Merge branch 'MaiM-with-u:main-fix' into main-fix
This commit is contained in:
1
.gitignore
vendored
1
.gitignore
vendored
@@ -29,6 +29,7 @@ run_dev.bat
|
|||||||
elua.confirmed
|
elua.confirmed
|
||||||
# C extensions
|
# C extensions
|
||||||
*.so
|
*.so
|
||||||
|
/results
|
||||||
|
|
||||||
# Distribution / packaging
|
# Distribution / packaging
|
||||||
.Python
|
.Python
|
||||||
|
|||||||
18
README.md
18
README.md
@@ -128,11 +128,11 @@
|
|||||||
MaiMBot是一个开源项目,我们非常欢迎你的参与。你的贡献,无论是提交bug报告、功能需求还是代码pr,都对项目非常宝贵。我们非常感谢你的支持!🎉 但无序的讨论会降低沟通效率,进而影响问题的解决速度,因此在提交任何贡献前,请务必先阅读本项目的[贡献指南](CONTRIBUTE.md)
|
MaiMBot是一个开源项目,我们非常欢迎你的参与。你的贡献,无论是提交bug报告、功能需求还是代码pr,都对项目非常宝贵。我们非常感谢你的支持!🎉 但无序的讨论会降低沟通效率,进而影响问题的解决速度,因此在提交任何贡献前,请务必先阅读本项目的[贡献指南](CONTRIBUTE.md)
|
||||||
|
|
||||||
### 💬交流群
|
### 💬交流群
|
||||||
- [一群](https://qm.qq.com/q/VQ3XZrWgMs) 766798517 ,建议加下面的(开发和建议相关讨论)不一定有空回复,会优先写文档和代码
|
- [五群](https://qm.qq.com/q/JxvHZnxyec) 1022489779(开发和建议相关讨论)不一定有空回复,会优先写文档和代码
|
||||||
- [二群](https://qm.qq.com/q/RzmCiRtHEW) 571780722 (开发和建议相关讨论)不一定有空回复,会优先写文档和代码
|
- [一群](https://qm.qq.com/q/VQ3XZrWgMs) 766798517 【已满】(开发和建议相关讨论)不一定有空回复,会优先写文档和代码
|
||||||
- [三群](https://qm.qq.com/q/wlH5eT8OmQ) 1035228475(开发和建议相关讨论)不一定有空回复,会优先写文档和代码
|
- [二群](https://qm.qq.com/q/RzmCiRtHEW) 571780722 【已满】(开发和建议相关讨论)不一定有空回复,会优先写文档和代码
|
||||||
- [四群](https://qm.qq.com/q/wlH5eT8OmQ) 729957033(开发和建议相关讨论)不一定有空回复,会优先写文档和代码
|
- [三群](https://qm.qq.com/q/wlH5eT8OmQ) 1035228475【已满】(开发和建议相关讨论)不一定有空回复,会优先写文档和代码
|
||||||
|
- [四群](https://qm.qq.com/q/wlH5eT8OmQ) 729957033【已满】(开发和建议相关讨论)不一定有空回复,会优先写文档和代码
|
||||||
|
|
||||||
|
|
||||||
<div align="left">
|
<div align="left">
|
||||||
@@ -251,10 +251,12 @@ SengokuCola~~纯编程外行,面向cursor编程,很多代码写得不好多
|
|||||||
|
|
||||||
感谢各位大佬!
|
感谢各位大佬!
