refactor(core): 延迟初始化知识库并优化导入结构
将LPMM知识库的初始化逻辑封装到`initialize_lpmm_knowledge`函数中,并将其调用移至`main.py`,以实现延迟加载并改善启动流程。 为了解决循环导入问题,将`component_registry`的导入移至`BaseAction.call`方法内部。
This commit is contained in:
committed by
Windpicker-owo
parent
9434f63a76
commit
e607dcb36b
@@ -30,51 +30,55 @@ DATA_PATH = os.path.join(ROOT_PATH, "data")
|
||||
qa_manager = None
|
||||
inspire_manager = None
|
||||
|
||||
# 检查LPMM知识库是否启用
|
||||
if global_config.lpmm_knowledge.enable:
|
||||
logger.info("正在初始化Mai-LPMM")
|
||||
logger.info("创建LLM客户端")
|
||||
|
||||
# 初始化Embedding库
|
||||
embed_manager = EmbeddingManager()
|
||||
logger.info("正在从文件加载Embedding库")
|
||||
try:
|
||||
embed_manager.load_from_file()
|
||||
except Exception as e:
|
||||
logger.warning(f"此消息不会影响正常使用:从文件加载Embedding库时,{e}")
|
||||
# logger.warning("如果你是第一次导入知识,或者还未导入知识,请忽略此错误")
|
||||
logger.info("Embedding库加载完成")
|
||||
# 初始化KG
|
||||
kg_manager = KGManager()
|
||||
logger.info("正在从文件加载KG")
|
||||
try:
|
||||
kg_manager.load_from_file()
|
||||
except Exception as e:
|
||||
logger.warning(f"此消息不会影响正常使用:从文件加载KG时,{e}")
|
||||
# logger.warning("如果你是第一次导入知识,或者还未导入知识,请忽略此错误")
|
||||
logger.info("KG加载完成")
|
||||
def initialize_lpmm_knowledge():
|
||||
"""初始化LPMM知识库"""
|
||||
global qa_manager, inspire_manager
|
||||
|
||||
logger.info(f"KG节点数量:{len(kg_manager.graph.get_node_list())}")
|
||||
logger.info(f"KG边数量:{len(kg_manager.graph.get_edge_list())}")
|
||||
# 检查LPMM知识库是否启用
|
||||
if global_config.lpmm_knowledge.enable:
|
||||
logger.info("正在初始化Mai-LPMM")
|
||||
logger.info("创建LLM客户端")
|
||||
|
||||
# 数据比对:Embedding库与KG的段落hash集合
|
||||
for pg_hash in kg_manager.stored_paragraph_hashes:
|
||||
# 使用与EmbeddingStore中一致的命名空间格式
|
||||
key = f"paragraph-{pg_hash}"
|
||||
if key not in embed_manager.stored_pg_hashes:
|
||||
logger.warning(f"KG中存在Embedding库中不存在的段落:{key}")
|
||||
# 初始化Embedding库
|
||||
embed_manager = EmbeddingManager()
|
||||
logger.info("正在从文件加载Embedding库")
|
||||
try:
|
||||
embed_manager.load_from_file()
|
||||
except Exception as e:
|
||||
logger.warning(f"此消息不会影响正常使用:从文件加载Embedding库时,{e}")
|
||||
# logger.warning("如果你是第一次导入知识,或者还未导入知识,请忽略此错误")
|
||||
logger.info("Embedding库加载完成")
|
||||
# 初始化KG
|
||||
kg_manager = KGManager()
|
||||
logger.info("正在从文件加载KG")
|
||||
try:
|
||||
kg_manager.load_from_file()
|
||||
except Exception as e:
|
||||
logger.warning(f"此消息不会影响正常使用:从文件加载KG时,{e}")
|
||||
# logger.warning("如果你是第一次导入知识,或者还未导入知识,请忽略此错误")
|
||||
logger.info("KG加载完成")
|
||||
|
||||
# 问答系统(用于知识库)
|
||||
qa_manager = QAManager(
|
||||
embed_manager,
|
||||
kg_manager,
|
||||
)
|
||||
logger.info(f"KG节点数量:{len(kg_manager.graph.get_node_list())}")
|
||||
logger.info(f"KG边数量:{len(kg_manager.graph.get_edge_list())}")
|
||||
|
||||
# # 记忆激活(用于记忆库)
|
||||
# inspire_manager = MemoryActiveManager(
|
||||
# embed_manager,
|
||||
# llm_client_list[global_config["embedding"]["provider"]],
|
||||
# )
|
||||
else:
|
||||
logger.info("LPMM知识库已禁用,跳过初始化")
|
||||
# 创建空的占位符对象,避免导入错误
|
||||
# 数据比对:Embedding库与KG的段落hash集合
|
||||
for pg_hash in kg_manager.stored_paragraph_hashes:
|
||||
key = f"paragraph-{pg_hash}"
|
||||
if key not in embed_manager.stored_pg_hashes:
|
||||
logger.warning(f"KG中存在Embedding库中不存在的段落:{key}")
|
||||
|
||||
# 问答系统(用于知识库)
|
||||
qa_manager = QAManager(
|
||||
embed_manager,
|
||||
kg_manager,
|
||||
)
|
||||
|
||||
# # 记忆激活(用于记忆库)
|
||||
# inspire_manager = MemoryActiveManager(
|
||||
# embed_manager,
|
||||
# llm_client_list[global_config["embedding"]["provider"]],
|
||||
# )
|
||||
else:
|
||||
logger.info("LPMM知识库已禁用,跳过初始化")
|
||||
# 创建空的占位符对象,避免导入错误
|
||||
|
||||
Reference in New Issue
Block a user