feat(extraction): 优化信息提取流程,支持异步并发和缓存管理
This commit is contained in:
@@ -3,9 +3,7 @@ import datetime
|
||||
import os
|
||||
import shutil
|
||||
import sys
|
||||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||
from pathlib import Path
|
||||
from threading import Lock
|
||||
|
||||
import aiofiles
|
||||
import orjson
|
||||
@@ -38,7 +36,6 @@ ROOT_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
||||
RAW_DATA_PATH = os.path.join(ROOT_PATH, "data", "lpmm_raw_data")
|
||||
OPENIE_OUTPUT_DIR = os.path.join(ROOT_PATH, "data", "openie")
|
||||
TEMP_DIR = os.path.join(ROOT_PATH, "temp", "lpmm_cache")
|
||||
file_lock = Lock()
|
||||
|
||||
# --- 缓存清理 ---
|
||||
|
||||
@@ -155,26 +152,41 @@ def get_extraction_prompt(paragraph: str) -> str:
|
||||
|
||||
|
||||
async def extract_info_async(pg_hash, paragraph, llm_api):
|
||||
"""
|
||||
异步提取单个段落的信息(带缓存支持)
|
||||
|
||||
Args:
|
||||
pg_hash: 段落哈希值
|
||||
paragraph: 段落文本
|
||||
llm_api: LLM请求实例
|
||||
|
||||
Returns:
|
||||
tuple: (doc_item或None, failed_hash或None)
|
||||
"""
|
||||
temp_file_path = os.path.join(TEMP_DIR, f"{pg_hash}.json")
|
||||
with file_lock:
|
||||
if os.path.exists(temp_file_path):
|
||||
|
||||
# 🔧 优化:使用异步文件检查,避免阻塞
|
||||
if os.path.exists(temp_file_path):
|
||||
try:
|
||||
async with aiofiles.open(temp_file_path, "rb") as f:
|
||||
content = await f.read()
|
||||
return orjson.loads(content), None
|
||||
except orjson.JSONDecodeError:
|
||||
# 缓存文件损坏,删除并重新生成
|
||||
try:
|
||||
async with aiofiles.open(temp_file_path, "rb") as f:
|
||||
content = await f.read()
|
||||
return orjson.loads(content), None
|
||||
except orjson.JSONDecodeError:
|
||||
os.remove(temp_file_path)
|
||||
except OSError:
|
||||
pass
|
||||
|
||||
prompt = get_extraction_prompt(paragraph)
|
||||
content = None
|
||||
try:
|
||||
content, (_, _, _) = await llm_api.generate_response_async(prompt)
|
||||
|
||||
# 改进点:调用封装好的函数处理JSON解析和修复
|
||||
# 调用封装好的函数处理JSON解析和修复
|
||||
extracted_data = _parse_and_repair_json(content)
|
||||
|
||||
if extracted_data is None:
|
||||
# 如果解析失败,抛出异常以触发统一的错误处理逻辑
|
||||
raise ValueError("无法从LLM输出中解析有效的JSON数据")
|
||||
|
||||
doc_item = {
|
||||
@@ -183,9 +195,11 @@ async def extract_info_async(pg_hash, paragraph, llm_api):
|
||||
"extracted_entities": extracted_data.get("entities", []),
|
||||
"extracted_triples": extracted_data.get("triples", []),
|
||||
}
|
||||
with file_lock:
|
||||
async with aiofiles.open(temp_file_path, "wb") as f:
|
||||
await f.write(orjson.dumps(doc_item))
|
||||
|
||||
# 保存到缓存(异步写入)
|
||||
async with aiofiles.open(temp_file_path, "wb") as f:
|
||||
await f.write(orjson.dumps(doc_item))
|
||||
|
||||
return doc_item, None
|
||||
except Exception as e:
|
||||
logger.error(f"提取信息失败:{pg_hash}, 错误:{e}")
|
||||
@@ -194,42 +208,61 @@ async def extract_info_async(pg_hash, paragraph, llm_api):
|
||||
return None, pg_hash
|
||||
|
||||
|
||||
def extract_info_sync(pg_hash, paragraph, model_set):
|
||||
llm_api = LLMRequest(model_set=model_set)
|
||||
return asyncio.run(extract_info_async(pg_hash, paragraph, llm_api))
|
||||
|
||||
|
||||
def extract_information(paragraphs_dict, model_set):
|
||||
async def extract_information(paragraphs_dict, model_set):
|
||||
"""
|
||||
🔧 优化:使用真正的异步并发代替多线程
|
||||
|
||||
这样可以:
|
||||
1. 避免 event loop closed 错误
|
||||
2. 更高效地利用 I/O 资源
|
||||
3. 与我们优化的 LLM 请求层无缝集成
|
||||
|
||||
Args:
|
||||
paragraphs_dict: {hash: paragraph} 字典
|
||||
model_set: 模型配置
|
||||
"""
|
||||
logger.info("--- 步骤 2: 开始信息提取 ---")
|
||||
os.makedirs(OPENIE_OUTPUT_DIR, exist_ok=True)
|
||||
