Merge branch 'main-fix' into main

This commit is contained in:
覅是
2025-03-21 19:23:25 +09:00
committed by GitHub
48 changed files with 1358 additions and 1841 deletions

View File

@@ -18,6 +18,7 @@ from ..chat.utils import (
)
from ..models.utils_model import LLM_request
from src.common.logger import get_module_logger, LogConfig, MEMORY_STYLE_CONFIG
from src.plugins.memory_system.sample_distribution import MemoryBuildScheduler
# 定义日志配置
memory_config = LogConfig(
@@ -25,6 +26,11 @@ memory_config = LogConfig(
console_format=MEMORY_STYLE_CONFIG["console_format"],
file_format=MEMORY_STYLE_CONFIG["file_format"],
)
# print(f"memory_config: {memory_config}")
# print(f"MEMORY_STYLE_CONFIG: {MEMORY_STYLE_CONFIG}")
# print(f"MEMORY_STYLE_CONFIG['console_format']: {MEMORY_STYLE_CONFIG['console_format']}")
# print(f"MEMORY_STYLE_CONFIG['file_format']: {MEMORY_STYLE_CONFIG['file_format']}")
logger = get_module_logger("memory_system", config=memory_config)
@@ -168,9 +174,9 @@ class Memory_graph:
class Hippocampus:
def __init__(self, memory_graph: Memory_graph):
self.memory_graph = memory_graph
self.llm_topic_judge = LLM_request(model=global_config.llm_topic_judge, temperature=0.5, request_type="topic")
self.llm_topic_judge = LLM_request(model=global_config.llm_topic_judge, temperature=0.5, request_type="memory")
self.llm_summary_by_topic = LLM_request(
model=global_config.llm_summary_by_topic, temperature=0.5, request_type="topic"
model=global_config.llm_summary_by_topic, temperature=0.5, request_type="memory"
)
def get_all_node_names(self) -> list:
@@ -195,25 +201,17 @@ class Hippocampus:
return hash(f"{nodes[0]}:{nodes[1]}")
def random_get_msg_snippet(self, target_timestamp: float, chat_size: int, max_memorized_time_per_msg: int) -> list:
"""随机抽取一段时间内的消息片段
Args:
- target_timestamp: 目标时间戳
- chat_size: 抽取的消息数量
- max_memorized_time_per_msg: 每条消息的最大记忆次数
Returns:
- list: 抽取出的消息记录列表
"""
try_count = 0
# 最多尝试次抽取
# 最多尝试2次抽取
while try_count < 3:
messages = get_closest_chat_from_db(length=chat_size, timestamp=target_timestamp)
if messages:
# print(f"抽取到的消息: {messages}")
# 检查messages是否均没有达到记忆次数限制
for message in messages:
if message["memorized_times"] >= max_memorized_time_per_msg:
messages = None
# print(f"抽取到的消息提取次数达到限制,跳过")
break
if messages:
# 成功抽取短期消息样本
@@ -224,63 +222,48 @@ class Hippocampus:
)
return messages
try_count += 1
# 三次尝试均失败
return None
def get_memory_sample(self, chat_size=20, time_frequency=None):
"""获取记忆样本
Returns:
list: 消息记录列表,每个元素是一个消息记录字典列表
"""
def get_memory_sample(self):
# 硬编码:每条消息最大记忆次数
# 如有需求可写入global_config
if time_frequency is None:
time_frequency = {"near": 2, "mid": 4, "far": 3}
max_memorized_time_per_msg = 3
current_timestamp = datetime.datetime.now().timestamp()
# 创建双峰分布的记忆调度器
scheduler = MemoryBuildScheduler(
n_hours1=global_config.memory_build_distribution[0], # 第一个分布均值4小时前
std_hours1=global_config.memory_build_distribution[1], # 第一个分布标准差
weight1=global_config.memory_build_distribution[2], # 第一个分布权重 60%
n_hours2=global_config.memory_build_distribution[3], # 第二个分布均值24小时前
std_hours2=global_config.memory_build_distribution[4], # 第二个分布标准差
