feat(relationship): 重构关系信息提取系统并集成聊天流印象

- 在 RelationshipFetcher 中添加 build_chat_stream_impression 方法,支持聊天流印象信息构建
- 扩展数据库模型,为 ChatStreams 表添加聊天流印象相关字段(stream_impression_text、stream_chat_style、stream_topic_keywords、stream_interest_score)
- 为 UserRelationships 表添加用户别名和偏好关键词字段(user_aliases、preference_keywords)
- 在 DefaultReplyer、Prompt 和 S4U PromptBuilder 中集成用户关系信息和聊天流印象的组合输出
- 重构工具系统,为 BaseTool 添加 chat_stream 参数支持上下文感知
- 移除旧的 ChatterRelationshipTracker 及相关关系追踪逻辑,统一使用评分API
- 在 AffinityChatterPlugin 中添加 UserProfileTool 和 ChatStreamImpressionTool 支持
- 优化计划执行器,移除关系追踪相关代码并改进错误处理

BREAKING CHANGE: 移除了 ChatterRelationshipTracker 类及相关的关系追踪功能,现在统一使用 scoring_api 进行关系管理。BaseTool 构造函数现在需要 chat_stream 参数。
This commit is contained in:
Windpicker-owo
2025-10-30 16:58:26 +08:00
parent cfa642cf0a
commit ea7c1f22f9
17 changed files with 1264 additions and 989 deletions

View File

@@ -0,0 +1,303 @@
"""
关系追踪工具集成测试脚本
注意:此脚本需要在完整的应用环境中运行
建议通过 bot.py 启动后在交互式环境中测试
"""
import asyncio
async def test_user_profile_tool():
"""测试用户画像工具"""
print("\n" + "=" * 80)
print("测试 UserProfileTool")
print("=" * 80)
from src.plugins.built_in.affinity_flow_chatter.user_profile_tool import UserProfileTool
from src.common.database.sqlalchemy_database_api import db_query
from src.common.database.sqlalchemy_models import UserRelationships
tool = UserProfileTool()
print(f"✅ 工具名称: {tool.name}")
print(f" 工具描述: {tool.description}")
# 执行工具
test_user_id = "integration_test_user_001"
result = await tool.execute({
"target_user_id": test_user_id,
"user_aliases": "测试小明,TestMing,小明君",
"impression_description": "这是一个集成测试用户性格开朗活泼喜欢技术讨论对AI和编程特别感兴趣。经常提出有深度的问题。",
"preference_keywords": "AI,Python,深度学习,游戏开发,科幻小说",
"affection_score": 0.85
})
print(f"\n✅ 工具执行结果:")
print(f" 类型: {result.get('type')}")
print(f" 内容: {result.get('content')}")
# 验证数据库
db_data = await db_query(
UserRelationships,
filters={"user_id": test_user_id},
limit=1
)
if db_data:
data = db_data[0]
print(f"\n✅ 数据库验证:")
print(f" user_id: {data.get('user_id')}")
print(f" user_aliases: {data.get('user_aliases')}")
print(f" relationship_text: {data.get('relationship_text', '')[:80]}...")
print(f" preference_keywords: {data.get('preference_keywords')}")
print(f" relationship_score: {data.get('relationship_score')}")
return True
else:
print(f"\n❌ 数据库中未找到数据")
return False
async def test_chat_stream_impression_tool():
"""测试聊天流印象工具"""
print("\n" + "=" * 80)
print("测试 ChatStreamImpressionTool")
print("=" * 80)
from src.plugins.built_in.affinity_flow_chatter.chat_stream_impression_tool import ChatStreamImpressionTool
from src.common.database.sqlalchemy_database_api import db_query
from src.common.database.sqlalchemy_models import ChatStreams, get_db_session
# 准备测试数据:先创建一条 ChatStreams 记录
test_stream_id = "integration_test_stream_001"
print(f"🔧 准备测试数据:创建聊天流记录 {test_stream_id}")
import time
current_time = time.time()
async with get_db_session() as session:
new_stream = ChatStreams(
stream_id=test_stream_id,
create_time=current_time,
last_active_time=current_time,
platform="QQ",
user_platform="QQ",
user_id="test_user_123",
user_nickname="测试用户",
group_name="测试技术交流群",
group_platform="QQ",
group_id="test_group_456",
stream_impression_text="", # 初始为空
stream_chat_style="",
stream_topic_keywords="",
stream_interest_score=0.5
)
session.add(new_stream)
await session.commit()
print(f"✅ 测试聊天流记录已创建")
tool = ChatStreamImpressionTool()
print(f"✅ 工具名称: {tool.name}")
print(f" 工具描述: {tool.description}")
# 执行工具
result = await tool.execute({
"stream_id": test_stream_id,
"impression_description": "这是一个技术交流群成员主要是程序员和AI爱好者。大家经常分享最新的技术文章讨论编程问题氛围友好且专业。",
"chat_style": "专业技术交流,活跃讨论,互帮互助,知识分享",
"topic_keywords": "Python开发,机器学习,AI应用,Web后端,数据分析,开源项目",
"interest_score": 0.90
})
print(f"\n✅ 工具执行结果:")
print(f" 类型: {result.get('type')}")
print(f" 内容: {result.get('content')}")
# 验证数据库
db_data = await db_query(
ChatStreams,
filters={"stream_id": test_stream_id},
limit=1
)
if db_data:
data = db_data[0]
print(f"\n✅ 数据库验证:")
print(f" stream_id: {data.get('stream_id')}")
print(f" stream_impression_text: {data.get('stream_impression_text', '')[:80]}...")
print(f" stream_chat_style: {data.get('stream_chat_style')}")
print(f" stream_topic_keywords: {data.get('stream_topic_keywords')}")
print(f" stream_interest_score: {data.get('stream_interest_score')}")
return True
else:
print(f"\n❌ 数据库中未找到数据")
return False
async def test_relationship_info_build():
"""测试关系信息构建"""
print("\n" + "=" * 80)
print("测试关系信息构建(提示词集成)")
print("=" * 80)
from src.person_info.relationship_fetcher import relationship_fetcher_manager
test_stream_id = "integration_test_stream_001"
test_person_id = "test_person_999" # 使用一个可能不存在的ID来测试
fetcher = relationship_fetcher_manager.get_fetcher(test_stream_id)
print(f"✅ RelationshipFetcher 已创建")
# 测试聊天流印象构建
print(f"\n🔍 构建聊天流印象...")
stream_info = await fetcher.build_chat_stream_impression(test_stream_id)
if stream_info:
print(f"✅ 聊天流印象构建成功")
print(f"\n{'=' * 80}")
print(stream_info)
print(f"{'=' * 80}")
else:
print(f"⚠️ 聊天流印象为空(可能测试数据不存在)")
return True
async def cleanup_test_data():
"""清理测试数据"""
print("\n" + "=" * 80)
print("清理测试数据")
print("=" * 80)
from src.common.database.sqlalchemy_database_api import db_query
from src.common.database.sqlalchemy_models import UserRelationships, ChatStreams
try:
# 清理用户数据
await db_query(
UserRelationships,
query_type="delete",
filters={"user_id": "integration_test_user_001"}
)
print("✅ 用户测试数据已清理")
# 清理聊天流数据
await db_query(
ChatStreams,
query_type="delete",
filters={"stream_id": "integration_test_stream_001"}
)
print("✅ 聊天流测试数据已清理")
return True
except Exception as e:
print(f"⚠️ 清理失败: {e}")
return False
async def run_all_tests():
"""运行所有测试"""
print("\n" + "=" * 80)
print("关系追踪工具集成测试")
print("=" * 80)
results = {}
# 测试1
try:
results["UserProfileTool"] = await test_user_profile_tool()
except Exception as e:
print(f"\n❌ UserProfileTool 测试失败: {e}")
import traceback
traceback.print_exc()
results["UserProfileTool"] = False
# 测试2
try:
results["ChatStreamImpressionTool"] = await test_chat_stream_impression_tool()
except Exception as e:
print(f"\n❌ ChatStreamImpressionTool 测试失败: {e}")
import traceback
traceback.print_exc()
results["ChatStreamImpressionTool"] = False
# 测试3
try:
results["RelationshipFetcher"] = await test_relationship_info_build()
except Exception as e:
print(f"\n❌ RelationshipFetcher 测试失败: {e}")
import traceback
traceback.print_exc()
results["RelationshipFetcher"] = False
# 清理
try:
await cleanup_test_data()
except Exception as e:
print(f"\n⚠️ 清理测试数据失败: {e}")
# 总结
print("\n" + "=" * 80)
print("测试总结")
print("=" * 80)
passed = sum(1 for r in results.values() if r)
total = len(results)
for test_name, result in results.items():
status = "✅ 通过" if result else "❌ 失败"
print(f"{status} - {test_name}")
print(f"\n总计: {passed}/{total} 测试通过")
if passed == total:
print("\n🎉 所有测试通过!")
else:
print(f"\n⚠️ {total - passed} 个测试失败")
return passed == total
# 使用说明
print("""
============================================================================
关系追踪工具集成测试脚本
============================================================================
此脚本需要在完整的应用环境中运行。
使用方法1: 在 bot.py 中添加测试调用
-----------------------------------
在 bot.py 的 main() 函数中添加:
# 测试关系追踪工具
from tests.integration_test_relationship_tools import run_all_tests
await run_all_tests()
使用方法2: 在 Python REPL 中运行
-----------------------------------
启动 bot.py 后,在 Python 调试控制台中执行:
import asyncio
from tests.integration_test_relationship_tools import run_all_tests
asyncio.create_task(run_all_tests())
使用方法3: 直接在此文件底部运行
-----------------------------------
取消注释下面的代码,然后确保已启动应用环境
============================================================================
""")
# 如果需要直接运行(需要应用环境已启动)
if __name__ == "__main__":
print("\n⚠️ 警告: 直接运行此脚本可能会失败,因为缺少应用环境")
print("建议在 bot.py 启动后的环境中运行\n")
try:
asyncio.run(run_all_tests())
except Exception as e:
print(f"\n❌ 测试失败: {e}")
print("\n建议:")
print("1. 确保已启动 bot.py")
print("2. 在 Python 调试控制台中运行测试")
print("3. 或在 bot.py 中添加测试调用")