|
||||||
|
|
||||||
<a href="https://github.com/SengokuCola/MaiMBot/graphs/contributors">
|
<a href="https://github.com/MaiM-with-u/MaiBot/graphs/contributors">
|
||||||
<img src="https://contrib.rocks/image?repo=SengokuCola/MaiMBot" />
|
<img src="https://contrib.rocks/image?repo=MaiM-with-u/MaiBot" />
|
||||||
</a>
|
</a>
|
||||||
|
|
||||||
|
**也感谢每一位给麦麦发展提出宝贵意见与建议的用户,感谢陪伴麦麦走到现在的你们**
|
||||||
|
|
||||||
## Stargazers over time
|
## Stargazers over time
|
||||||
|
|
||||||
[](https://starchart.cc/SengokuCola/MaiMBot)
|
[](https://starchart.cc/MaiM-with-u/MaiBot)
|
||||||
|
|||||||
@@ -1,46 +0,0 @@
|
|||||||
{
|
|
||||||
"final_scores": {
|
|
||||||
"开放性": 5.5,
|
|
||||||
"尽责性": 5.0,
|
|
||||||
"外向性": 6.0,
|
|
||||||
"宜人性": 1.5,
|
|
||||||
"神经质": 6.0
|
|
||||||
},
|
|
||||||
"scenarios": [
|
|
||||||
{
|
|
||||||
"场景": "在团队项目中,你发现一个同事的工作质量明显低于预期,这可能会影响整个项目的进度。",
|
|
||||||
"评估维度": [
|
|
||||||
"尽责性",
|
|
||||||
"宜人性"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"场景": "你被邀请参加一个完全陌生的社交活动,现场都是不认识的人。",
|
|
||||||
"评估维度": [
|
|
||||||
"外向性",
|
|
||||||
"神经质"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"场景": "你的朋友向你推荐了一个新的艺术展览,但风格与你平时接触的完全不同。",
|
|
||||||
"评估维度": [
|
|
||||||
"开放性",
|
|
||||||
"外向性"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"场景": "在工作中,你遇到了一个技术难题,需要学习全新的技术栈。",
|
|
||||||
"评估维度": [
|
|
||||||
"开放性",
|
|
||||||
"尽责性"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"场景": "你的朋友因为个人原因情绪低落,向你寻求帮助。",
|
|
||||||
"评估维度": [
|
|
||||||
"宜人性",
|
|
||||||
"神经质"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
]
|
|
||||||
}
|
|
||||||
@@ -415,6 +415,16 @@ class ChatBot:
|
|||||||
async def handle_forward_message(self, event: MessageEvent, bot: Bot) -> None:
|
async def handle_forward_message(self, event: MessageEvent, bot: Bot) -> None:
|
||||||
"""专用于处理合并转发的消息处理器"""
|
"""专用于处理合并转发的消息处理器"""
|
||||||
|
|
||||||
|
# 用户屏蔽,不区分私聊/群聊
|
||||||
|
if event.user_id in global_config.ban_user_id:
|
||||||
|
return
|
||||||
|
|
||||||
|
if isinstance(event, GroupMessageEvent):
|
||||||
|
if event.group_id:
|
||||||
|
if event.group_id not in global_config.talk_allowed_groups:
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
# 获取合并转发消息的详细信息
|
# 获取合并转发消息的详细信息
|
||||||
forward_info = await bot.get_forward_msg(message_id=event.message_id)
|
forward_info = await bot.get_forward_msg(message_id=event.message_id)
|
||||||
messages = forward_info["messages"]
|
messages = forward_info["messages"]
|
||||||
@@ -425,22 +435,11 @@ class ChatBot:
|
|||||||
# 提取发送者昵称
|
# 提取发送者昵称
|
||||||
nickname = node["sender"].get("nickname", "未知用户")
|
nickname = node["sender"].get("nickname", "未知用户")
|
||||||
|
|
||||||
# 处理消息内容
|
# 递归处理消息内容
|
||||||
message_content = []
|
message_content = await self.process_message_segments(node["message"],layer=0)
|
||||||
for seg in node["message"]:
|
|
||||||
if seg["type"] == "text":
|
|
||||||
message_content.append(seg["data"]["text"])
|
|
||||||
elif seg["type"] == "image":
|
|
||||||
message_content.append("[图片]")
|
|
||||||
elif seg["type"] =="face":
|
|
||||||
message_content.append("[表情]")
|
|
||||||
elif seg["type"] == "at":
|
|
||||||
message_content.append(f"@{seg['data'].get('qq', '未知用户')}")
|
|
||||||
else:
|
|
||||||
message_content.append(f"[{seg['type']}]")
|
|
||||||
|
|
||||||
# 拼接为【昵称】+ 内容
|
# 拼接为【昵称】+ 内容
|
||||||
processed_messages.append(f"【{nickname}】{''.join(message_content)}")
|
processed_messages.append(f"【{nickname}】{message_content}")
|
||||||
|
|
||||||
# 组合所有消息
|
# 组合所有消息
|
||||||
combined_message = "\n".join(processed_messages)
|
combined_message = "\n".join(processed_messages)
|
||||||
@@ -459,7 +458,7 @@ class ChatBot:
|
|||||||
if isinstance(event, GroupMessageEvent):
|
if isinstance(event, GroupMessageEvent):
|
||||||
group_info = GroupInfo(
|
group_info = GroupInfo(
|
||||||
group_id=event.group_id,
|
group_id=event.group_id,
|
||||||
group_name= None,
|
group_name=None,
|
||||||
platform="qq"
|
platform="qq"
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -476,5 +475,42 @@ class ChatBot:
|
|||||||
# 进入标准消息处理流程
|
# 进入标准消息处理流程
|
||||||
await self.message_process(message_cq)
|
await self.message_process(message_cq)
|
||||||
|
|
||||||
|
async def process_message_segments(self, segments: list,layer:int) -> str:
|
||||||
|
"""递归处理消息段"""
|
||||||
|
parts = []
|
||||||
|
for seg in segments:
|
||||||
|
part = await self.process_segment(seg,layer+1)
|
||||||
|
parts.append(part)
|
||||||
|
return "".join(parts)
|
||||||
|
|
||||||
|
async def process_segment(self, seg: dict , layer:int) -> str:
|
||||||
|
"""处理单个消息段"""
|
||||||
|
seg_type = seg["type"]
|
||||||
|
if layer > 3 :
|
||||||
|
#防止有那种100层转发消息炸飞麦麦
|
||||||
|
return "【转发消息】"
|
||||||
|
if seg_type == "text":
|
||||||
|
return seg["data"]["text"]
|
||||||
|
elif seg_type == "image":
|
||||||
|
return "[图片]"
|
||||||
|
elif seg_type == "face":
|
||||||
|
return "[表情]"
|
||||||
|
elif seg_type == "at":
|
||||||
|
return f"@{seg['data'].get('qq', '未知用户')}"
|
||||||
|
elif seg_type == "forward":
|
||||||
|
# 递归处理嵌套的合并转发消息
|
||||||
|
nested_nodes = seg["data"].get("content", [])
|
||||||
|
nested_messages = []
|
||||||
|
nested_messages.append("合并转发消息内容:")
|
||||||
|
for node in nested_nodes:
|
||||||
|
nickname = node["sender"].get("nickname", "未知用户")
|
||||||
|
content = await self.process_message_segments(node["message"],layer=layer)
|
||||||
|
# nested_messages.append('-' * layer)
|
||||||
|
nested_messages.append(f"{'--' * layer}【{nickname}】{content}")
|
||||||
|
# nested_messages.append(f"{'--' * layer}合并转发第【{layer}】层结束")
|
||||||
|
return "\n".join(nested_messages)
|
||||||
|
else:
|
||||||
|
return f"[{seg_type}]"
|
||||||
|
|
||||||
# 创建全局ChatBot实例
|
# 创建全局ChatBot实例
|
||||||
chat_bot = ChatBot()
|
chat_bot = ChatBot()
|
||||||
|
|||||||
@@ -7,14 +7,17 @@ import jieba
|
|||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import networkx as nx
|
import networkx as nx
|
||||||
from dotenv import load_dotenv
|
from dotenv import load_dotenv
|
||||||
from src.common.logger import get_module_logger
|
from loguru import logger
|
||||||
|
# from src.common.logger import get_module_logger
|
||||||
|
|
||||||
logger = get_module_logger("draw_memory")
|
# logger = get_module_logger("draw_memory")
|
||||||
|
|
||||||
# 添加项目根目录到 Python 路径
|
# 添加项目根目录到 Python 路径
|
||||||
root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../.."))
|
root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../.."))
|
||||||
sys.path.append(root_path)
|
sys.path.append(root_path)
|
||||||
|
|
||||||
|
print(root_path)
|
||||||
|
|
||||||
from src.common.database import db # noqa: E402
|
from src.common.database import db # noqa: E402
|
||||||
|
|
||||||
# 加载.env.dev文件
|
# 加载.env.dev文件
|
||||||
|
|||||||
@@ -594,7 +594,7 @@ class Hippocampus:
|
|||||||
|
|
||||||
logger.info("[遗忘] 开始检查数据库... 当前Logger信息:")
|
logger.info("[遗忘] 开始检查数据库... 当前Logger信息:")
|
||||||
# logger.info(f"- Logger名称: {logger.name}")
|
# logger.info(f"- Logger名称: {logger.name}")
|
||||||
logger.info(f"- Logger等级: {logger.level}")
|
# logger.info(f"- Logger等级: {logger.level}")
|
||||||
# logger.info(f"- Logger处理器: {[handler.__class__.__name__ for handler in logger.handlers]}")
|
# logger.info(f"- Logger处理器: {[handler.__class__.__name__ for handler in logger.handlers]}")
|
||||||
|
|
||||||
# logger2 = setup_logger(LogModule.MEMORY)
|
# logger2 = setup_logger(LogModule.MEMORY)
|
||||||
|
|||||||
122
src/plugins/personality/big5_test.py
Normal file
122
src/plugins/personality/big5_test.py
Normal file
@@ -0,0 +1,122 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
# from .questionnaire import PERSONALITY_QUESTIONS, FACTOR_DESCRIPTIONS
|
||||||
|
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
import random
|
||||||
|
|
||||||
|
current_dir = Path(__file__).resolve().parent
|
||||||
|
project_root = current_dir.parent.parent.parent
|
||||||
|
env_path = project_root / ".env.prod"
|
||||||
|
|
||||||
|
root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../.."))