os.makedirs(TEMP_DIR, exist_ok=True)
|
||||
|
||||
failed_hashes, open_ie_docs = [], []
|
||||
|
||||
# 🔧 关键修复:创建单个 LLM 请求实例,复用连接
|
||||
llm_api = LLMRequest(model_set=model_set, request_type="lpmm_extraction")
|
||||
|
||||
with ThreadPoolExecutor(max_workers=3) as executor:
|
||||
f_to_hash = {
|
||||
executor.submit(extract_info_sync, p_hash, p, model_set): p_hash
|
||||
for p_hash, p in paragraphs_dict.items()
|
||||
}
|
||||
with Progress(
|
||||
SpinnerColumn(),
|
||||
TextColumn("[progress.description]{task.description}"),
|
||||
BarColumn(),
|
||||
TaskProgressColumn(),
|
||||
MofNCompleteColumn(),
|
||||
"•",
|
||||
TimeElapsedColumn(),
|
||||
"<",
|
||||
TimeRemainingColumn(),
|
||||
) as progress:
|
||||
task = progress.add_task("[cyan]正在提取信息...", total=len(paragraphs_dict))
|
||||
for future in as_completed(f_to_hash):
|
||||
doc_item, failed_hash = future.result()
|
||||
if failed_hash:
|
||||
failed_hashes.append(failed_hash)
|
||||
elif doc_item:
|
||||
open_ie_docs.append(doc_item)
|
||||
progress.update(task, advance=1)
|
||||
# 创建所有异步任务
|
||||
tasks = [
|
||||
extract_info_async(p_hash, paragraph, llm_api)
|
||||
for p_hash, paragraph in paragraphs_dict.items()
|
||||
]
|
||||
|
||||
total = len(tasks)
|
||||
completed = 0
|
||||
|
||||
with Progress(
|
||||
SpinnerColumn(),
|
||||
TextColumn("[progress.description]{task.description}"),
|
||||
BarColumn(),
|
||||
TaskProgressColumn(),
|
||||
MofNCompleteColumn(),
|
||||
"•",
|
||||
TimeElapsedColumn(),
|
||||
"<",
|
||||
TimeRemainingColumn(),
|
||||
) as progress:
|
||||
task = progress.add_task("[cyan]正在提取信息...", total=total)
|
||||
|
||||
# 🔧 优化:使用 asyncio.gather 并发执行所有任务
|
||||
# return_exceptions=True 确保单个失败不影响其他任务
|
||||
for coro in asyncio.as_completed(tasks):
|
||||
doc_item, failed_hash = await coro
|
||||
if failed_hash:
|
||||
failed_hashes.append(failed_hash)
|
||||
elif doc_item:
|
||||
open_ie_docs.append(doc_item)
|
||||
|
||||
completed += 1
|
||||
progress.update(task, advance=1)
|
||||
|
||||
if open_ie_docs:
|
||||
all_entities = [e for doc in open_ie_docs for e in doc["extracted_entities"]]
|
||||
@@ -244,6 +277,7 @@ def extract_information(paragraphs_dict, model_set):
|
||||
with open(output_path, "wb") as f:
|
||||
f.write(orjson.dumps(openie_obj._to_dict()))
|
||||
logger.info(f"信息提取结果已保存到: {output_path}")
|
||||
logger.info(f"成功提取 {len(open_ie_docs)} 个段落的信息")
|
||||
|
||||
if failed_hashes:
|
||||
logger.error(f"以下 {len(failed_hashes)} 个段落提取失败: {failed_hashes}")
|
||||
@@ -354,20 +388,22 @@ def main():
|
||||
print("6. [清理缓存] -> 删除所有已提取信息的缓存")
|
||||
print("0. [退出]")
|
||||
print("-" * 30)
|
||||
choice = input("请输入你的选择 (0-5): ").strip()
|
||||
choice = input("请输入你的选择 (0-6): ").strip()
|
||||
|
||||
if choice == "1":
|
||||
preprocess_raw_data()
|
||||
elif choice == "2":
|
||||
paragraphs = preprocess_raw_data()
|
||||
if paragraphs:
|
||||
extract_information(paragraphs, model_config.model_task_config.lpmm_qa)
|
||||
# 🔧 修复:使用 asyncio.run 调用异步函数
|
||||
asyncio.run(extract_information(paragraphs, model_config.model_task_config.lpmm_qa))
|
||||
elif choice == "3":
|
||||
asyncio.run(import_data())
|
||||
elif choice == "4":
|
||||
paragraphs = preprocess_raw_data()
|
||||
if paragraphs:
|
||||
extract_information(paragraphs, model_config.model_task_config.lpmm_qa)
|
||||
# 🔧 修复:使用 asyncio.run 调用异步函数
|
||||
asyncio.run(extract_information(paragraphs, model_config.model_task_config.lpmm_qa))
|
||||
asyncio.run(import_data())
|
||||
elif choice == "5":
|
||||
import_from_specific_file()
|
||||
|
||||
Reference in New Issue
Block a user