View File

@@ -1882,42 +1882,64 @@ class DefaultReplyer:
logger.warning(f"未找到用户 {sender} 的ID跳过信息提取") logger.warning(f"未找到用户 {sender} 的ID跳过信息提取")
return f"你完全不认识{sender}不理解ta的相关信息。" return f"你完全不认识{sender}不理解ta的相关信息。"
# 使用统一评分API获取关系信息 # 使用 RelationshipFetcher 获取完整关系信息(包含新字段)
try: try:
from src.plugin_system.apis.scoring_api import scoring_api from src.person_info.relationship_fetcher import relationship_fetcher_manager
# 获取用户信息以获取真实的user_id # 获取 chat_id
user_info = await person_info_manager.get_values(person_id, ["user_id", "platform"]) chat_id = self.chat_stream.stream_id
user_id = user_info.get("user_id", "unknown")
# 从统一API获取关系数据 # 获取 RelationshipFetcher 实例
relationship_data = await scoring_api.get_user_relationship_data(user_id) relationship_fetcher = relationship_fetcher_manager.get_fetcher(chat_id)
if relationship_data:
relationship_text = relationship_data.get("relationship_text", "")
relationship_score = relationship_data.get("relationship_score", 0.3)
# 构建丰富的关系信息描述 # 构建用户关系信息(包含别名、偏好关键词等新字段)
if relationship_text: user_relation_info = await relationship_fetcher.build_relation_info(person_id, points_num=5)
# 转换关系分数为描述性文本
if relationship_score >= 0.8:
relationship_level = "非常亲密的朋友"
elif relationship_score >= 0.6:
relationship_level = "好朋友"
elif relationship_score >= 0.4:
relationship_level = "普通朋友"
elif relationship_score >= 0.2:
relationship_level = "认识的人"
else:
relationship_level = "陌生人"
return f"你与{sender}的关系:{relationship_level}(关系分:{relationship_score:.2f}/1.0)。{relationship_text}" # 构建聊天流印象信息
else: stream_impression = await relationship_fetcher.build_chat_stream_impression(chat_id)
return f"你与{sender}是初次见面,关系分:{relationship_score:.2f}/1.0。"
# 组合两部分信息
if user_relation_info and stream_impression:
return "\n\n".join([user_relation_info, stream_impression])
elif user_relation_info:
return user_relation_info
elif stream_impression:
return stream_impression
else: else:
return f"你完全不认识{sender},这是第一次互动。" return f"你完全不认识{sender},这是第一次互动。"
except Exception as e: except Exception as e:
logger.error(f"获取关系信息失败: {e}") logger.error(f"获取关系信息失败: {e}")
# 降级到基本信息
try:
from src.plugin_system.apis.scoring_api import scoring_api
user_info = await person_info_manager.get_values(person_id, ["user_id", "platform"])
user_id = user_info.get("user_id", "unknown")
relationship_data = await scoring_api.get_user_relationship_data(user_id)
if relationship_data:
relationship_text = relationship_data.get("relationship_text", "")
relationship_score = relationship_data.get("relationship_score", 0.3)
if relationship_text:
if relationship_score >= 0.8:
relationship_level = "非常亲密的朋友"
elif relationship_score >= 0.6:
relationship_level = "好朋友"
elif relationship_score >= 0.4:
relationship_level = "普通朋友"
elif relationship_score >= 0.2:
relationship_level = "认识的人"
else:
relationship_level = "陌生人"
return f"你与{sender}的关系:{relationship_level}(关系分:{relationship_score:.2f}/1.0)。{relationship_text}"
else:
return f"你与{sender}是初次见面,关系分:{relationship_score:.2f}/1.0。"
except Exception:
pass
return f"你与{sender}是普通朋友关系。" return f"你与{sender}是普通朋友关系。"
async def _store_chat_memory_async(self, reply_to: str, reply_message: dict[str, Any] | None = None): async def _store_chat_memory_async(self, reply_to: str, reply_message: dict[str, Any] | None = None):

View File

@@ -1109,8 +1109,18 @@ class Prompt:
logger.warning(f"未找到用户 {sender} 的ID跳过信息提取") logger.warning(f"未找到用户 {sender} 的ID跳过信息提取")
return f"你完全不认识{sender}不理解ta的相关信息。" return f"你完全不认识{sender}不理解ta的相关信息。"
# 使用关系提取器构建关系信息 # 使用关系提取器构建用户关系信息和聊天流印象
return await relationship_fetcher.build_relation_info(person_id, points_num=5) user_relation_info = await relationship_fetcher.build_relation_info(person_id, points_num=5)
stream_impression = await relationship_fetcher.build_chat_stream_impression(chat_id)
# 组合两部分信息
info_parts = []
if user_relation_info:
info_parts.append(user_relation_info)
if stream_impression:
info_parts.append(stream_impression)
return "\n\n".join(info_parts) if info_parts else ""
def _get_default_result_for_task(self, task_name: str) -> dict[str, Any]: def _get_default_result_for_task(self, task_name: str) -> dict[str, Any]:
"""为超时或失败的异步构建任务提供一个安全的默认返回值. """为超时或失败的异步构建任务提供一个安全的默认返回值.

View File

@@ -140,6 +140,11 @@ class ChatStreams(Base):
consecutive_no_reply: Mapped[int | None] = mapped_column(Integer, nullable=True, default=0) consecutive_no_reply: Mapped[int | None] = mapped_column(Integer, nullable=True, default=0)
# 消息打断系统字段 # 消息打断系统字段
interruption_count: Mapped[int | None] = mapped_column(Integer, nullable=True, default=0) interruption_count: Mapped[int | None] = mapped_column(Integer, nullable=True, default=0)
# 聊天流印象字段
stream_impression_text: Mapped[str | None] = mapped_column(Text, nullable=True) # 对聊天流的主观印象描述
stream_chat_style: Mapped[str | None] = mapped_column(Text, nullable=True) # 聊天流的总体风格
stream_topic_keywords: Mapped[str | None] = mapped_column(Text, nullable=True) # 话题关键词,逗号分隔
stream_interest_score: Mapped[float | None] = mapped_column(Float, nullable=True, default=0.5) # 对聊天流的兴趣程度(0-1)
__table_args__ = ( __table_args__ = (
Index("idx_chatstreams_stream_id", "stream_id"), Index("idx_chatstreams_stream_id", "stream_id"),
@@ -877,7 +882,9 @@ class UserRelationships(Base):
id: Mapped[int] = mapped_column(Integer, primary_key=True, autoincrement=True) id: Mapped[int] = mapped_column(Integer, primary_key=True, autoincrement=True)
user_id: Mapped[str] = mapped_column(get_string_field(100), nullable=False, unique=True, index=True) user_id: Mapped[str] = mapped_column(get_string_field(100), nullable=False, unique=True, index=True)
user_name: Mapped[str | None] = mapped_column(get_string_field(100), nullable=True) user_name: Mapped[str | None] = mapped_column(get_string_field(100), nullable=True)
user_aliases: Mapped[str | None] = mapped_column(Text, nullable=True) # 用户别名,逗号分隔
relationship_text: Mapped[str | None] = mapped_column(Text, nullable=True) relationship_text: Mapped[str | None] = mapped_column(Text, nullable=True)
preference_keywords: Mapped[str | None] = mapped_column(Text, nullable=True) # 用户偏好关键词,逗号分隔
relationship_score: Mapped[float] = mapped_column(Float, nullable=False, default=0.3) # 关系分数(0-1) relationship_score: Mapped[float] = mapped_column(Float, nullable=False, default=0.3) # 关系分数(0-1)
last_updated: Mapped[float] = mapped_column(Float, nullable=False, default=time.time) last_updated: Mapped[float] = mapped_column(Float, nullable=False, default=time.time)
created_at: Mapped[datetime.datetime] = mapped_column(DateTime, default=datetime.datetime.utcnow, nullable=False) created_at: Mapped[datetime.datetime] = mapped_column(DateTime, default=datetime.datetime.utcnow, nullable=False)

View File

@@ -432,20 +432,6 @@ MoFox_Bot(第三方修改版)
get_emoji_manager().initialize() get_emoji_manager().initialize()
logger.info("表情包管理器初始化成功") logger.info("表情包管理器初始化成功")
"""
# 初始化回复后关系追踪系统
try:
from src.plugins.built_in.affinity_flow_chatter.interest_scoring import chatter_interest_scoring_system
from src.plugins.built_in.affinity_flow_chatter.relationship_tracker import ChatterRelationshipTracker
relationship_tracker = ChatterRelationshipTracker(interest_scoring_system=chatter_interest_scoring_system)
chatter_interest_scoring_system.relationship_tracker = relationship_tracker
logger.info("回复后关系追踪系统初始化成功")
except Exception as e:
logger.error(f"回复后关系追踪系统初始化失败: {e}")
relationship_tracker = None
"""
# 启动情绪管理器 # 启动情绪管理器
await mood_manager.start() await mood_manager.start()
logger.info("情绪管理器初始化成功") logger.info("情绪管理器初始化成功")

View File

@@ -166,13 +166,25 @@ class PromptBuilder:
person_id = PersonInfoManager.get_person_id(person[0], person[1]) person_id = PersonInfoManager.get_person_id(person[0], person[1])
person_ids.append(person_id) person_ids.append(person_id)
# 使用 RelationshipFetcher 的 build_relation_info 方法,设置 points_num=3 保持与原来相同的行为 # 构建用户关系信息和聊天流印象信息
relation_info_list = await asyncio.gather( user_relation_tasks = [relationship_fetcher.build_relation_info(person_id, points_num=3) for person_id in person_ids]
*[relationship_fetcher.build_relation_info(person_id, points_num=3) for person_id in person_ids] stream_impression_task = relationship_fetcher.build_chat_stream_impression(chat_stream.stream_id)
)
if relation_info := "".join(relation_info_list): # 并行获取所有信息
results = await asyncio.gather(*user_relation_tasks, stream_impression_task)
relation_info_list = results[:-1] # 用户关系信息
stream_impression = results[-1] # 聊天流印象
# 组合用户关系信息和聊天流印象
combined_info_parts = []
if user_relation_info := "".join(relation_info_list):
combined_info_parts.append(user_relation_info)
if stream_impression:
combined_info_parts.append(stream_impression)
if combined_info := "\n\n".join(combined_info_parts):
relation_prompt = await global_prompt_manager.format_prompt( relation_prompt = await global_prompt_manager.format_prompt(
"relation_prompt", relation_info=relation_info "relation_prompt", relation_info=combined_info
) )
return relation_prompt return relation_prompt

View File

@@ -177,25 +177,44 @@ class RelationshipFetcher:
if points_text: if points_text:
relation_parts.append(f"你记得关于{person_name}的一些事情:\n{points_text}") relation_parts.append(f"你记得关于{person_name}的一些事情:\n{points_text}")
# 5. 从UserRelationships表获取额外关系信息 # 5. 从UserRelationships表获取完整关系信息(新系统)
try: try:
from src.common.database.sqlalchemy_database_api import db_query from src.common.database.sqlalchemy_database_api import db_query
from src.common.database.sqlalchemy_models import UserRelationships from src.common.database.sqlalchemy_models import UserRelationships
# 查询用户关系数据 # 查询用户关系数据
user_id = str(person_info_manager.get_value(person_id, "user_id"))
relationships = await db_query( relationships = await db_query(
UserRelationships, UserRelationships,
filters=[UserRelationships.user_id == str(person_info_manager.get_value(person_id, "user_id"))], filters={"user_id": user_id},
limit=1, limit=1,
) )
if relationships: if relationships:
rel_data = relationships[0] rel_data = relationships[0]
# 5.1 用户别名
if rel_data.user_aliases:
aliases_list = [alias.strip() for alias in rel_data.user_aliases.split(",") if alias.strip()]
if aliases_list:
aliases_str = "".join(aliases_list)
relation_parts.append(f"{person_name}的别名有:{aliases_str}")
# 5.2 关系印象文本(主观认知)
if rel_data.relationship_text: if rel_data.relationship_text:
relation_parts.append(f"关系记录{rel_data.relationship_text}") relation_parts.append(f"你对{person_name}的整体认知{rel_data.relationship_text}")
if rel_data.relationship_score:
# 5.3 用户偏好关键词
if rel_data.preference_keywords:
keywords_list = [kw.strip() for kw in rel_data.preference_keywords.split(",") if kw.strip()]
if keywords_list:
keywords_str = "".join(keywords_list)
relation_parts.append(f"{person_name}的偏好和兴趣:{keywords_str}")
# 5.4 关系亲密程度(好感分数)
if rel_data.relationship_score is not None:
score_desc = self._get_relationship_score_description(rel_data.relationship_score) score_desc = self._get_relationship_score_description(rel_data.relationship_score)
relation_parts.append(f"关系亲密程度:{score_desc}") relation_parts.append(f"你们的关系程度:{score_desc}{rel_data.relationship_score:.2f}")
except Exception as e: except Exception as e:
logger.debug(f"查询UserRelationships表失败: {e}") logger.debug(f"查询UserRelationships表失败: {e}")
@@ -210,6 +229,84 @@ class RelationshipFetcher:
return relation_info return relation_info
async def build_chat_stream_impression(self, stream_id: str) -> str:
"""构建聊天流的印象信息
Args:
stream_id: 聊天流ID
Returns:
str: 格式化后的聊天流印象字符串
"""
try:
from src.common.database.sqlalchemy_database_api import db_query
from src.common.database.sqlalchemy_models import ChatStreams
# 查询聊天流数据
streams = await db_query(
ChatStreams,
filters={"stream_id": stream_id},
limit=1,
)
if not streams:
return ""
stream_data = streams[0]
impression_parts = []
# 1. 聊天环境基本信息
if stream_data.group_name:
impression_parts.append(f"这是一个名为「{stream_data.group_name}」的群聊")
else:
impression_parts.append("这是一个私聊对话")
# 2. 聊天流的主观印象
if stream_data.stream_impression_text:
impression_parts.append(f"你对这个聊天环境的印象:{stream_data.stream_impression_text}")
# 3. 聊天风格
if stream_data.stream_chat_style:
impression_parts.append(f"这里的聊天风格:{stream_data.stream_chat_style}")
# 4. 常见话题
if stream_data.stream_topic_keywords:
topics_list = [topic.strip() for topic in stream_data.stream_topic_keywords.split(",") if topic.strip()]
if topics_list:
topics_str = "".join(topics_list)
impression_parts.append(f"这里常讨论的话题:{topics_str}")
# 5. 兴趣程度
if stream_data.stream_interest_score is not None:
interest_desc = self._get_interest_score_description(stream_data.stream_interest_score)
impression_parts.append(f"你对这个聊天环境的兴趣程度:{interest_desc}{stream_data.stream_interest_score:.2f}")
# 构建最终的印象信息字符串
if impression_parts:
impression_info = "关于当前的聊天环境:\n" + "\n".join(
[f"{part}" for part in impression_parts]
)
return impression_info
else:
return ""
except Exception as e:
logger.debug(f"查询ChatStreams表失败: {e}")
return ""
def _get_interest_score_description(self, score: float) -> str:
"""根据兴趣分数返回描述性文字"""
if score >= 0.8:
return "非常感兴趣,很喜欢这里的氛围"
elif score >= 0.6:
return "比较感兴趣,愿意积极参与"
elif score >= 0.4:
return "一般兴趣,会适度参与"
elif score >= 0.2:
return "兴趣不大,较少主动参与"
else:
return "不太感兴趣,很少参与"
def _get_attitude_description(self, attitude: int) -> str: def _get_attitude_description(self, attitude: int) -> str:
"""根据态度分数返回描述性文字""" """根据态度分数返回描述性文字"""
if attitude >= 80: if attitude >= 80:

View File

@@ -7,8 +7,16 @@ from src.plugin_system.base.component_types import ComponentType
logger = get_logger("tool_api") logger = get_logger("tool_api")
def get_tool_instance(tool_name: str) -> BaseTool | None: def get_tool_instance(tool_name: str, chat_stream: Any = None) -> BaseTool | None:
"""获取公开工具实例""" """获取公开工具实例
Args:
tool_name: 工具名称
chat_stream: 聊天流对象,用于提供上下文信息
Returns:
BaseTool: 工具实例如果工具不存在则返回None
"""
from src.plugin_system.core import component_registry from src.plugin_system.core import component_registry
# 获取插件配置 # 获取插件配置
@@ -19,7 +27,7 @@ def get_tool_instance(tool_name: str) -> BaseTool | None:
plugin_config = None plugin_config = None
tool_class: type[BaseTool] = component_registry.get_component_class(tool_name, ComponentType.TOOL) # type: ignore tool_class: type[BaseTool] = component_registry.get_component_class(tool_name, ComponentType.TOOL) # type: ignore
return tool_class(plugin_config) if tool_class else None return tool_class(plugin_config, chat_stream) if tool_class else None
def get_llm_available_tool_definitions() -> list[dict[str, Any]]: def get_llm_available_tool_definitions() -> list[dict[str, Any]]:

View File

@@ -47,8 +47,9 @@ class BaseTool(ABC):
sub_tools: list[tuple[str, str, list[tuple[str, ToolParamType, str, bool, list[str] | None]]]] = [] sub_tools: list[tuple[str, str, list[tuple[str, ToolParamType, str, bool, list[str] | None]]]] = []
"""子工具列表,格式为[(子工具名, 子工具描述, 子工具参数)]。仅在二步工具中使用""" """子工具列表,格式为[(子工具名, 子工具描述, 子工具参数)]。仅在二步工具中使用"""
def __init__(self, plugin_config: dict | None = None): def __init__(self, plugin_config: dict | None = None, chat_stream: Any = None):
self.plugin_config = plugin_config or {} # 直接存储插件配置字典 self.plugin_config = plugin_config or {} # 直接存储插件配置字典
self.chat_stream = chat_stream # 存储聊天流信息,可用于获取上下文
@classmethod @classmethod
def get_tool_definition(cls) -> dict[str, Any]: def get_tool_definition(cls) -> dict[str, Any]:

View File

@@ -226,7 +226,7 @@ class ToolExecutor:
"""执行单个工具调用,并处理缓存""" """执行单个工具调用,并处理缓存"""
function_args = tool_call.args or {} function_args = tool_call.args or {}
tool_instance = tool_instance or get_tool_instance(tool_call.func_name) tool_instance = tool_instance or get_tool_instance(tool_call.func_name, self.chat_stream)
# 如果工具不存在或未启用缓存,则直接执行 # 如果工具不存在或未启用缓存,则直接执行
if not tool_instance or not tool_instance.enable_cache: if not tool_instance or not tool_instance.enable_cache:
@@ -320,7 +320,7 @@ class ToolExecutor:
parts = function_name.split("_", 1) parts = function_name.split("_", 1)
if len(parts) == 2: if len(parts) == 2:
base_tool_name, sub_tool_name = parts base_tool_name, sub_tool_name = parts
base_tool_instance = get_tool_instance(base_tool_name) base_tool_instance = get_tool_instance(base_tool_name, self.chat_stream)
if base_tool_instance and base_tool_instance.is_two_step_tool: if base_tool_instance and base_tool_instance.is_two_step_tool:
logger.info(f"{self.log_prefix}执行二步工具第二步: {base_tool_name}.{sub_tool_name}") logger.info(f"{self.log_prefix}执行二步工具第二步: {base_tool_name}.{sub_tool_name}")
@@ -340,7 +340,7 @@ class ToolExecutor:
} }
# 获取对应工具实例 # 获取对应工具实例
tool_instance = tool_instance or get_tool_instance(function_name) tool_instance = tool_instance or get_tool_instance(function_name, self.chat_stream)
if not tool_instance: if not tool_instance:
logger.warning(f"未知工具名称: {function_name}") logger.warning(f"未知工具名称: {function_name}")
return None return None

View File

@@ -209,13 +209,13 @@ class AffinityInterestCalculator(BaseInterestCalculator):
relationship_value = self.user_relationships[user_id] relationship_value = self.user_relationships[user_id]
return min(relationship_value, 1.0) return min(relationship_value, 1.0)
# 如果内存中没有,尝试从关系追踪器获取 # 如果内存中没有,尝试从统一的评分API获取
try: try:
from .relationship_tracker import ChatterRelationshipTracker from src.plugin_system.apis.scoring_api import scoring_api
global_tracker = ChatterRelationshipTracker() relationship_data = await scoring_api.get_user_relationship_data(user_id)
if global_tracker: if relationship_data:
relationship_score = await global_tracker.get_user_relationship_score(user_id) relationship_score = relationship_data.get("relationship_score", global_config.affinity_flow.base_relationship_score)
# 同时更新内存缓存 # 同时更新内存缓存
self.user_relationships[user_id] = relationship_score self.user_relationships[user_id] = relationship_score
return relationship_score return relationship_score