|
||||||
|
sys.path.append(root_path)
|
||||||
|
|
||||||
|
from src.plugins.personality.scene import get_scene_by_factor,get_all_scenes,PERSONALITY_SCENES
|
||||||
|
from src.plugins.personality.questionnaire import PERSONALITY_QUESTIONS,FACTOR_DESCRIPTIONS
|
||||||
|
from src.plugins.personality.offline_llm import LLMModel
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class BigFiveTest:
|
||||||
|
def __init__(self):
|
||||||
|
self.questions = PERSONALITY_QUESTIONS
|
||||||
|
self.factors = FACTOR_DESCRIPTIONS
|
||||||
|
|
||||||
|
def run_test(self):
|
||||||
|
"""运行测试并收集答案"""
|
||||||
|
print("\n欢迎参加中国大五人格测试!")
|
||||||
|
print("\n本测试采用六级评分,请根据每个描述与您的符合程度进行打分:")
|
||||||
|
print("1 = 完全不符合")
|
||||||
|
print("2 = 比较不符合")
|
||||||
|
print("3 = 有点不符合")
|
||||||
|
print("4 = 有点符合")
|
||||||
|
print("5 = 比较符合")
|
||||||
|
print("6 = 完全符合")
|
||||||
|
print("\n请认真阅读每个描述,选择最符合您实际情况的选项。\n")
|
||||||
|
|
||||||
|
# 创建题目序号到题目的映射
|
||||||
|
questions_map = {q['id']: q for q in self.questions}
|
||||||
|
|
||||||
|
# 获取所有题目ID并随机打乱顺序
|
||||||
|
question_ids = list(questions_map.keys())
|
||||||
|
random.shuffle(question_ids)
|
||||||
|
|
||||||
|
answers = {}
|
||||||
|
total_questions = len(question_ids)
|
||||||
|
|
||||||
|
for i, question_id in enumerate(question_ids, 1):
|
||||||
|
question = questions_map[question_id]
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
print(f"\n[{i}/{total_questions}] {question['content']}")
|
||||||
|
score = int(input("您的评分(1-6): "))
|
||||||
|
if 1 <= score <= 6:
|
||||||
|
answers[question_id] = score
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
print("请输入1-6之间的数字!")
|
||||||
|
except ValueError:
|
||||||
|
print("请输入有效的数字!")
|
||||||
|
|
||||||
|
return self.calculate_scores(answers)
|
||||||
|
|
||||||
|
def calculate_scores(self, answers):
|
||||||
|
"""计算各维度得分"""
|
||||||
|
results = {}
|
||||||
|
factor_questions = {
|
||||||
|
"外向性": [],
|
||||||
|
"神经质": [],
|
||||||
|
"严谨性": [],
|
||||||
|
"开放性": [],
|
||||||
|
"宜人性": []
|
||||||
|
}
|
||||||
|
|
||||||
|
# 将题目按因子分类
|
||||||
|
for q in self.questions:
|
||||||
|
factor_questions[q['factor']].append(q)
|
||||||
|
|
||||||
|
# 计算每个维度的得分
|
||||||
|
for factor, questions in factor_questions.items():
|
||||||
|
total_score = 0
|
||||||
|
for q in questions:
|
||||||
|
score = answers[q['id']]
|
||||||
|
# 处理反向计分题目
|
||||||
|
if q['reverse_scoring']:
|
||||||
|
score = 7 - score # 6分量表反向计分为7减原始分
|
||||||
|
total_score += score
|
||||||
|
|
||||||
|
# 计算平均分
|
||||||
|
avg_score = round(total_score / len(questions), 2)
|
||||||
|
results[factor] = {
|
||||||
|
"得分": avg_score,
|
||||||
|
"题目数": len(questions),
|
||||||
|
"总分": total_score
|
||||||
|
}
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
def get_factor_description(self, factor):
|
||||||
|
"""获取因子的详细描述"""
|
||||||
|
return self.factors[factor]
|
||||||
|
|
||||||
|
def main():
|
||||||
|
test = BigFiveTest()
|
||||||
|
results = test.run_test()
|
||||||
|
|
||||||
|
print("\n测试结果:")
|
||||||
|
print("=" * 50)
|
||||||
|
for factor, data in results.items():
|
||||||
|
print(f"\n{factor}:")
|
||||||
|
print(f"平均分: {data['得分']} (总分: {data['总分']}, 题目数: {data['题目数']})")
|
||||||
|
print("-" * 30)
|
||||||
|
description = test.get_factor_description(factor)
|
||||||
|
print("维度说明:", description['description'][:100] + "...")
