消息
continue continue
return recent_messages return recent_messages
except Exception as e: except Exception:
# 如果获取失败,返回空列表 # 如果获取失败,返回空列表
return [] return []
@@ -162,6 +161,8 @@ class ChatterPlanGenerator:
""" """
return { return {
"chat_id": self.chat_id, "chat_id": self.chat_id,
"action_count": len(self.action_manager._using_actions) if hasattr(self.action_manager, '_using_actions') else 0, "action_count": len(self.action_manager._using_actions)
"generation_time": time.time() if hasattr(self.action_manager, "_using_actions")
else 0,
"generation_time": time.time(),
} }

View File

@@ -6,7 +6,6 @@
from dataclasses import asdict from dataclasses import asdict
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple from typing import TYPE_CHECKING, Dict, List, Optional, Tuple
from src.plugin_system.base.component_types import ChatMode
from src.plugins.built_in.affinity_flow_chatter.plan_executor import ChatterPlanExecutor from src.plugins.built_in.affinity_flow_chatter.plan_executor import ChatterPlanExecutor
from src.plugins.built_in.affinity_flow_chatter.plan_filter import ChatterPlanFilter from src.plugins.built_in.affinity_flow_chatter.plan_filter import ChatterPlanFilter
from src.plugins.built_in.affinity_flow_chatter.plan_generator import ChatterPlanGenerator from src.plugins.built_in.affinity_flow_chatter.plan_generator import ChatterPlanGenerator
@@ -58,7 +57,6 @@ class ChatterActionPlanner:
# 创建新的关系追踪器 # 创建新的关系追踪器
self.relationship_tracker = ChatterRelationshipTracker(self.interest_scoring) self.relationship_tracker = ChatterRelationshipTracker(self.interest_scoring)
logger.info("创建新的关系追踪器实例")
# 设置执行器的关系追踪器 # 设置执行器的关系追踪器
self.executor.set_relationship_tracker(self.relationship_tracker) self.executor.set_relationship_tracker(self.relationship_tracker)
@@ -72,14 +70,11 @@ class ChatterActionPlanner:
"other_actions_executed": 0, "other_actions_executed": 0,
} }
async def plan( async def plan(self, context: "StreamContext" = None) -> Tuple[List[Dict], Optional[Dict]]:
self, mode: ChatMode = ChatMode.GROUP, context: "StreamContext" = None
) -> Tuple[List[Dict], Optional[Dict]]:
""" """
执行完整的增强版规划流程。 执行完整的增强版规划流程。
Args: Args:
mode (ChatMode): 当前的聊天模式,默认为 GROUP。
context (StreamContext): 包含聊天流消息的上下文对象。 context (StreamContext): 包含聊天流消息的上下文对象。
Returns: Returns:
@@ -90,18 +85,18 @@ class ChatterActionPlanner:
try: try:
self.planner_stats["total_plans"] += 1 self.planner_stats["total_plans"] += 1
return await self._enhanced_plan_flow(mode, context) return await self._enhanced_plan_flow(context)
except Exception as e: except Exception as e:
logger.error(f"规划流程出错: {e}") logger.error(f"规划流程出错: {e}")
self.planner_stats["failed_plans"] += 1 self.planner_stats["failed_plans"] += 1
return [], None return [], None
async def _enhanced_plan_flow(self, mode: ChatMode, context: "StreamContext") -> Tuple[List[Dict], Optional[Dict]]: async def _enhanced_plan_flow(self, context: "StreamContext") -> Tuple[List[Dict], Optional[Dict]]:
"""执行增强版规划流程""" """执行增强版规划流程"""
try: try:
# 1. 生成初始 Plan # 1. 生成初始 Plan
initial_plan = await self.generator.generate(mode) initial_plan = await self.generator.generate(context.chat_mode)
unread_messages = context.get_unread_messages() if context else [] unread_messages = context.get_unread_messages() if context else []
# 2. 兴趣度评分 - 只对未读消息进行评分 # 2. 兴趣度评分 - 只对未读消息进行评分
@@ -119,16 +114,14 @@ class ChatterActionPlanner:
reply_not_available = False reply_not_available = False
if not should_reply and "reply" in initial_plan.available_actions: if not should_reply and "reply" in initial_plan.available_actions:
logger.info(f"兴趣度不足 ({latest_score.total_score:.2f}),移除'回复'动作。") logger.info(f"兴趣度不足 ({latest_score.total_score:.2f}),移除回复")
reply_not_available = True reply_not_available = True
# base_threshold = self.interest_scoring.reply_threshold # base_threshold = self.interest_scoring.reply_threshold
# 检查兴趣度是否达到非回复动作阈值 # 检查兴趣度是否达到非回复动作阈值
non_reply_action_interest_threshold = global_config.affinity_flow.non_reply_action_interest_threshold non_reply_action_interest_threshold = global_config.affinity_flow.non_reply_action_interest_threshold
if score < non_reply_action_interest_threshold: if score < non_reply_action_interest_threshold:
logger.info( logger.info(f"兴趣度 {score:.3f} 低于阈值 {non_reply_action_interest_threshold:.3f},不执行动作")
f"兴趣度 {score:.3f} 低于非回复动作阈值 {non_reply_action_interest_threshold:.3f},不执行任何动作。"
)
# 直接返回 no_action # 直接返回 no_action
from src.common.data_models.info_data_model import ActionPlannerInfo from src.common.data_models.info_data_model import ActionPlannerInfo