View File

@@ -0,0 +1,363 @@
"""
聊天流印象更新工具
通过LLM二步调用机制更新对聊天流如QQ群的整体印象包括主观描述、聊天风格、话题关键词和兴趣分数
"""
import json
import time
from typing import Any
from sqlalchemy import select
from src.common.database.sqlalchemy_database_api import get_db_session
from src.common.database.sqlalchemy_models import ChatStreams
from src.common.logger import get_logger
from src.config.config import model_config
from src.llm_models.utils_model import LLMRequest
from src.plugin_system import BaseTool, ToolParamType
logger = get_logger("chat_stream_impression_tool")
class ChatStreamImpressionTool(BaseTool):
"""聊天流印象更新工具
使用二步调用机制:
1. LLM决定是否调用工具并传入初步参数stream_id会自动传入
2. 工具内部调用LLM结合现有数据和传入参数决定最终更新内容
"""
name = "update_chat_stream_impression"
description = "当你通过观察聊天记录对当前聊天环境(群聊或私聊)产生了整体印象或认识时使用此工具,更新对这个聊天流的看法。包括:环境氛围、聊天风格、常见话题、你的兴趣程度。调用时机:当你发现这个聊天环境有明显的氛围特点(如很活跃、很专业、很闲聊)、群成员经常讨论某类话题、或者你对这个环境的感受发生变化时。注意:这是对整个聊天环境的印象,而非对单个用户。"
parameters = [
("impression_description", ToolParamType.STRING, "你对这个聊天环境的整体感受和印象,例如'这是个技术氛围浓厚的群''大家都很友好热情'。当你通过聊天记录感受到环境特点时填写(可选)", False, None),
("chat_style", ToolParamType.STRING, "这个聊天环境的风格特征,如'活跃热闹,互帮互助''严肃专业,深度讨论''轻松闲聊,段子频出'等。当你发现聊天方式有明显特点时填写(可选)", False, None),
("topic_keywords", ToolParamType.STRING, "这个聊天环境中经常出现的话题,如'编程,AI,技术分享''游戏,动漫,娱乐'。当你观察到群里反复讨论某些主题时填写,多个关键词用逗号分隔(可选)", False, None),
("interest_score", ToolParamType.FLOAT, "你对这个聊天环境的兴趣和喜欢程度0.0(无聊/不喜欢)到1.0(很有趣/很喜欢)。当你对这个环境的感觉发生变化时更新(可选)", False, None),
]
available_for_llm = True
history_ttl = 5
def __init__(self, plugin_config: dict | None = None):
super().__init__(plugin_config)
# 初始化用于二步调用的LLM
try:
self.impression_llm = LLMRequest(
model_set=model_config.model_task_config.relationship_tracker,
request_type="chat_stream_impression_update"
)
except AttributeError:
# 降级处理
available_models = [
attr for attr in dir(model_config.model_task_config)
if not attr.startswith("_") and attr != "model_dump"
]
if available_models:
fallback_model = available_models[0]
logger.warning(f"relationship_tracker配置不存在使用降级模型: {fallback_model}")
self.impression_llm = LLMRequest(
model_set=getattr(model_config.model_task_config, fallback_model),
request_type="chat_stream_impression_update"
)
else:
logger.error("无可用的模型配置")
self.impression_llm = None
async def execute(self, function_args: dict[str, Any]) -> dict[str, Any]:
"""执行聊天流印象更新
Args:
function_args: 工具参数stream_id会由系统自动注入
Returns:
dict: 执行结果
"""
try:
# stream_id应该由调用方如工具执行器自动注入
# 如果没有注入,尝试从上下文获取
stream_id = function_args.get("stream_id")
if not stream_id:
# 尝试从其他可能的来源获取
logger.warning("stream_id未自动注入尝试从其他来源获取")
# 这里可以添加从上下文获取的逻辑
return {
"type": "error",
"id": "chat_stream_impression",
"content": "错误无法获取当前聊天流ID"
}
# 从LLM传入的参数
new_impression = function_args.get("impression_description", "")
new_style = function_args.get("chat_style", "")
new_topics = function_args.get("topic_keywords", "")
new_score = function_args.get("interest_score")
# 从数据库获取现有聊天流印象
existing_impression = await self._get_stream_impression(stream_id)
# 如果LLM没有传入任何有效参数返回提示
if not any([new_impression, new_style, new_topics, new_score is not None]):
return {
"type": "info",
"id": stream_id,
"content": "提示:需要提供至少一项更新内容(印象描述、聊天风格、话题关键词或兴趣分数)"
}
# 调用LLM进行二步决策
if self.impression_llm is None:
logger.error("LLM未正确初始化无法执行二步调用")
return {
"type": "error",
"id": stream_id,
"content": "系统错误LLM未正确初始化"
}
final_impression = await self._llm_decide_final_impression(
stream_id=stream_id,
existing_impression=existing_impression,
new_impression=new_impression,
new_style=new_style,
new_topics=new_topics,
new_score=new_score
)
if not final_impression:
return {
"type": "error",
"id": stream_id,
"content": "LLM决策失败无法更新聊天流印象"
}
# 更新数据库
await self._update_stream_impression_in_db(stream_id, final_impression)
# 构建返回信息
updates = []
if final_impression.get("stream_impression_text"):
updates.append(f"印象: {final_impression['stream_impression_text'][:50]}...")
if final_impression.get("stream_chat_style"):
updates.append(f"风格: {final_impression['stream_chat_style']}")
if final_impression.get("stream_topic_keywords"):
updates.append(f"话题: {final_impression['stream_topic_keywords']}")
if final_impression.get("stream_interest_score") is not None:
updates.append(f"兴趣分: {final_impression['stream_interest_score']:.2f}")
result_text = f"已更新聊天流 {stream_id} 的印象:\n" + "\n".join(updates)
logger.info(f"聊天流印象更新成功: {stream_id}")
return {
"type": "chat_stream_impression_update",
"id": stream_id,
"content": result_text
}
except Exception as e:
logger.error(f"聊天流印象更新失败: {e}", exc_info=True)
return {
"type": "error",
"id": function_args.get("stream_id", "unknown"),
"content": f"聊天流印象更新失败: {str(e)}"
}
async def _get_stream_impression(self, stream_id: str) -> dict[str, Any]:
"""从数据库获取聊天流现有印象
Args:
stream_id: 聊天流ID
Returns:
dict: 聊天流印象数据
"""
try:
async with get_db_session() as session:
stmt = select(ChatStreams).where(ChatStreams.stream_id == stream_id)
result = await session.execute(stmt)
stream = result.scalar_one_or_none()
if stream:
return {
"stream_impression_text": stream.stream_impression_text or "",
"stream_chat_style": stream.stream_chat_style or "",
"stream_topic_keywords": stream.stream_topic_keywords or "",
"stream_interest_score": float(stream.stream_interest_score) if stream.stream_interest_score is not None else 0.5,
"group_name": stream.group_name or "私聊",
}
else:
# 聊天流不存在,返回默认值
return {
"stream_impression_text": "",
"stream_chat_style": "",
"stream_topic_keywords": "",
"stream_interest_score": 0.5,
"group_name": "未知",
}
except Exception as e:
logger.error(f"获取聊天流印象失败: {e}")
return {
"stream_impression_text": "",
"stream_chat_style": "",
"stream_topic_keywords": "",
"stream_interest_score": 0.5,
"group_name": "未知",
}
async def _llm_decide_final_impression(
self,
stream_id: str,
existing_impression: dict[str, Any],
new_impression: str,
new_style: str,
new_topics: str,
new_score: float | None
) -> dict[str, Any] | None:
"""使用LLM决策最终的聊天流印象内容
Args:
stream_id: 聊天流ID
existing_impression: 现有印象数据
new_impression: LLM传入的新印象
new_style: LLM传入的新风格
new_topics: LLM传入的新话题
new_score: LLM传入的新分数
Returns:
dict: 最终决定的印象数据如果失败返回None
"""
try:
# 获取bot人设
from src.individuality.individuality import Individuality
individuality = Individuality()
bot_personality = await individuality.get_personality_block()
prompt = f"""
你现在是一个有着特定性格和身份的AI助手。你的人设是{bot_personality}
你正在更新对聊天流 {stream_id} 的整体印象。
【当前聊天流信息】
- 聊天环境: {existing_impression.get('group_name', '未知')}
- 当前印象: {existing_impression.get('stream_impression_text', '暂无印象')}
- 聊天风格: {existing_impression.get('stream_chat_style', '未知')}
- 常见话题: {existing_impression.get('stream_topic_keywords', '未知')}
- 当前兴趣分: {existing_impression.get('stream_interest_score', 0.5):.2f}
【本次想要更新的内容】
- 新的印象描述: {new_impression if new_impression else '不更新'}
- 新的聊天风格: {new_style if new_style else '不更新'}
- 新的话题关键词: {new_topics if new_topics else '不更新'}
- 新的兴趣分数: {new_score if new_score is not None else '不更新'}
请综合考虑现有信息和新信息,决定最终的聊天流印象内容。注意:
1. 印象描述如果提供了新印象应该综合现有印象和新印象形成对这个聊天环境的整体认知100-200字
2. 聊天风格:如果提供了新风格,应该用简洁的词语概括,如"活跃轻松""严肃专业""幽默随性"
3. 话题关键词:如果提供了新话题,应该与现有话题合并(去重),保留最核心和频繁的话题
4. 兴趣分数如果提供了新分数需要结合现有分数合理调整0.0表示完全不感兴趣1.0表示非常感兴趣)
请以JSON格式返回最终决定
{{
"stream_impression_text": "最终的印象描述100-200字整体性的对这个聊天环境的认知",
"stream_chat_style": "最终的聊天风格,简洁概括",
"stream_topic_keywords": "最终的话题关键词,逗号分隔",
"stream_interest_score": 最终的兴趣分数0.0-1.0,
"reasoning": "你的决策理由"
}}
"""
# 调用LLM
llm_response, _ = await self.impression_llm.generate_response_async(prompt=prompt)
if not llm_response:
logger.warning("LLM未返回有效响应")
return None
# 清理并解析响应
cleaned_response = self._clean_llm_json_response(llm_response)
response_data = json.loads(cleaned_response)
# 提取最终决定的数据
final_impression = {
"stream_impression_text": response_data.get("stream_impression_text", existing_impression.get("stream_impression_text", "")),
"stream_chat_style": response_data.get("stream_chat_style", existing_impression.get("stream_chat_style", "")),
"stream_topic_keywords": response_data.get("stream_topic_keywords", existing_impression.get("stream_topic_keywords", "")),
"stream_interest_score": max(0.0, min(1.0, float(response_data.get("stream_interest_score", existing_impression.get("stream_interest_score", 0.5))))),
}
logger.info(f"LLM决策完成: {stream_id}")
logger.debug(f"决策理由: {response_data.get('reasoning', '')}")
return final_impression
except json.JSONDecodeError as e:
logger.error(f"LLM响应JSON解析失败: {e}")
logger.debug(f"LLM原始响应: {llm_response if 'llm_response' in locals() else 'N/A'}")
return None
except Exception as e:
logger.error(f"LLM决策失败: {e}", exc_info=True)
return None
async def _update_stream_impression_in_db(self, stream_id: str, impression: dict[str, Any]):
"""更新数据库中的聊天流印象
Args:
stream_id: 聊天流ID
impression: 印象数据
"""
try:
async with get_db_session() as session:
stmt = select(ChatStreams).where(ChatStreams.stream_id == stream_id)
result = await session.execute(stmt)
existing = result.scalar_one_or_none()
if existing:
# 更新现有记录
existing.stream_impression_text = impression.get("stream_impression_text", "")
existing.stream_chat_style = impression.get("stream_chat_style", "")
existing.stream_topic_keywords = impression.get("stream_topic_keywords", "")
existing.stream_interest_score = impression.get("stream_interest_score", 0.5)
await session.commit()
logger.info(f"聊天流印象已更新到数据库: {stream_id}")
else:
error_msg = f"聊天流 {stream_id} 不存在于数据库中,无法更新印象"
logger.error(error_msg)
# 注意:通常聊天流应该在消息处理时就已创建,这里不创建新记录
raise ValueError(error_msg)
except Exception as e:
logger.error(f"更新聊天流印象到数据库失败: {e}", exc_info=True)
raise
def _clean_llm_json_response(self, response: str) -> str:
"""清理LLM响应移除可能的JSON格式标记
Args:
response: LLM原始响应
Returns:
str: 清理后的JSON字符串
"""
try:
import re
cleaned = response.strip()
# 移除 ```json 或 ``` 等标记
cleaned = re.sub(r"^```(?:json)?\s*", "", cleaned, flags=re.MULTILINE | re.IGNORECASE)
cleaned = re.sub(r"\s*```$", "", cleaned, flags=re.MULTILINE)
# 尝试找到JSON对象的开始和结束
json_start = cleaned.find("{")
json_end = cleaned.rfind("}")
if json_start != -1 and json_end != -1 and json_end > json_start:
cleaned = cleaned[json_start:json_end + 1]
cleaned = cleaned.strip()
return cleaned
except Exception as e:
logger.warning(f"清理LLM响应失败: {e}")
return response