weight2=global_config.memory_build_distribution[5], # 第二个分布权重 40%
total_samples=global_config.build_memory_sample_num # 总共生成10个时间点
)
# 生成时间戳数组
timestamps = scheduler.get_timestamp_array()
# logger.debug(f"生成的时间戳数组: {timestamps}")
# print(f"生成的时间戳数组: {timestamps}")
# print(f"时间戳的实际时间: {[time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(ts)) for ts in timestamps]}")
logger.info(f"回忆往事: {[time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(ts)) for ts in timestamps]}")
chat_samples = []
# 短期1h 中期4h 长期24h
logger.debug("正在抽取短期消息样本")
for i in range(time_frequency.get("near")):
random_time = current_timestamp - random.randint(1, 3600)
messages = self.random_get_msg_snippet(random_time, chat_size, max_memorized_time_per_msg)
for timestamp in timestamps:
messages = self.random_get_msg_snippet(
timestamp,
global_config.build_memory_sample_length,
max_memorized_time_per_msg
)
if messages:
logger.debug(f"成功抽取短期消息样本{len(messages)}")
time_diff = (datetime.datetime.now().timestamp() - timestamp) / 3600
logger.debug(f"成功抽取 {time_diff:.1f} 小时前的消息样本,共{len(messages)}")
# print(f"成功抽取 {time_diff:.1f} 小时前的消息样本,共{len(messages)}条")
chat_samples.append(messages)
else:
logger.warning(f"{i}次短期消息样本抽取失败")
logger.debug("正在抽取中期消息样本")
for i in range(time_frequency.get("mid")):
random_time = current_timestamp - random.randint(3600, 3600 * 4)
messages = self.random_get_msg_snippet(random_time, chat_size, max_memorized_time_per_msg)
if messages:
logger.debug(f"成功抽取中期消息样本{len(messages)}")
chat_samples.append(messages)
else:
logger.warning(f"{i}次中期消息样本抽取失败")
logger.debug("正在抽取长期消息样本")
for i in range(time_frequency.get("far")):
random_time = current_timestamp - random.randint(3600 * 4, 3600 * 24)
messages = self.random_get_msg_snippet(random_time, chat_size, max_memorized_time_per_msg)
if messages:
logger.debug(f"成功抽取长期消息样本{len(messages)}")
chat_samples.append(messages)
else:
logger.warning(f"{i}次长期消息样本抽取失败")
logger.debug(f"时间戳 {timestamp}消息样本抽取失败")
return chat_samples
async def memory_compress(self, messages: list, compress_rate=0.1):
"""压缩消息记录为记忆
Returns:
tuple: (压缩记忆集合, 相似主题字典)
"""
if not messages:
return set(), {}
@@ -313,15 +296,23 @@ class Hippocampus:
topics_response = await self.llm_topic_judge.generate_response(self.find_topic_llm(input_text, topic_num))
# 过滤topics
# 从配置文件获取需要过滤的关键词列表
filter_keywords = global_config.memory_ban_words
# 将topics_response[0]中的中文逗号、顿号、空格都替换成英文逗号
# 然后按逗号分割成列表,并去除每个topic前后的空白字符
topics = [
topic.strip()
for topic in topics_response[0].replace("", ",").replace("", ",").replace(" ", ",").split(",")
if topic.strip()
]
# 过滤掉包含禁用关键词的topic
# any()检查topic中是否包含任何一个filter_keywords中的关键词
# 只保留不包含禁用关键词的topic
filtered_topics = [topic for topic in topics if not any(keyword in topic for keyword in filter_keywords)]
logger.info(f"过滤后话题: {filtered_topics}")
logger.debug(f"过滤后话题: {filtered_topics}")
# 创建所有话题的请求任务
tasks = []
@@ -331,31 +322,42 @@ class Hippocampus:
tasks.append((topic.strip(), task))
# 等待所有任务完成
compressed_memory = set()
# 初始化压缩后的记忆集合和相似主题字典
compressed_memory = set() # 存储压缩后的(主题,内容)元组
similar_topics_dict = {} # 存储每个话题的相似主题列表