View File

@@ -49,10 +49,6 @@ def init_prompts():
6. 如果需要,选择一个最合适的辅助动作与 `reply`(如果有) 组合。 6. 如果需要,选择一个最合适的辅助动作与 `reply`(如果有) 组合。
7. 如果用户明确要求了某个动作,请务必优先满足。 7. 如果用户明确要求了某个动作,请务必优先满足。
**动作限制:**
- 在私聊中,你只能使用 `reply` 动作。私聊中不允许使用任何其他动作。
- 在群聊中,你可以自由选择是否使用辅助动作。
**重要提醒:** **重要提醒:**
- **回复消息时必须遵循对话的流程,不要重复已经说过的话。** - **回复消息时必须遵循对话的流程,不要重复已经说过的话。**
- **确保回复与上下文紧密相关,回应要针对用户的消息内容。** - **确保回复与上下文紧密相关,回应要针对用户的消息内容。**
@@ -62,7 +58,7 @@ def init_prompts():
请严格按照以下 JSON 格式输出,包含 `thinking` 和 `actions` 字段: 请严格按照以下 JSON 格式输出,包含 `thinking` 和 `actions` 字段:
```json ```json
{{ {{
"thinking": "你的思考过程,分析当前情况并说明为什么选择这些动作", "thinking": "你的内心思考,简要描述你选择动作时的心路历程",
"actions": [ "actions": [
{{ {{
"action_type": "动作类型reply, emoji等", "action_type": "动作类型reply, emoji等",

View File

@@ -6,7 +6,7 @@ from typing import List, Tuple, Type
from src.plugin_system.apis.plugin_register_api import register_plugin from src.plugin_system.apis.plugin_register_api import register_plugin
from src.plugin_system.base.base_plugin import BasePlugin from src.plugin_system.base.base_plugin import BasePlugin
from src.plugin_system.base.component_types import ComponentInfo, ChatterInfo, ComponentType, ChatType from src.plugin_system.base.component_types import ComponentInfo
from src.common.logger import get_logger from src.common.logger import get_logger
logger = get_logger("affinity_chatter_plugin") logger = get_logger("affinity_chatter_plugin")

View File

@@ -385,7 +385,9 @@ class ChatterRelationshipTracker:
time_diff = reply_timestamp - last_tracked_time time_diff = reply_timestamp - last_tracked_time
if time_diff < 5 * 60: # 5分钟内不重复追踪 if time_diff < 5 * 60: # 5分钟内不重复追踪
logger.debug(f"⏱️ [RelationshipTracker] 用户 {user_id} 距离上次追踪时间不足5分钟 ({time_diff:.2f}s),跳过") logger.debug(
f"⏱️ [RelationshipTracker] 用户 {user_id} 距离上次追踪时间不足5分钟 ({time_diff:.2f}s),跳过"
)
return return
# 获取上次bot回复该用户的消息 # 获取上次bot回复该用户的消息
@@ -647,6 +649,7 @@ class ChatterRelationshipTracker:
# 获取bot人设信息 # 获取bot人设信息
from src.individuality.individuality import Individuality from src.individuality.individuality import Individuality
individuality = Individuality() individuality = Individuality()
bot_personality = await individuality.get_personality_block() bot_personality = await individuality.get_personality_block()
@@ -682,11 +685,18 @@ class ChatterRelationshipTracker:
return return
import json import json
cleaned_response = self._clean_llm_json_response(llm_response) cleaned_response = self._clean_llm_json_response(llm_response)
response_data = json.loads(cleaned_response) response_data = json.loads(cleaned_response)
new_text = response_data.get("relationship_text", "初次见面") new_text = response_data.get("relationship_text", "初次见面")
new_score = max(0.0, min(1.0, float(response_data.get("relationship_score", global_config.affinity_flow.base_relationship_score)))) new_score = max(
0.0,
min(
1.0,
float(response_data.get("relationship_score", global_config.affinity_flow.base_relationship_score)),
),
)
# 更新数据库和缓存 # 更新数据库和缓存
self._update_user_relationship_in_db(user_id, new_text, new_score) self._update_user_relationship_in_db(user_id, new_text, new_score)
@@ -702,7 +712,6 @@ class ChatterRelationshipTracker:
logger.error(f"处理初次交互失败: {user_id}, 错误: {e}") logger.error(f"处理初次交互失败: {user_id}, 错误: {e}")
logger.debug("错误详情:", exc_info=True) logger.debug("错误详情:", exc_info=True)
def _clean_llm_json_response(self, response: str) -> str: def _clean_llm_json_response(self, response: str) -> str:
""" """
清理LLM响应移除可能的JSON格式标记 清理LLM响应移除可能的JSON格式标记