View File

@@ -45,13 +45,6 @@ class ChatterPlanExecutor:
"execution_times": [], "execution_times": [],
} }
# 用户关系追踪引用
self.relationship_tracker = None
def set_relationship_tracker(self, relationship_tracker):
"""设置关系追踪器"""
self.relationship_tracker = relationship_tracker
async def execute(self, plan: Plan) -> dict[str, Any]: async def execute(self, plan: Plan) -> dict[str, Any]:
""" """
遍历并执行Plan对象中`decided_actions`列表里的所有动作。 遍历并执行Plan对象中`decided_actions`列表里的所有动作。
@@ -238,19 +231,11 @@ class ChatterPlanExecutor:
except Exception as e: except Exception as e:
error_message = str(e) error_message = str(e)
logger.error(f"执行回复动作失败: {action_info.action_type}, 错误: {error_message}") logger.error(f"执行回复动作失败: {action_info.action_type}, 错误: {error_message}")
# 记录用户关系追踪 - 使用后台异步执行,防止阻塞主流程
if success and action_info.action_message:
logger.debug(f"准备执行关系追踪: success={success}, action_message存在={bool(action_info.action_message)}")
logger.debug(f"关系追踪器状态: {self.relationship_tracker is not None}")
# 直接使用后台异步任务执行关系追踪,避免阻塞主回复流程 # 将机器人回复添加到已读消息中
import asyncio if success and action_info.action_message:
asyncio.create_task(self._track_user_interaction(action_info, plan, reply_content))
logger.debug("关系追踪已启动为后台异步任务")
else:
logger.debug(f"跳过关系追踪: success={success}, action_message存在={bool(action_info.action_message)}")
# 将机器人回复添加到已读消息中
await self._add_bot_reply_to_read_messages(action_info, plan, reply_content) await self._add_bot_reply_to_read_messages(action_info, plan, reply_content)
execution_time = time.time() - start_time execution_time = time.time() - start_time
self.execution_stats["execution_times"].append(execution_time) self.execution_stats["execution_times"].append(execution_time)
@@ -356,81 +341,6 @@ class ChatterPlanExecutor:
"reasoning": action_info.reasoning, "reasoning": action_info.reasoning,
} }
async def _track_user_interaction(self, action_info: ActionPlannerInfo, plan: Plan, reply_content: str):
"""追踪用户交互 - 集成回复后关系追踪"""
try:
logger.debug("🔍 开始执行用户交互追踪")
if not action_info.action_message:
logger.debug("❌ 跳过追踪action_message为空")
return
# 获取用户信息 - 处理DatabaseMessages对象
if hasattr(action_info.action_message, "user_id"):
# DatabaseMessages对象情况
user_id = action_info.action_message.user_id
user_name = action_info.action_message.user_nickname or user_id
# 使用processed_plain_text作为消息内容如果没有则使用display_message
user_message = (
action_info.action_message.processed_plain_text
or action_info.action_message.display_message
or ""
)
logger.debug(f"📝 从DatabaseMessages获取用户信息: user_id={user_id}, user_name={user_name}")
else:
# 字典情况(向后兼容)- 适配扁平化消息字典结构
# 首先尝试从扁平化结构直接获取用户信息
user_id = action_info.action_message.get("user_id")
user_name = action_info.action_message.get("user_nickname") or user_id
# 如果扁平化结构中没有用户信息再尝试从嵌套的user_info获取
if not user_id:
user_info = action_info.action_message.get("user_info", {})
user_id = user_info.get("user_id")
user_name = user_info.get("user_nickname") or user_id
logger.debug(f"📝 从嵌套user_info获取用户信息: user_id={user_id}, user_name={user_name}")
else:
logger.debug(f"📝 从扁平化结构获取用户信息: user_id={user_id}, user_name={user_name}")
# 获取消息内容优先使用processed_plain_text
user_message = (
action_info.action_message.get("processed_plain_text", "")
or action_info.action_message.get("display_message", "")
or action_info.action_message.get("content", "")
)
if not user_id:
logger.debug("❌ 跳过追踪缺少用户ID")
return
# 如果有设置关系追踪器,执行回复后关系追踪
if self.relationship_tracker:
logger.debug(f"✅ 关系追踪器存在,开始为用户 {user_id} 执行追踪")
# 记录基础交互信息(保持向后兼容)
self.relationship_tracker.add_interaction(
user_id=user_id,
user_name=user_name,
user_message=user_message,
bot_reply=reply_content,
reply_timestamp=time.time(),
)
logger.debug(f"📊 已添加基础交互信息: {user_name}({user_id})")
# 执行新的回复后关系追踪
await self.relationship_tracker.track_reply_relationship(
user_id=user_id, user_name=user_name, bot_reply_content=reply_content, reply_timestamp=time.time()
)
logger.debug(f"🎯 已执行回复后关系追踪: {user_id}")
else:
logger.debug("❌ 关系追踪器不存在,跳过追踪")
except Exception as e:
logger.error(f"追踪用户交互时出错: {e}")
logger.debug(f"action_message类型: {type(action_info.action_message)}")
logger.debug(f"action_message内容: {action_info.action_message}")
async def _add_bot_reply_to_read_messages(self, action_info: ActionPlannerInfo, plan: Plan, reply_content: str): async def _add_bot_reply_to_read_messages(self, action_info: ActionPlannerInfo, plan: Plan, reply_content: str):
"""将机器人回复添加到已读消息中""" """将机器人回复添加到已读消息中"""
try: try:
@@ -491,7 +401,7 @@ class ChatterPlanExecutor:
# 群组信息(如果是群聊) # 群组信息(如果是群聊)
chat_info_group_id=chat_stream.group_info.group_id if chat_stream.group_info else None, chat_info_group_id=chat_stream.group_info.group_id if chat_stream.group_info else None,
chat_info_group_name=chat_stream.group_info.group_name if chat_stream.group_info else None, chat_info_group_name=chat_stream.group_info.group_name if chat_stream.group_info else None,
chat_info_group_platform=chat_stream.group_info.group_platform if chat_stream.group_info else None, chat_info_group_platform=getattr(chat_stream.group_info, "platform", None) if chat_stream.group_info else None,
# 动作信息 # 动作信息
actions=["bot_reply"], actions=["bot_reply"],

View File

@@ -51,16 +51,6 @@ class ChatterActionPlanner:
self.generator = ChatterPlanGenerator(chat_id) self.generator = ChatterPlanGenerator(chat_id)
self.executor = ChatterPlanExecutor(action_manager) self.executor = ChatterPlanExecutor(action_manager)
# 初始化关系追踪器
if global_config.affinity_flow.enable_relationship_tracking:
from .relationship_tracker import ChatterRelationshipTracker
self.relationship_tracker = ChatterRelationshipTracker()
self.executor.set_relationship_tracker(self.relationship_tracker)
logger.info(f"关系追踪器已初始化 (chat_id: {chat_id})")
else:
self.relationship_tracker = None
logger.info(f"关系系统已禁用,跳过关系追踪器初始化 (chat_id: {chat_id})")
# 使用新的统一兴趣度管理系统 # 使用新的统一兴趣度管理系统
# 规划器统计 # 规划器统计

View File

@@ -52,4 +52,20 @@ class AffinityChatterPlugin(BasePlugin):
except Exception as e: except Exception as e:
logger.error(f"加载 AffinityInterestCalculator 时出错: {e}") logger.error(f"加载 AffinityInterestCalculator 时出错: {e}")
try:
# 延迟导入 UserProfileTool
from .user_profile_tool import UserProfileTool
components.append((UserProfileTool.get_tool_info(), UserProfileTool))
except Exception as e:
logger.error(f"加载 UserProfileTool 时出错: {e}")
try:
# 延迟导入 ChatStreamImpressionTool
from .chat_stream_impression_tool import ChatStreamImpressionTool
components.append((ChatStreamImpressionTool.get_tool_info(), ChatStreamImpressionTool))
except Exception as e:
logger.error(f"加载 ChatStreamImpressionTool 时出错: {e}")
return components return components