|
||||||
|
print("\n特征词:", ", ".join(description['trait_words']))
|
||||||
|
print("=" * 50)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
361
src/plugins/personality/combined_test.py
Normal file
361
src/plugins/personality/combined_test.py
Normal file
@@ -0,0 +1,361 @@
|
|||||||
|
from typing import Dict, List
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
import sys
|
||||||
|
from datetime import datetime
|
||||||
|
import random
|
||||||
|
from scipy import stats # 添加scipy导入用于t检验
|
||||||
|
|
||||||
|
current_dir = Path(__file__).resolve().parent
|
||||||
|
project_root = current_dir.parent.parent.parent
|
||||||
|
env_path = project_root / ".env.prod"
|
||||||
|
|
||||||
|
root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../.."))
|
||||||
|
sys.path.append(root_path)
|
||||||
|
|
||||||
|
from src.plugins.personality.big5_test import BigFiveTest
|
||||||
|
from src.plugins.personality.renqingziji import PersonalityEvaluator_direct
|
||||||
|
from src.plugins.personality.questionnaire import FACTOR_DESCRIPTIONS, PERSONALITY_QUESTIONS
|
||||||
|
|
||||||
|
class CombinedPersonalityTest:
|
||||||
|
def __init__(self):
|
||||||
|
self.big5_test = BigFiveTest()
|
||||||
|
self.scenario_test = PersonalityEvaluator_direct()
|
||||||
|
self.dimensions = ["开放性", "严谨性", "外向性", "宜人性", "神经质"]
|
||||||
|
|
||||||
|
def run_combined_test(self):
|
||||||
|
"""运行组合测试"""
|
||||||
|
print("\n=== 人格特征综合评估系统 ===")
|
||||||
|
print("\n本测试将通过两种方式评估人格特征:")
|
||||||
|
print("1. 传统问卷测评(约40题)")
|
||||||
|
print("2. 情景反应测评(15个场景)")
|
||||||
|
print("\n两种测评完成后,将对比分析结果的异同。")
|
||||||
|
input("\n准备好开始第一部分(问卷测评)了吗?按回车继续...")
|
||||||
|
|
||||||
|
# 运行问卷测试
|
||||||
|
print("\n=== 第一部分:问卷测评 ===")
|
||||||
|
print("本部分采用六级评分,请根据每个描述与您的符合程度进行打分:")
|
||||||
|
print("1 = 完全不符合")
|
||||||
|
print("2 = 比较不符合")
|
||||||
|
print("3 = 有点不符合")
|
||||||
|
print("4 = 有点符合")
|
||||||
|
print("5 = 比较符合")
|
||||||
|
print("6 = 完全符合")
|
||||||
|
print("\n重要提示:您可以选择以下两种方式之一来回答问题:")
|
||||||
|
print("1. 根据您自身的真实情况来回答")
|
||||||
|
print("2. 根据您想要扮演的角色特征来回答")
|
||||||
|
print("\n无论选择哪种方式,请保持一致并认真回答每个问题。")
|
||||||
|
input("\n按回车开始答题...")
|
||||||
|
|
||||||
|
questionnaire_results = self.run_questionnaire()
|
||||||
|
|
||||||
|
# 转换问卷结果格式以便比较
|
||||||
|
questionnaire_scores = {
|
||||||
|
factor: data["得分"]
|
||||||
|
for factor, data in questionnaire_results.items()
|
||||||
|
}
|
||||||
|
|
||||||
|
# 运行情景测试
|
||||||
|
print("\n=== 第二部分:情景反应测评 ===")
|
||||||
|
print("接下来,您将面对一系列具体场景,请描述您在每个场景中可能的反应。")
|
||||||
|
print("每个场景都会评估不同的人格维度,共15个场景。")
|
||||||
|
print("您可以选择提供自己的真实反应,也可以选择扮演一个您创作的角色来回答。")
|
||||||
|
input("\n准备好开始了吗?按回车继续...")