# 遍历每个主题及其对应的LLM任务
for topic, task in tasks:
response = await task
if response:
# 将主题和LLM生成的内容添加到压缩记忆中
compressed_memory.add((topic, response[0]))
# 为每个话题查找相似的已存在主题
# 为当前主题寻找相似的已存在主题
existing_topics = list(self.memory_graph.G.nodes())
similar_topics = []
# 计算当前主题与每个已存在主题的相似度
for existing_topic in existing_topics:
# 使用jieba分词,将主题转换为词集合
topic_words = set(jieba.cut(topic))
existing_words = set(jieba.cut(existing_topic))
all_words = topic_words | existing_words
v1 = [1 if word in topic_words else 0 for word in all_words]
v2 = [1 if word in existing_words else 0 for word in all_words]
# 构建词向量用于计算余弦相似度
all_words = topic_words | existing_words # 所有不重复的词
v1 = [1 if word in topic_words else 0 for word in all_words] # 当前主题的词向量
v2 = [1 if word in existing_words else 0 for word in all_words] # 已存在主题的词向量
# 计算余弦相似度
similarity = cosine_similarity(v1, v2)
if similarity >= 0.6:
# 如果相似度超过阈值,添加到相似主题列表
if similarity >= 0.7:
similar_topics.append((existing_topic, similarity))
# 按相似度降序排序,只保留前3个最相似的主题
similar_topics.sort(key=lambda x: x[1], reverse=True)
similar_topics = similar_topics[:5]
similar_topics = similar_topics[:3]
similar_topics_dict[topic] = similar_topics
return compressed_memory, similar_topics_dict
@@ -372,10 +374,13 @@ class Hippocampus:
)
return topic_num
async def operation_build_memory(self, chat_size=20):
time_frequency = {"near": 1, "mid": 4, "far": 4}
memory_samples = self.get_memory_sample(chat_size, time_frequency)
async def operation_build_memory(self):
logger.debug("------------------------------------开始构建记忆--------------------------------------")
start_time = time.time()
memory_samples = self.get_memory_sample()
all_added_nodes = []
all_connected_nodes = []
all_added_edges = []
for i, messages in enumerate(memory_samples, 1):
all_topics = []
# 加载进度可视化
@@ -387,12 +392,14 @@ class Hippocampus:
compress_rate = global_config.memory_compress_rate
compressed_memory, similar_topics_dict = await self.memory_compress(messages, compress_rate)
logger.info(f"压缩后记忆数量: {len(compressed_memory)},似曾相识的话题: {len(similar_topics_dict)}")
logger.debug(f"压缩后记忆数量: {compressed_memory},似曾相识的话题: {similar_topics_dict}")
current_time = datetime.datetime.now().timestamp()
logger.debug(f"添加节点: {', '.join(topic for topic, _ in compressed_memory)}")
all_added_nodes.extend(topic for topic, _ in compressed_memory)
# all_connected_nodes.extend(topic for topic, _ in similar_topics_dict)
for topic, memory in compressed_memory:
logger.info(f"添加节点: {topic}")
self.memory_graph.add_dot(topic, memory)
all_topics.append(topic)
@@ -402,7 +409,13 @@ class Hippocampus:
for similar_topic, similarity in similar_topics:
if topic != similar_topic:
strength = int(similarity * 10)
logger.info(f"连接相似节点: {topic}{similar_topic} (强度: {strength})")
logger.debug(f"连接相似节点: {topic}{similar_topic} (强度: {strength})")
all_added_edges.append(f"{topic}-{similar_topic}")
all_connected_nodes.append(topic)
all_connected_nodes.append(similar_topic)
self.memory_graph.G.add_edge(
topic,
similar_topic,
@@ -414,10 +427,21 @@ class Hippocampus:
# 连接同批次的相关话题
for i in range(len(all_topics)):