View File

@@ -1,820 +0,0 @@
"""
用户关系追踪器
负责追踪用户交互历史并通过LLM分析更新用户关系分
支持数据库持久化存储和回复后自动关系更新
"""
import random
import time
from sqlalchemy import desc, select
from src.common.data_models.database_data_model import DatabaseMessages
from src.common.database.sqlalchemy_database_api import get_db_session
from src.common.database.sqlalchemy_models import Messages, UserRelationships
from src.common.logger import get_logger
from src.config.config import global_config, model_config
from src.llm_models.utils_model import LLMRequest
logger = get_logger("chatter_relationship_tracker")
class ChatterRelationshipTracker:
"""用户关系追踪器"""
def __init__(self, interest_scoring_system=None):
self.tracking_users: dict[str, dict] = {} # user_id -> interaction_data
self.max_tracking_users = 3
self.update_interval_minutes = 30
self.last_update_time = time.time()
self.relationship_history: list[dict] = []
# 兼容性保留参数但不直接使用转而使用统一API
self.interest_scoring_system = None # 废弃,不再使用
# 用户关系缓存 (user_id -> {"relationship_text": str, "relationship_score": float, "last_tracked": float})
self.user_relationship_cache: dict[str, dict] = {}
self.cache_expiry_hours = 1 # 缓存过期时间(小时)
# 关系更新LLM
try:
self.relationship_llm = LLMRequest(
model_set=model_config.model_task_config.relationship_tracker, request_type="relationship_tracker"
)
except AttributeError:
# 如果relationship_tracker配置不存在尝试其他可用的模型配置
available_models = [
attr
for attr in dir(model_config.model_task_config)
if not attr.startswith("_") and attr != "model_dump"
]
if available_models:
# 使用第一个可用的模型配置
fallback_model = available_models[0]
logger.warning(f"relationship_tracker model configuration not found, using fallback: {fallback_model}")
self.relationship_llm = LLMRequest(
model_set=getattr(model_config.model_task_config, fallback_model),
request_type="relationship_tracker",
)
else:
# 如果没有任何模型配置创建一个简单的LLMRequest
logger.warning("No model configurations found, creating basic LLMRequest")
self.relationship_llm = LLMRequest(
model_set="gpt-3.5-turbo", # 默认模型
request_type="relationship_tracker",
)
def set_interest_scoring_system(self, interest_scoring_system):
"""设置兴趣度评分系统引用已废弃使用统一API"""
# 不再需要设置直接使用统一API
logger.info("set_interest_scoring_system 已废弃现在使用统一评分API")
def add_interaction(self, user_id: str, user_name: str, user_message: str, bot_reply: str, reply_timestamp: float):
"""添加用户交互记录"""
if len(self.tracking_users) >= self.max_tracking_users:
# 移除最旧的记录
oldest_user = min(
self.tracking_users.keys(), key=lambda k: self.tracking_users[k].get("reply_timestamp", 0)
)
del self.tracking_users[oldest_user]
# 获取当前关系分 - 使用缓存数据
current_relationship_score = global_config.affinity_flow.base_relationship_score # 默认值
if user_id in self.user_relationship_cache:
current_relationship_score = self.user_relationship_cache[user_id].get("relationship_score", current_relationship_score)
self.tracking_users[user_id] = {
"user_id": user_id,
"user_name": user_name,
"user_message": user_message,
"bot_reply": bot_reply,
"reply_timestamp": reply_timestamp,
"current_relationship_score": current_relationship_score,
}
logger.debug(f"添加用户交互追踪: {user_id}")
async def check_and_update_relationships(self) -> list[dict]:
"""检查并更新用户关系"""
current_time = time.time()
if current_time - self.last_update_time < self.update_interval_minutes * 60:
return []
updates = []
for user_id, interaction in list(self.tracking_users.items()):
if current_time - interaction["reply_timestamp"] > 60 * 5: # 5分钟
update = await self._update_user_relationship(interaction)
if update:
updates.append(update)
del self.tracking_users[user_id]
self.last_update_time = current_time
return updates
async def _update_user_relationship(self, interaction: dict) -> dict | None:
"""更新单个用户的关系"""
try:
# 获取bot人设信息
from src.individuality.individuality import Individuality
individuality = Individuality()
bot_personality = await individuality.get_personality_block()
prompt = f"""
你现在是一个有着特定性格和身份的AI助手。你的人设是{bot_personality}
请以你独特的性格视角,严格按现实逻辑分析以下用户交互,更新用户关系:
用户ID: {interaction["user_id"]}
用户名: {interaction["user_name"]}
用户消息: {interaction["user_message"]}
你的回复: {interaction["bot_reply"]}
当前关系分: {interaction["current_relationship_score"]}
【重要】关系分数档次定义:
- 0.0-0.2:陌生人/初次认识 - 仅礼貌性交流
- 0.2-0.4:普通网友 - 有基本互动但不熟悉
- 0.4-0.6:熟悉网友 - 经常交流,有一定了解
- 0.6-0.8:朋友 - 可以分享心情,互相关心
- 0.8-1.0:好朋友/知己 - 深度信任,亲密无间
【严格要求】:
1. 加分必须符合现实关系发展逻辑 - 不能因为对方态度好就盲目加分到不符合当前关系档次的分数
2. 关系提升需要足够的互动积累和时间验证
3. 即使是朋友关系单次互动加分通常不超过0.05-0.1
4. 人物印象描述应该是泛化的、整体的理解,从你的视角对用户整体性格特质的描述:
- 描述用户的整体性格特点(如:温柔、幽默、理性、感性等)
- 用户给你的整体感觉和印象
- 你们关系的整体状态和氛围
- 避免描述具体事件或对话内容,而是基于这些事件形成的整体认知
根据你的人设性格,思考:
1. 从你的性格视角,这个用户给你什么样的整体印象?
2. 用户的性格特质和行为模式是否符合你的喜好?
3. 基于这次互动,你对用户的整体认知有什么变化?
4. 这个用户在你心中的整体形象是怎样的?
请以JSON格式返回更新结果
{{
"new_relationship_score": 0.0~1.0的数值(必须符合现实逻辑),
"reasoning": "从你的性格角度说明更新理由,重点说明是否符合现实关系发展逻辑",
"interaction_summary": "基于你性格的用户整体印象描述,包含用户的整体性格特质、给你的整体感觉,避免具体事件描述"
}}
"""
# 调用LLM进行分析 - 添加超时保护
import asyncio
try:
llm_response, _ = await asyncio.wait_for(
self.relationship_llm.generate_response_async(prompt=prompt),
timeout=30.0 # 30秒超时
)
except asyncio.TimeoutError:
logger.warning(f"初次见面LLM调用超时: user_id={user_id}, 跳过此次追踪")
return
except Exception as e:
logger.error(f"初次见面LLM调用失败: user_id={user_id}, 错误: {e}")
return
if llm_response:
import json
try:
# 清理LLM响应移除可能的格式标记
cleaned_response = self._clean_llm_json_response(llm_response)
response_data = json.loads(cleaned_response)
new_score = max(
0.0,
min(
1.0,
float(
response_data.get(
"new_relationship_score", global_config.affinity_flow.base_relationship_score
)
),
),
)
# 使用统一API更新关系分
from src.plugin_system.apis.scoring_api import scoring_api
await scoring_api.update_user_relationship(
interaction["user_id"], new_score
)
return {
"user_id": interaction["user_id"],
"new_relationship_score": new_score,
"reasoning": response_data.get("reasoning", ""),
"interaction_summary": response_data.get("interaction_summary", ""),
}
except json.JSONDecodeError as e:
logger.error(f"LLM响应JSON解析失败: {e}")
logger.debug(f"LLM原始响应: {llm_response}")
except Exception as e:
logger.error(f"处理关系更新数据失败: {e}")
except Exception as e:
logger.error(f"更新用户关系时出错: {e}")
return None
def get_tracking_users(self) -> dict[str, dict]:
"""获取正在追踪的用户"""
return self.tracking_users.copy()
def get_user_interaction(self, user_id: str) -> dict | None:
"""获取特定用户的交互记录"""
return self.tracking_users.get(user_id)
def remove_user_tracking(self, user_id: str):
"""移除用户追踪"""
if user_id in self.tracking_users:
del self.tracking_users[user_id]
logger.debug(f"移除用户追踪: {user_id}")
def clear_all_tracking(self):
"""清空所有追踪"""
self.tracking_users.clear()
logger.info("清空所有用户追踪")
def get_relationship_history(self) -> list[dict]:
"""获取关系历史记录"""
return self.relationship_history.copy()
def add_to_history(self, relationship_update: dict):
"""添加到关系历史"""
self.relationship_history.append({**relationship_update, "update_time": time.time()})
# 限制历史记录数量
if len(self.relationship_history) > 100:
self.relationship_history = self.relationship_history[-100:]
def get_tracker_stats(self) -> dict:
"""获取追踪器统计"""
return {
"tracking_users": len(self.tracking_users),
"max_tracking_users": self.max_tracking_users,
"update_interval_minutes": self.update_interval_minutes,
"relationship_history": len(self.relationship_history),
"last_update_time": self.last_update_time,
}
def update_config(self, max_tracking_users: int | None = None, update_interval_minutes: int | None = None):
"""更新配置"""
if max_tracking_users is not None:
self.max_tracking_users = max_tracking_users
logger.info(f"更新最大追踪用户数: {max_tracking_users}")
if update_interval_minutes is not None:
self.update_interval_minutes = update_interval_minutes
logger.info(f"更新关系更新间隔: {update_interval_minutes} 分钟")
async def force_update_relationship(self, user_id: str, new_score: float, reasoning: str = ""):
"""强制更新用户关系分"""
if user_id in self.tracking_users:
current_score = self.tracking_users[user_id]["current_relationship_score"]
# 使用统一API更新关系分
from src.plugin_system.apis.scoring_api import scoring_api
await scoring_api.update_user_relationship(user_id, new_score)
update_info = {
"user_id": user_id,
"new_relationship_score": new_score,
"reasoning": reasoning or "手动更新",
"interaction_summary": "手动更新关系分",
}
self.add_to_history(update_info)
logger.info(f"强制更新用户关系: {user_id} -> {new_score:.2f}")
def get_user_summary(self, user_id: str) -> dict:
"""获取用户交互总结"""
if user_id not in self.tracking_users:
return {}
interaction = self.tracking_users[user_id]
return {
"user_id": user_id,
"user_name": interaction["user_name"],
"current_relationship_score": interaction["current_relationship_score"],
"interaction_count": 1, # 简化版本,每次追踪只记录一次交互
"last_interaction": interaction["reply_timestamp"],
"recent_message": interaction["user_message"][:100] + "..."
if len(interaction["user_message"]) > 100
else interaction["user_message"],
}
# ===== 数据库支持方法 =====
async def get_user_relationship_score(self, user_id: str) -> float:
"""获取用户关系分"""
# 先检查缓存
if user_id in self.user_relationship_cache:
cache_data = self.user_relationship_cache[user_id]
# 检查缓存是否过期
cache_time = cache_data.get("last_tracked", 0)
if time.time() - cache_time < self.cache_expiry_hours * 3600:
return cache_data.get("relationship_score", global_config.affinity_flow.base_relationship_score)
# 缓存过期或不存在,从数据库获取
relationship_data = await self._get_user_relationship_from_db(user_id)
if relationship_data:
# 更新缓存
self.user_relationship_cache[user_id] = {
"relationship_text": relationship_data.get("relationship_text", ""),
"relationship_score": relationship_data.get(
"relationship_score", global_config.affinity_flow.base_relationship_score
),
"last_tracked": time.time(),
}
return relationship_data.get("relationship_score", global_config.affinity_flow.base_relationship_score)
# 数据库中也没有,返回默认值
return global_config.affinity_flow.base_relationship_score
async def _get_user_relationship_from_db(self, user_id: str) -> dict | None:
"""从数据库获取用户关系数据"""
try:
async with get_db_session() as session:
# 查询用户关系表
stmt = select(UserRelationships).where(UserRelationships.user_id == user_id)
result = await session.execute(stmt)
relationship = result.scalar_one_or_none()
if relationship:
return {
"relationship_text": relationship.relationship_text or "",
"relationship_score": float(relationship.relationship_score)
if relationship.relationship_score is not None
else 0.3,
"last_updated": relationship.last_updated,
}
except Exception as e:
logger.error(f"从数据库获取用户关系失败: {e}")
return None
async def _update_user_relationship_in_db(self, user_id: str, relationship_text: str, relationship_score: float):
"""更新数据库中的用户关系"""
try:
current_time = time.time()
async with get_db_session() as session:
# 检查是否已存在关系记录
stmt = select(UserRelationships).where(UserRelationships.user_id == user_id)
result = await session.execute(stmt)
existing = result.scalar_one_or_none()
if existing:
# 更新现有记录
existing.relationship_text = relationship_text
existing.relationship_score = relationship_score
existing.last_updated = current_time
existing.user_name = existing.user_name or user_id # 更新用户名如果为空
else:
# 插入新记录
new_relationship = UserRelationships(
user_id=user_id,
user_name=user_id,
relationship_text=relationship_text,
relationship_score=relationship_score,
last_updated=current_time,
)
session.add(new_relationship)
await session.commit()
logger.info(f"已更新数据库中用户关系: {user_id} -> 分数: {relationship_score:.3f}")
except Exception as e:
logger.error(f"更新数据库用户关系失败: {e}")
# ===== 回复后关系追踪方法 =====
async def track_reply_relationship(