|
||||||
|
|
||||||
|
scenario_results = self.run_scenario_test()
|
||||||
|
|
||||||
|
# 比较和展示结果
|
||||||
|
self.compare_and_display_results(questionnaire_scores, scenario_results)
|
||||||
|
|
||||||
|
# 保存结果
|
||||||
|
self.save_results(questionnaire_scores, scenario_results)
|
||||||
|
|
||||||
|
def run_questionnaire(self):
|
||||||
|
"""运行问卷测试部分"""
|
||||||
|
# 创建题目序号到题目的映射
|
||||||
|
questions_map = {q['id']: q for q in PERSONALITY_QUESTIONS}
|
||||||
|
|
||||||
|
# 获取所有题目ID并随机打乱顺序
|
||||||
|
question_ids = list(questions_map.keys())
|
||||||
|
random.shuffle(question_ids)
|
||||||
|
|
||||||
|
answers = {}
|
||||||
|
total_questions = len(question_ids)
|
||||||
|
|
||||||
|
for i, question_id in enumerate(question_ids, 1):
|
||||||
|
question = questions_map[question_id]
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
print(f"\n问题 [{i}/{total_questions}]")
|
||||||
|
print(f"{question['content']}")
|
||||||
|
score = int(input("您的评分(1-6): "))
|
||||||
|
if 1 <= score <= 6:
|
||||||
|
answers[question_id] = score
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
print("请输入1-6之间的数字!")
|
||||||
|
except ValueError:
|
||||||
|
print("请输入有效的数字!")
|
||||||
|
|
||||||
|
# 每10题显示一次进度
|
||||||
|
if i % 10 == 0:
|
||||||
|
print(f"\n已完成 {i}/{total_questions} 题 ({int(i/total_questions*100)}%)")
|
||||||
|
|
||||||
|
return self.calculate_questionnaire_scores(answers)
|
||||||
|
|
||||||
|
def calculate_questionnaire_scores(self, answers):
|
||||||
|
"""计算问卷测试的维度得分"""
|
||||||
|
results = {}
|
||||||
|
factor_questions = {
|
||||||
|
"外向性": [],
|
||||||
|
"神经质": [],
|
||||||
|
"严谨性": [],
|
||||||
|
"开放性": [],
|
||||||
|
"宜人性": []
|
||||||
|
}
|
||||||
|
|
||||||
|
# 将题目按因子分类
|
||||||
|
for q in PERSONALITY_QUESTIONS:
|
||||||
|
factor_questions[q['factor']].append(q)
|
||||||
|
|
||||||
|
# 计算每个维度的得分
|
||||||
|
for factor, questions in factor_questions.items():
|
||||||
|
total_score = 0
|
||||||
|
for q in questions:
|
||||||
|
score = answers[q['id']]
|
||||||
|
# 处理反向计分题目
|
||||||
|
if q['reverse_scoring']:
|
||||||
|
score = 7 - score # 6分量表反向计分为7减原始分
|
||||||
|
total_score += score
|
||||||
|
|
||||||
|
# 计算平均分
|
||||||
|
avg_score = round(total_score / len(questions), 2)
|
||||||
|
results[factor] = {
|
||||||
|
"得分": avg_score,
|
||||||
|
"题目数": len(questions),
|
||||||
|
"总分": total_score
|
||||||
|
}
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
def run_scenario_test(self):
|
||||||
|
"""运行情景测试部分"""
|
||||||
|
final_scores = {"开放性": 0, "严谨性": 0, "外向性": 0, "宜人性": 0, "神经质": 0}
|
||||||
|
dimension_counts = {trait: 0 for trait in final_scores.keys()}
|
||||||
|
|
||||||
|
# 随机打乱场景顺序
|
||||||
|
scenarios = self.scenario_test.scenarios.copy()
|
||||||
|
random.shuffle(scenarios)
|
||||||
|
|
||||||
|
for i, scenario_data in enumerate(scenarios, 1):
|
||||||
|
print(f"\n场景 [{i}/{len(scenarios)}] - {scenario_data['场景编号']}")
|
||||||
|
print("-" * 50)
|
||||||
|
print(scenario_data["场景"])
|
||||||
|
print("\n请描述您在这种情况下会如何反应:")
|
||||||
|
response = input().strip()
|
||||||
|
|
||||||
|
if not response:
|
||||||
|
print("反应描述不能为空!")
|
||||||
|
continue
|
||||||
|
|
||||||
|
print("\n正在评估您的描述...")
|
||||||
|
scores = self.scenario_test.evaluate_response(
|
||||||
|
scenario_data["场景"],
|
||||||
|
response,
|
||||||
|
scenario_data["评估维度"]
|
||||||
|
)
|
||||||
|
|
||||||
|
# 更新分数
|
||||||
|
for dimension, score in scores.items():
|
||||||
|
final_scores[dimension] += score
|
||||||
|
dimension_counts[dimension] += 1
|
||||||
|
|
||||||
|
# print("\n当前场景评估结果:")
|
||||||
|
# print("-" * 30)
|
||||||
|
# for dimension, score in scores.items():
|
||||||
|
# print(f"{dimension}: {score}/6")
|
||||||
|
|
||||||
|
# 每5个场景显示一次总进度
|
||||||
|
if i % 5 == 0:
|
||||||
|
print(f"\n已完成 {i}/{len(scenarios)} 个场景 ({int(i/len(scenarios)*100)}%)")
|
||||||
|
|
||||||
|
if i < len(scenarios):
|
||||||
|
input("\n按回车继续下一个场景...")