for j in range(i + 1, len(all_topics)):
logger.info(f"连接同批次节点: {all_topics[i]}{all_topics[j]}")
logger.debug(f"连接同批次节点: {all_topics[i]}{all_topics[j]}")
all_added_edges.append(f"{all_topics[i]}-{all_topics[j]}")
self.memory_graph.connect_dot(all_topics[i], all_topics[j])
logger.success(f"更新记忆: {', '.join(all_added_nodes)}")
logger.debug(f"强化连接: {', '.join(all_added_edges)}")
logger.info(f"强化连接节点: {', '.join(all_connected_nodes)}")
# logger.success(f"强化连接: {', '.join(all_added_edges)}")
self.sync_memory_to_db()
end_time = time.time()
logger.success(
f"--------------------------记忆构建完成:耗时: {end_time - start_time:.2f} "
"秒--------------------------"
)
def sync_memory_to_db(self):
"""检查并同步内存中的图结构与数据库"""
@@ -844,10 +868,9 @@ class Hippocampus:
async def memory_activate_value(self, text: str, max_topics: int = 5, similarity_threshold: float = 0.3) -> int:
"""计算输入文本对记忆的激活程度"""
logger.info(f"识别主题: {await self._identify_topics(text)}")
# 识别主题
identified_topics = await self._identify_topics(text)
if not identified_topics:
return 0
@@ -908,7 +931,8 @@ class Hippocampus:
# 计算最终激活值
activation = int((topic_match + average_similarities) / 2 * 100)
logger.info(f"匹配率: {topic_match:.3f}, 平均相似度: {average_similarities:.3f}, 激活值: {activation}")
logger.info(f"识别主题: {identified_topics}, 匹配率: {topic_match:.3f}, 激活值: {activation}")
return activation

View File

@@ -7,7 +7,6 @@ import sys
import time
from collections import Counter
from pathlib import Path
import matplotlib.pyplot as plt
import networkx as nx
from dotenv import load_dotenv
@@ -16,7 +15,6 @@ sys.path.insert(0, sys.path[0]+"/../")
sys.path.insert(0, sys.path[0]+"/../")
sys.path.insert(0, sys.path[0]+"/../")
sys.path.insert(0, sys.path[0]+"/../")
print(sys.path)
from src.common.logger import get_module_logger
import jieba
@@ -25,6 +23,7 @@ import jieba
root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../.."))
sys.path.append(root_path)
from src.common.logger import get_module_logger # noqa: E402
from src.common.database import db # noqa E402
from src.plugins.memory_system.offline_llm import LLMModel # noqa E402

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,170 @@
import numpy as np
from scipy import stats
from datetime import datetime, timedelta
class DistributionVisualizer:
def __init__(self, mean=0, std=1, skewness=0, sample_size=10):
"""
初始化分布可视化器
参数:
mean (float): 期望均值
std (float): 标准差
skewness (float): 偏度
sample_size (int): 样本大小
"""
self.mean = mean
self.std = std
self.skewness = skewness
self.sample_size = sample_size
self.samples = None
def generate_samples(self):
"""生成具有指定参数的样本"""
if self.skewness == 0:
# 对于无偏度的情况,直接使用正态分布
self.samples = np.random.normal(loc=self.mean, scale=self.std, size=self.sample_size)
else:
# 使用 scipy.stats 生成具有偏度的分布
self.samples = stats.skewnorm.rvs(a=self.skewness,
loc=self.mean,
scale=self.std,
size=self.sample_size)
def get_weighted_samples(self):
"""获取加权后的样本数列"""
if self.samples is None:
self.generate_samples()
# 将样本值乘以样本大小
return self.samples * self.sample_size
def get_statistics(self):
"""获取分布的统计信息"""
if self.samples is None:
self.generate_samples()
return {
"均值": np.mean(self.samples),
"标准差": np.std(self.samples),
"实际偏度": stats.skew(self.samples)
}
class MemoryBuildScheduler:
def __init__(self,
n_hours1, std_hours1, weight1,
n_hours2, std_hours2, weight2,
total_samples=50):
"""
初始化记忆构建调度器
参数:
n_hours1 (float): 第一个分布的均值(距离现在的小时数)
std_hours1 (float): 第一个分布的标准差(小时)
weight1 (float): 第一个分布的权重
n_hours2 (float): 第二个分布的均值(距离现在的小时数)
std_hours2 (float): 第二个分布的标准差(小时)
weight2 (float): 第二个分布的权重
total_samples (int): 要生成的总时间点数量
"""
# 归一化权重
total_weight = weight1 + weight2
self.weight1 = weight1 / total_weight
self.weight2 = weight2 / total_weight
self.n_hours1 = n_hours1
self.std_hours1 = std_hours1
self.n_hours2 = n_hours2
self.std_hours2 = std_hours2
self.total_samples = total_samples
self.base_time = datetime.now()
def generate_time_samples(self):
"""生成混合分布的时间采样点"""
# 根据权重计算每个分布的样本数
samples1 = int(self.total_samples * self.weight1)
samples2 = self.total_samples - samples1
# 生成两个正态分布的小时偏移
hours_offset1 = np.random.normal(
loc=self.n_hours1,
scale=self.std_hours1,
size=samples1
)
hours_offset2 = np.random.normal(
loc=self.n_hours2,
scale=self.std_hours2,
size=samples2
)
# 合并两个分布的偏移
hours_offset = np.concatenate([hours_offset1, hours_offset2])
# 将偏移转换为实际时间戳(使用绝对值确保时间点在过去)
timestamps = [self.base_time - timedelta(hours=abs(offset)) for offset in hours_offset]
# 按时间排序(从最早到最近)
return sorted(timestamps)
def get_timestamp_array(self):
"""返回时间戳数组"""
timestamps = self.generate_time_samples()
return [int(t.timestamp()) for t in timestamps]
def print_time_samples(timestamps, show_distribution=True):
"""打印时间样本和分布信息"""
print(f"\n生成的{len(timestamps)}个时间点分布:")
print("序号".ljust(5), "时间戳".ljust(25), "距现在(小时)")
print("-" * 50)
now = datetime.now()
time_diffs = []
for i, timestamp in enumerate(timestamps, 1):
hours_diff = (now - timestamp).total_seconds() / 3600
time_diffs.append(hours_diff)
print(f"{str(i).ljust(5)} {timestamp.strftime('%Y-%m-%d %H:%M:%S').ljust(25)} {hours_diff:.2f}")
# 打印统计信息
print("\n统计信息:")
print(f"平均时间偏移:{np.mean(time_diffs):.2f}小时")
print(f"标准差:{np.std(time_diffs):.2f}小时")
print(f"最早时间:{min(timestamps).strftime('%Y-%m-%d %H:%M:%S')} ({max(time_diffs):.2f}小时前)")
print(f"最近时间:{max(timestamps).strftime('%Y-%m-%d %H:%M:%S')} ({min(time_diffs):.2f}小时前)")
if show_distribution:
# 计算时间分布的直方图
hist, bins = np.histogram(time_diffs, bins=40)
print("\n时间分布(每个*代表一个时间点):")
for i in range(len(hist)):
if hist[i] > 0:
print(f"{bins[i]:6.1f}-{bins[i+1]:6.1f}小时: {'*' * int(hist[i])}")
# 使用示例
if __name__ == "__main__":
# 创建一个双峰分布的记忆调度器
scheduler = MemoryBuildScheduler(
n_hours1=12, # 第一个分布均值12小时前
std_hours1=8, # 第一个分布标准差
weight1=0.7, # 第一个分布权重 70%
n_hours2=36, # 第二个分布均值36小时前
std_hours2=24, # 第二个分布标准差
weight2=0.3, # 第二个分布权重 30%
total_samples=50 # 总共生成50个时间点
)
# 生成时间分布
timestamps = scheduler.generate_time_samples()
# 打印结果,包含分布可视化
print_time_samples(timestamps, show_distribution=True)
# 打印时间戳数组
timestamp_array = scheduler.get_timestamp_array()
print("\n时间戳数组Unix时间戳")
print("[", end="")
for i, ts in enumerate(timestamp_array):
if i > 0:
print(", ", end="")
print(ts, end="")
print("]")