self, user_id: str, user_name: str, bot_reply_content: str, reply_timestamp: float
):
"""回复后关系追踪 - 主要入口点"""
try:
# 首先检查是否启用关系追踪
if not global_config.affinity_flow.enable_relationship_tracking:
logger.debug(f"🚫 [RelationshipTracker] 关系追踪系统已禁用,跳过用户 {user_id}")
return
# 概率筛选 - 减少API调用压力
tracking_probability = global_config.affinity_flow.relationship_tracking_probability
if random.random() > tracking_probability:
logger.debug(
f"🎲 [RelationshipTracker] 概率筛选未通过 ({tracking_probability:.2f}),跳过用户 {user_id} 的关系追踪"
)
return
logger.info(f"🔄 [RelationshipTracker] 开始回复后关系追踪: {user_id} (概率通过: {tracking_probability:.2f})")
# 检查上次追踪时间 - 使用配置的冷却时间
last_tracked_time = await self._get_last_tracked_time(user_id)
cooldown_hours = global_config.affinity_flow.relationship_tracking_cooldown_hours
cooldown_seconds = cooldown_hours * 3600
time_diff = reply_timestamp - last_tracked_time
# 使用配置的最小间隔时间
min_interval = global_config.affinity_flow.relationship_tracking_interval_min
required_interval = max(min_interval, cooldown_seconds)
if time_diff < required_interval:
logger.debug(
f"⏱️ [RelationshipTracker] 用户 {user_id} 距离上次追踪时间不足 {required_interval/60:.1f} 分钟 "
f"(实际: {time_diff/60:.1f} 分钟),跳过"
)
return
# 获取上次bot回复该用户的消息
last_bot_reply = await self._get_last_bot_reply_to_user(user_id)
if not last_bot_reply:
logger.info(f"👋 [RelationshipTracker] 未找到用户 {user_id} 的历史回复记录,启动'初次见面'逻辑")
await self._handle_first_interaction(user_id, user_name, bot_reply_content)
return
# 获取用户后续的反应消息
user_reactions = await self._get_user_reactions_after_reply(user_id, last_bot_reply.time)
logger.debug(f"💬 [RelationshipTracker] 找到用户 {user_id} 在上次回复后的 {len(user_reactions)} 条反应消息")
# 获取当前关系数据
current_relationship = await self._get_user_relationship_from_db(user_id)
current_score = (
current_relationship.get("relationship_score", global_config.affinity_flow.base_relationship_score)
if current_relationship
else global_config.affinity_flow.base_relationship_score
)
current_text = current_relationship.get("relationship_text", "新用户") if current_relationship else "新用户"
# 使用LLM分析并更新关系
logger.debug(f"🧠 [RelationshipTracker] 开始为用户 {user_id} 分析并更新关系")
await self._analyze_and_update_relationship(
user_id, user_name, last_bot_reply, user_reactions, current_text, current_score, bot_reply_content
)
except Exception as e:
logger.error(f"回复后关系追踪失败: {e}")
logger.debug("错误详情:", exc_info=True)
async def _get_last_tracked_time(self, user_id: str) -> float:
"""获取上次追踪时间"""
# 先检查缓存
if user_id in self.user_relationship_cache:
return self.user_relationship_cache[user_id].get("last_tracked", 0)
# 从数据库获取
relationship_data = await self._get_user_relationship_from_db(user_id)
if relationship_data:
return relationship_data.get("last_updated", 0)
return 0
async def _get_last_bot_reply_to_user(self, user_id: str) -> DatabaseMessages | None:
"""获取上次bot回复该用户的消息"""
try:
async with get_db_session() as session:
# 查询bot回复给该用户的最新消息
stmt = (
select(Messages)
.where(Messages.user_id == user_id)
.where(Messages.reply_to.isnot(None))
.order_by(desc(Messages.time))
.limit(1)
)
result = await session.execute(stmt)
message = result.scalar_one_or_none()
if message:
# 将SQLAlchemy模型转换为DatabaseMessages对象
return self._sqlalchemy_to_database_messages(message)
except Exception as e:
logger.error(f"获取上次回复消息失败: {e}")
return None
async def _get_user_reactions_after_reply(self, user_id: str, reply_time: float) -> list[DatabaseMessages]:
"""获取用户在bot回复后的反应消息"""
try:
async with get_db_session() as session:
# 查询用户在回复时间之后的5分钟内的消息
end_time = reply_time + 5 * 60 # 5分钟
stmt = (
select(Messages)
.where(Messages.user_id == user_id)
.where(Messages.time > reply_time)
.where(Messages.time <= end_time)
.order_by(Messages.time)
)
result = await session.execute(stmt)
messages = result.scalars().all()
if messages:
return [self._sqlalchemy_to_database_messages(message) for message in messages]
except Exception as e:
logger.error(f"获取用户反应消息失败: {e}")
return []
def _sqlalchemy_to_database_messages(self, sqlalchemy_message) -> DatabaseMessages:
"""将SQLAlchemy消息模型转换为DatabaseMessages对象"""
try:
return DatabaseMessages(
message_id=sqlalchemy_message.message_id or "",
time=float(sqlalchemy_message.time) if sqlalchemy_message.time is not None else 0.0,
chat_id=sqlalchemy_message.chat_id or "",
reply_to=sqlalchemy_message.reply_to,
processed_plain_text=sqlalchemy_message.processed_plain_text or "",
user_id=sqlalchemy_message.user_id or "",
user_nickname=sqlalchemy_message.user_nickname or "",
user_platform=sqlalchemy_message.user_platform or "",
)
except Exception as e:
logger.error(f"SQLAlchemy消息转换失败: {e}")
# 返回一个基本的消息对象
return DatabaseMessages(
message_id="",
time=0.0,
chat_id="",
processed_plain_text="",
user_id="",
user_nickname="",
user_platform="",
)
async def _analyze_and_update_relationship(
self,
user_id: str,
user_name: str,
last_bot_reply: DatabaseMessages,
user_reactions: list[DatabaseMessages],
current_text: str,
current_score: float,
current_reply: str,
):
"""使用LLM分析并更新用户关系"""
try:
# 构建分析提示
user_reactions_text = "\n".join([f"- {msg.processed_plain_text}" for msg in user_reactions])
# 获取bot人设信息
from src.individuality.individuality import Individuality
individuality = Individuality()
bot_personality = await individuality.get_personality_block()
prompt = f"""
你现在是一个有着特定性格和身份的AI助手。你的人设是{bot_personality}
请以你独特的性格视角,严格按现实逻辑分析以下用户交互,更新用户关系印象和分数:
用户信息:
- 用户ID: {user_id}
- 用户名: {user_name}
你上次的回复: {last_bot_reply.processed_plain_text}
用户反应消息:
{user_reactions_text}
你当前的回复: {current_reply}
当前关系印象: {current_text}
当前关系分数: {current_score:.3f}
【重要】关系分数档次定义:
- 0.0-0.2:陌生人/初次认识 - 仅礼貌性交流
- 0.2-0.4:普通网友 - 有基本互动但不熟悉
- 0.4-0.6:熟悉网友 - 经常交流,有一定了解
- 0.6-0.8:朋友 - 可以分享心情,互相关心
- 0.8-1.0:好朋友/知己 - 深度信任,亲密无间
【严格要求】:
1. 加分必须符合现实关系发展逻辑 - 不能因为用户反应好就盲目加分
2. 关系提升需要足够的互动积累和时间验证单次互动加分通常不超过0.05-0.1
3. 必须考虑当前关系档次不能跳跃式提升比如从0.3直接到0.7
4. 人物印象描述应该是泛化的、整体的理解100-200字从你的视角对用户整体性格特质的描述
- 描述用户的整体性格特点和行为模式(如:温柔体贴、幽默风趣、理性稳重等)
- 用户给你的整体感觉和印象氛围
- 你们关系的整体状态和发展阶段
- 基于所有互动形成的用户整体形象认知
- 避免提及具体事件或对话内容,而是总结形成的整体印象
5. 在撰写人物印象时,请根据已有信息自然地融入用户的性别。如果性别不确定,请使用中性描述。
性格视角深度分析:
1. 从你的性格视角,基于这次互动,你对用户的整体印象有什么新的认识?
2. 用户的整体性格特质和行为模式符合你的喜好吗?
3. 从现实角度看,这次互动是否足以让关系提升到下一个档次?为什么?
4. 基于你们的互动历史,用户在你心中的整体形象是怎样的?
5. 这个用户给你带来的整体感受和情绪体验是怎样的?
请以JSON格式返回更新结果:
{{
"relationship_text": "泛化的用户整体印象描述(100-200字),其中自然地体现用户的性别,包含用户的整体性格特质、给你的整体感觉和印象氛围,避免具体事件描述",
"relationship_score": 0.0~1.0的新分数(必须严格符合现实逻辑),
"analysis_reasoning": "从你性格角度的深度分析,重点说明分数调整的现实合理性",
"interaction_quality": "high/medium/low"
}}
"""
# 调用LLM进行分析 - 添加超时保护
import asyncio
try:
llm_response, _ = await asyncio.wait_for(
self.relationship_llm.generate_response_async(prompt=prompt),
timeout=30.0 # 30秒超时
)
except asyncio.TimeoutError:
logger.warning(f"关系追踪LLM调用超时: user_id={user_id}, 跳过此次追踪")
return
except Exception as e:
logger.error(f"关系追踪LLM调用失败: user_id={user_id}, 错误: {e}")
return
if llm_response:
import json
try:
# 清理LLM响应移除可能的格式标记
cleaned_response = self._clean_llm_json_response(llm_response)
response_data = json.loads(cleaned_response)
new_text = response_data.get("relationship_text", current_text)
new_score = max(0.0, min(1.0, float(response_data.get("relationship_score", current_score))))
reasoning = response_data.get("analysis_reasoning", "")
quality = response_data.get("interaction_quality", "medium")
# 更新数据库
await self._update_user_relationship_in_db(user_id, new_text, new_score)
# 更新缓存
self.user_relationship_cache[user_id] = {
"relationship_text": new_text,
"relationship_score": new_score,
"last_tracked": time.time(),
}
# 使用统一API更新关系分内存缓存已通过数据库更新自动处理
# 数据库更新后,缓存会在下次访问时自动同步
# 记录分析历史
analysis_record = {
"user_id": user_id,
"timestamp": time.time(),
"old_score": current_score,
"new_score": new_score,
"old_text": current_text,
"new_text": new_text,
"reasoning": reasoning,
"quality": quality,
"user_reactions_count": len(user_reactions),
}
self.relationship_history.append(analysis_record)
# 限制历史记录数量
if len(self.relationship_history) > 100:
self.relationship_history = self.relationship_history[-100:]
logger.info(f"✅ 关系分析完成: {user_id}")
logger.info(f" 📝 印象: '{current_text}' -> '{new_text}'")
logger.info(f" 💝 分数: {current_score:.3f} -> {new_score:.3f}")
logger.info(f" 🎯 质量: {quality}")
except json.JSONDecodeError as e:
logger.error(f"LLM响应JSON解析失败: {e}")
logger.debug(f"LLM原始响应: {llm_response}")
else:
logger.warning("LLM未返回有效响应")
except Exception as e:
logger.error(f"关系分析失败: {e}")
logger.debug("错误详情:", exc_info=True)
async def _handle_first_interaction(self, user_id: str, user_name: str, bot_reply_content: str):
"""处理与用户的初次交互"""
try:
# 初次交互也进行概率检查,但使用更高的通过率
first_interaction_probability = min(1.0, global_config.affinity_flow.relationship_tracking_probability * 1.5)
if random.random() > first_interaction_probability:
logger.debug(
f"🎲 [RelationshipTracker] 初次交互概率筛选未通过 ({first_interaction_probability:.2f}),跳过用户 {user_id}"
)
return
logger.info(f"✨ [RelationshipTracker] 正在处理与用户 {user_id} 的初次交互 (概率通过: {first_interaction_probability:.2f})")
# 获取bot人设信息
from src.individuality.individuality import Individuality
individuality = Individuality()
bot_personality = await individuality.get_personality_block()
prompt = f"""
你现在是:{bot_personality}
你正在与一个新用户进行初次有效互动。请根据你对TA的第一印象建立初始关系档案。
用户信息:
- 用户ID: {user_id}
- 用户名: {user_name}
你的首次回复: {bot_reply_content}
【严格要求】:
1. 建立一个初始关系分数通常在0.2-0.4之间(普通网友)。
2. 初始关系印象描述要简洁地记录你对用户的整体初步看法50-100字。请在描述中自然地融入你对用户性别的初步判断例如“他似乎是...”或“感觉她...”),如果完全无法判断,则使用中性描述。
- 基于用户名和初次互动,用户给你的整体感觉
- 你感受到的用户整体性格特质倾向
- 你对与这个用户建立关系的整体期待和感觉
- 避免描述具体的事件细节,而是整体的直觉印象
请以JSON格式返回结果:
{{
"relationship_text": "简洁的用户整体初始印象描述(50-100字),其中自然地体现对用户性别的初步判断",
"relationship_score": 0.2~0.4的新分数,
"analysis_reasoning": "从你性格角度说明建立此初始印象的理由"
}}
"""
# 调用LLM进行分析
llm_response, _ = await self.relationship_llm.generate_response_async(prompt=prompt)
if not llm_response:
logger.warning(f"初次交互分析时LLM未返回有效响应: {user_id}")
return
import json
cleaned_response = self._clean_llm_json_response(llm_response)
response_data = json.loads(cleaned_response)
new_text = response_data.get("relationship_text", "初次见面")
new_score = max(
0.0,
min(
1.0,
float(response_data.get("relationship_score", global_config.affinity_flow.base_relationship_score)),
),
)
# 更新数据库和缓存
await self._update_user_relationship_in_db(user_id, new_text, new_score)
self.user_relationship_cache[user_id] = {
"relationship_text": new_text,
"relationship_score": new_score,
"last_tracked": time.time(),
}
logger.info(f"✅ [RelationshipTracker] 已成功为新用户 {user_id} 建立初始关系档案,分数为 {new_score:.3f}")
except Exception as e:
logger.error(f"处理初次交互失败: {user_id}, 错误: {e}")
logger.debug("错误详情:", exc_info=True)
def _clean_llm_json_response(self, response: str) -> str:
"""
清理LLM响应移除可能的JSON格式标记
Args:
response: LLM原始响应
Returns:
清理后的JSON字符串
"""
try:
import re
# 移除常见的JSON格式标记
cleaned = response.strip()
# 移除 ```json 或 ``` 等标记
cleaned = re.sub(r"^```(?:json)?\s*", "", cleaned, flags=re.MULTILINE | re.IGNORECASE)
cleaned = re.sub(r"\s*```$", "", cleaned, flags=re.MULTILINE)
# 移除可能的Markdown代码块标记
cleaned = re.sub(r"^`|`$", "", cleaned, flags=re.MULTILINE)
# 尝试找到JSON对象的开始和结束
json_start = cleaned.find("{")
json_end = cleaned.rfind("}")
if json_start != -1 and json_end != -1 and json_end > json_start:
# 提取JSON部分
cleaned = cleaned[json_start : json_end + 1]
# 移除多余的空白字符
cleaned = cleaned.strip()
logger.debug(f"LLM响应清理: 原始长度={len(response)}, 清理后长度={len(cleaned)}")
if cleaned != response:
logger.debug(f"清理前: {response[:200]}...")
logger.debug(f"清理后: {cleaned[:200]}...")
return cleaned
except Exception as e:
logger.warning(f"清理LLM响应失败: {e}")
return response # 清理失败时返回原始响应