|
||||||
|
|
||||||
|
# 计算平均分
|
||||||
|
for dimension in final_scores:
|
||||||
|
if dimension_counts[dimension] > 0:
|
||||||
|
final_scores[dimension] = round(
|
||||||
|
final_scores[dimension] / dimension_counts[dimension],
|
||||||
|
2
|
||||||
|
)
|
||||||
|
|
||||||
|
return final_scores
|
||||||
|
|
||||||
|
def compare_and_display_results(self, questionnaire_scores: Dict, scenario_scores: Dict):
|
||||||
|
"""比较和展示两种测试的结果"""
|
||||||
|
print("\n=== 测评结果对比分析 ===")
|
||||||
|
print("\n" + "=" * 60)
|
||||||
|
print(f"{'维度':<8} {'问卷得分':>10} {'情景得分':>10} {'差异':>10} {'差异程度':>10}")
|
||||||
|
print("-" * 60)
|
||||||
|
|
||||||
|
# 收集每个维度的得分用于统计分析
|
||||||
|
questionnaire_values = []
|
||||||
|
scenario_values = []
|
||||||
|
diffs = []
|
||||||
|
|
||||||
|
for dimension in self.dimensions:
|
||||||
|
q_score = questionnaire_scores[dimension]
|
||||||
|
s_score = scenario_scores[dimension]
|
||||||
|
diff = round(abs(q_score - s_score), 2)
|
||||||
|
|
||||||
|
questionnaire_values.append(q_score)
|
||||||
|
scenario_values.append(s_score)
|
||||||
|
diffs.append(diff)
|
||||||
|
|
||||||
|
# 计算差异程度
|
||||||
|
diff_level = "低" if diff < 0.5 else "中" if diff < 1.0 else "高"
|
||||||
|
print(f"{dimension:<8} {q_score:>10.2f} {s_score:>10.2f} {diff:>10.2f} {diff_level:>10}")
|
||||||
|
|
||||||
|
print("=" * 60)
|
||||||
|
|
||||||
|
# 计算整体统计指标
|
||||||
|
mean_diff = sum(diffs) / len(diffs)
|
||||||
|
std_diff = (sum((x - mean_diff) ** 2 for x in diffs) / (len(diffs) - 1)) ** 0.5
|
||||||
|
|
||||||
|
# 计算效应量 (Cohen's d)
|
||||||
|
pooled_std = ((sum((x - sum(questionnaire_values)/len(questionnaire_values))**2 for x in questionnaire_values) +
|
||||||
|
sum((x - sum(scenario_values)/len(scenario_values))**2 for x in scenario_values)) /
|
||||||
|
(2 * len(self.dimensions) - 2)) ** 0.5
|
||||||
|
|
||||||
|
if pooled_std != 0:
|
||||||
|
cohens_d = abs(mean_diff / pooled_std)
|
||||||
|
|
||||||
|
# 解释效应量
|
||||||
|
if cohens_d < 0.2:
|
||||||
|
effect_size = "微小"
|
||||||
|
elif cohens_d < 0.5:
|
||||||
|
effect_size = "小"
|
||||||
|
elif cohens_d < 0.8:
|
||||||
|
effect_size = "中等"
|
||||||
|
else:
|
||||||
|
effect_size = "大"
|
||||||
|
|
||||||
|
# 对所有维度进行整体t检验
|
||||||
|
t_stat, p_value = stats.ttest_rel(questionnaire_values, scenario_values)
|
||||||
|
print(f"\n整体统计分析:")
|
||||||
|
print(f"平均差异: {mean_diff:.3f}")
|
||||||
|
print(f"差异标准差: {std_diff:.3f}")
|
||||||
|
print(f"效应量(Cohen's d): {cohens_d:.3f}")
|
||||||
|
print(f"效应量大小: {effect_size}")
|
||||||
|
print(f"t统计量: {t_stat:.3f}")
|
||||||
|
print(f"p值: {p_value:.3f}")
|
||||||
|
|
||||||
|
if p_value < 0.05:
|
||||||
|
print("结论: 两种测评方法的结果存在显著差异 (p < 0.05)")
|
||||||
|
else:
|
||||||
|
print("结论: 两种测评方法的结果无显著差异 (p >= 0.05)")
|
||||||
|
|
||||||
|
print("\n维度说明:")
|
||||||
|
for dimension in self.dimensions:
|
||||||
|
print(f"\n{dimension}:")
|
||||||
|
desc = FACTOR_DESCRIPTIONS[dimension]
|
||||||
|
print(f"定义:{desc['description']}")
|
||||||
|
print(f"特征词:{', '.join(desc['trait_words'])}")
|
||||||
|
|
||||||
|
# 分析显著差异
|
||||||
|