View File

@@ -0,0 +1,370 @@
"""
用户画像更新工具
通过LLM二步调用机制更新用户画像信息包括别名、主观印象、偏好关键词和好感分数
"""
import orjson
import time
from typing import Any
from sqlalchemy import select
from src.common.database.sqlalchemy_database_api import get_db_session
from src.common.database.sqlalchemy_models import UserRelationships
from src.common.logger import get_logger
from src.config.config import global_config, model_config
from src.llm_models.utils_model import LLMRequest
from src.plugin_system import BaseTool, ToolParamType
logger = get_logger("user_profile_tool")
class UserProfileTool(BaseTool):
"""用户画像更新工具
使用二步调用机制:
1. LLM决定是否调用工具并传入初步参数
2. 工具内部调用LLM结合现有数据和传入参数决定最终更新内容
"""
name = "update_user_profile"
description = "当你通过聊天记录对某个用户产生了新的认识或印象时使用此工具更新该用户的画像信息。包括用户别名、你对TA的主观印象、TA的偏好兴趣、你对TA的好感程度。调用时机当你发现用户透露了新的个人信息、展现了性格特点、表达了兴趣偏好或者你们的互动让你对TA的看法发生变化时。"
parameters = [
("target_user_id", ToolParamType.STRING, "目标用户的ID必须", True, None),
("user_aliases", ToolParamType.STRING, "该用户的昵称或别名,如果发现用户自称或被他人称呼的其他名字时填写,多个别名用逗号分隔(可选)", False, None),
("impression_description", ToolParamType.STRING, "你对该用户的整体印象和性格感受,例如'这个用户很幽默开朗''TA对技术很有热情'等。当你通过对话了解到用户的性格、态度、行为特点时填写(可选)", False, None),
("preference_keywords", ToolParamType.STRING, "该用户表现出的兴趣爱好或偏好,如'编程,游戏,动漫'。当用户谈论自己喜欢的事物时填写,多个关键词用逗号分隔(可选)", False, None),
("affection_score", ToolParamType.FLOAT, "你对该用户的好感程度0.0(陌生/不喜欢)到1.0(很喜欢/好友)。当你们的互动让你对TA的感觉发生变化时更新可选", False, None),
]
available_for_llm = True
history_ttl = 5
def __init__(self, plugin_config: dict | None = None):
super().__init__(plugin_config)
# 初始化用于二步调用的LLM
try:
self.profile_llm = LLMRequest(
model_set=model_config.model_task_config.relationship_tracker,
request_type="user_profile_update"
)
except AttributeError:
# 降级处理
available_models = [
attr for attr in dir(model_config.model_task_config)
if not attr.startswith("_") and attr != "model_dump"
]
if available_models:
fallback_model = available_models[0]
logger.warning(f"relationship_tracker配置不存在使用降级模型: {fallback_model}")
self.profile_llm = LLMRequest(
model_set=getattr(model_config.model_task_config, fallback_model),
request_type="user_profile_update"
)
else:
logger.error("无可用的模型配置")
self.profile_llm = None
async def execute(self, function_args: dict[str, Any]) -> dict[str, Any]:
"""执行用户画像更新
Args:
function_args: 工具参数
Returns:
dict: 执行结果
"""
try:
# 提取参数
target_user_id = function_args.get("target_user_id")
if not target_user_id:
return {
"type": "error",
"id": "user_profile_update",
"content": "错误必须提供目标用户ID"
}
# 从LLM传入的参数
new_aliases = function_args.get("user_aliases", "")
new_impression = function_args.get("impression_description", "")
new_keywords = function_args.get("preference_keywords", "")
new_score = function_args.get("affection_score")
# 从数据库获取现有用户画像
existing_profile = await self._get_user_profile(target_user_id)
# 如果LLM没有传入任何有效参数返回提示
if not any([new_aliases, new_impression, new_keywords, new_score is not None]):
return {
"type": "info",
"id": target_user_id,
"content": f"提示:需要提供至少一项更新内容(别名、印象描述、偏好关键词或好感分数)"
}
# 调用LLM进行二步决策
if self.profile_llm is None:
logger.error("LLM未正确初始化无法执行二步调用")
return {
"type": "error",
"id": target_user_id,
"content": "系统错误LLM未正确初始化"
}
final_profile = await self._llm_decide_final_profile(
target_user_id=target_user_id,
existing_profile=existing_profile,
new_aliases=new_aliases,
new_impression=new_impression,
new_keywords=new_keywords,
new_score=new_score
)
if not final_profile:
return {
"type": "error",
"id": target_user_id,
"content": "LLM决策失败无法更新用户画像"
}
# 更新数据库
await self._update_user_profile_in_db(target_user_id, final_profile)
# 构建返回信息
updates = []
if final_profile.get("user_aliases"):
updates.append(f"别名: {final_profile['user_aliases']}")
if final_profile.get("relationship_text"):
updates.append(f"印象: {final_profile['relationship_text'][:50]}...")
if final_profile.get("preference_keywords"):
updates.append(f"偏好: {final_profile['preference_keywords']}")
if final_profile.get("relationship_score") is not None:
updates.append(f"好感分: {final_profile['relationship_score']:.2f}")
result_text = f"已更新用户 {target_user_id} 的画像:\n" + "\n".join(updates)
logger.info(f"用户画像更新成功: {target_user_id}")
return {
"type": "user_profile_update",
"id": target_user_id,
"content": result_text
}
except Exception as e:
logger.error(f"用户画像更新失败: {e}", exc_info=True)
return {
"type": "error",
"id": function_args.get("target_user_id", "unknown"),
"content": f"用户画像更新失败: {str(e)}"
}
async def _get_user_profile(self, user_id: str) -> dict[str, Any]:
"""从数据库获取用户现有画像
Args:
user_id: 用户ID
Returns:
dict: 用户画像数据
"""
try:
async with get_db_session() as session:
stmt = select(UserRelationships).where(UserRelationships.user_id == user_id)
result = await session.execute(stmt)
profile = result.scalar_one_or_none()
if profile:
return {
"user_name": profile.user_name or user_id,
"user_aliases": profile.user_aliases or "",
"relationship_text": profile.relationship_text or "",
"preference_keywords": profile.preference_keywords or "",
"relationship_score": float(profile.relationship_score) if profile.relationship_score is not None else global_config.affinity_flow.base_relationship_score,
}
else:
# 用户不存在,返回默认值
return {
"user_name": user_id,
"user_aliases": "",
"relationship_text": "",
"preference_keywords": "",
"relationship_score": global_config.affinity_flow.base_relationship_score,
}
except Exception as e:
logger.error(f"获取用户画像失败: {e}")
return {
"user_name": user_id,
"user_aliases": "",
"relationship_text": "",
"preference_keywords": "",
"relationship_score": global_config.affinity_flow.base_relationship_score,
}
async def _llm_decide_final_profile(
self,
target_user_id: str,
existing_profile: dict[str, Any],
new_aliases: str,
new_impression: str,
new_keywords: str,
new_score: float | None
) -> dict[str, Any] | None:
"""使用LLM决策最终的用户画像内容
Args:
target_user_id: 目标用户ID
existing_profile: 现有画像数据
new_aliases: LLM传入的新别名
new_impression: LLM传入的新印象
new_keywords: LLM传入的新关键词
new_score: LLM传入的新分数
Returns:
dict: 最终决定的画像数据如果失败返回None
"""
try:
# 获取bot人设
from src.individuality.individuality import Individuality
individuality = Individuality()
bot_personality = await individuality.get_personality_block()
prompt = f"""
你现在是一个有着特定性格和身份的AI助手。你的人设是{bot_personality}
你正在更新对用户 {target_user_id} 的画像认识。
【当前画像信息】
- 用户名: {existing_profile.get('user_name', target_user_id)}
- 已知别名: {existing_profile.get('user_aliases', '')}
- 当前印象: {existing_profile.get('relationship_text', '暂无印象')}
- 偏好关键词: {existing_profile.get('preference_keywords', '未知')}
- 当前好感分: {existing_profile.get('relationship_score', 0.3):.2f}
【本次想要更新的内容】
- 新增/更新别名: {new_aliases if new_aliases else '不更新'}
- 新的印象描述: {new_impression if new_impression else '不更新'}
- 新的偏好关键词: {new_keywords if new_keywords else '不更新'}
- 新的好感分数: {new_score if new_score is not None else '不更新'}
请综合考虑现有信息和新信息,决定最终的用户画像内容。注意:
1. 别名:如果提供了新别名,应该与现有别名合并(去重),而不是替换
2. 印象描述如果提供了新印象应该综合现有印象和新印象形成更完整的认识100-200字
3. 偏好关键词:如果提供了新关键词,应该与现有关键词合并(去重),每个关键词简短
4. 好感分数:如果提供了新分数,需要结合现有分数合理调整(变化不宜过大,遵循现实逻辑)
请以JSON格式返回最终决定
{{
"user_aliases": "最终的别名列表,逗号分隔",
"relationship_text": "最终的印象描述100-200字整体性、泛化的理解",
"preference_keywords": "最终的偏好关键词,逗号分隔",
"relationship_score": 最终的好感分数0.0-1.0,
"reasoning": "你的决策理由"
}}
"""
# 调用LLM
llm_response, _ = await self.profile_llm.generate_response_async(prompt=prompt)
if not llm_response:
logger.warning("LLM未返回有效响应")
return None
# 清理并解析响应
cleaned_response = self._clean_llm_json_response(llm_response)
response_data = orjson.loads(cleaned_response)
# 提取最终决定的数据
final_profile = {
"user_aliases": response_data.get("user_aliases", existing_profile.get("user_aliases", "")),
"relationship_text": response_data.get("relationship_text", existing_profile.get("relationship_text", "")),
"preference_keywords": response_data.get("preference_keywords", existing_profile.get("preference_keywords", "")),
"relationship_score": max(0.0, min(1.0, float(response_data.get("relationship_score", existing_profile.get("relationship_score", 0.3))))),
}
logger.info(f"LLM决策完成: {target_user_id}")
logger.debug(f"决策理由: {response_data.get('reasoning', '')}")
return final_profile
except orjson.JSONDecodeError as e:
logger.error(f"LLM响应JSON解析失败: {e}")
logger.debug(f"LLM原始响应: {llm_response if 'llm_response' in locals() else 'N/A'}")
return None
except Exception as e:
logger.error(f"LLM决策失败: {e}", exc_info=True)
return None
async def _update_user_profile_in_db(self, user_id: str, profile: dict[str, Any]):
"""更新数据库中的用户画像
Args:
user_id: 用户ID
profile: 画像数据
"""
try:
current_time = time.time()
async with get_db_session() as session:
stmt = select(UserRelationships).where(UserRelationships.user_id == user_id)
result = await session.execute(stmt)
existing = result.scalar_one_or_none()
if existing:
# 更新现有记录
existing.user_aliases = profile.get("user_aliases", "")
existing.relationship_text = profile.get("relationship_text", "")
existing.preference_keywords = profile.get("preference_keywords", "")
existing.relationship_score = profile.get("relationship_score", global_config.affinity_flow.base_relationship_score)
existing.last_updated = current_time
else:
# 创建新记录
new_profile = UserRelationships(
user_id=user_id,
user_name=user_id,
user_aliases=profile.get("user_aliases", ""),
relationship_text=profile.get("relationship_text", ""),
preference_keywords=profile.get("preference_keywords", ""),
relationship_score=profile.get("relationship_score", global_config.affinity_flow.base_relationship_score),
last_updated=current_time
)
session.add(new_profile)
await session.commit()
logger.info(f"用户画像已更新到数据库: {user_id}")
except Exception as e:
logger.error(f"更新用户画像到数据库失败: {e}", exc_info=True)
raise
def _clean_llm_json_response(self, response: str) -> str:
"""清理LLM响应移除可能的JSON格式标记
Args:
response: LLM原始响应
Returns:
str: 清理后的JSON字符串
"""
try:
import re
cleaned = response.strip()
# 移除 ```json 或 ``` 等标记
cleaned = re.sub(r"^```(?:json)?\s*", "", cleaned, flags=re.MULTILINE | re.IGNORECASE)
cleaned = re.sub(r"\s*```$", "", cleaned, flags=re.MULTILINE)
# 尝试找到JSON对象的开始和结束
json_start = cleaned.find("{")
json_end = cleaned.rfind("}")
if json_start != -1 and json_end != -1 and json_end > json_start:
cleaned = cleaned[json_start:json_end + 1]
cleaned = cleaned.strip()
return cleaned
except Exception as e:
logger.warning(f"清理LLM响应失败: {e}")
return response