significant_diffs = []
|
||||||
|
for dimension in self.dimensions:
|
||||||
|
diff = abs(questionnaire_scores[dimension] - scenario_scores[dimension])
|
||||||
|
if diff >= 1.0: # 差异大于等于1分视为显著
|
||||||
|
significant_diffs.append({
|
||||||
|
"dimension": dimension,
|
||||||
|
"diff": diff,
|
||||||
|
"questionnaire": questionnaire_scores[dimension],
|
||||||
|
"scenario": scenario_scores[dimension]
|
||||||
|
})
|
||||||
|
|
||||||
|
if significant_diffs:
|
||||||
|
print("\n\n显著差异分析:")
|
||||||
|
print("-" * 40)
|
||||||
|
for diff in significant_diffs:
|
||||||
|
print(f"\n{diff['dimension']}维度的测评结果存在显著差异:")
|
||||||
|
print(f"问卷得分:{diff['questionnaire']:.2f}")
|
||||||
|
print(f"情景得分:{diff['scenario']:.2f}")
|
||||||
|
print(f"差异值:{diff['diff']:.2f}")
|
||||||
|
|
||||||
|
# 分析可能的原因
|
||||||
|
if diff['questionnaire'] > diff['scenario']:
|
||||||
|
print("可能原因:在问卷中的自我评价较高,但在具体情景中的表现较为保守。")
|
||||||
|
else:
|
||||||
|
print("可能原因:在具体情景中表现出更多该维度特征,而在问卷自评时较为保守。")
|
||||||
|
|
||||||
|
def save_results(self, questionnaire_scores: Dict, scenario_scores: Dict):
|
||||||
|
"""保存测试结果"""
|
||||||
|
results = {
|
||||||
|
"测试时间": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
||||||
|
"问卷测评结果": questionnaire_scores,
|
||||||
|
"情景测评结果": scenario_scores,
|
||||||
|
"维度说明": FACTOR_DESCRIPTIONS
|
||||||
|
}
|
||||||
|
|
||||||
|
# 确保目录存在
|
||||||
|
os.makedirs("results", exist_ok=True)
|
||||||
|
|
||||||
|
# 生成带时间戳的文件名
|
||||||
|
filename = f"results/personality_combined_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
|
||||||
|
|
||||||
|
# 保存到文件
|
||||||
|
with open(filename, "w", encoding="utf-8") as f:
|
||||||
|
json.dump(results, f, ensure_ascii=False, indent=2)
|
||||||
|
|
||||||
|
print(f"\n完整的测评结果已保存到:{filename}")
|
||||||
|
|
||||||
|
def load_existing_results():
|
||||||
|
"""检查并加载已有的测试结果"""
|
||||||
|
results_dir = "results"
|
||||||
|
if not os.path.exists(results_dir):
|
||||||
|
return None
|
||||||
|
|
||||||
|
# 获取所有personality_combined开头的文件
|
||||||
|
result_files = [f for f in os.listdir(results_dir)
|
||||||
|
if f.startswith("personality_combined_") and f.endswith(".json")]
|
||||||
|
|
||||||
|
if not result_files:
|
||||||
|
return None
|
||||||
|
|
||||||
|
# 按文件修改时间排序,获取最新的结果文件
|
||||||
|
latest_file = max(result_files,
|
||||||
|
key=lambda f: os.path.getmtime(os.path.join(results_dir, f)))
|
||||||
|
|
||||||
|
print(f"\n发现已有的测试结果:{latest_file}")
|
||||||
|
try:
|
||||||
|
with open(os.path.join(results_dir, latest_file), "r", encoding="utf-8") as f:
|
||||||
|
results = json.load(f)
|
||||||
|
return results
|
||||||
|
except Exception as e:
|
||||||
|
print(f"读取结果文件时出错:{str(e)}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
def main():
|
||||||
|
test = CombinedPersonalityTest()
|
||||||
|
|
||||||
|
# 检查是否存在已有结果
|
||||||
|
existing_results = load_existing_results()
|
||||||
|
|
||||||
|
if existing_results:
|
||||||
|
print("\n=== 使用已有测试结果进行分析 ===")
|
||||||
|
print(f"测试时间:{existing_results['测试时间']}")
|
||||||
|
|
||||||
|
questionnaire_scores = existing_results["问卷测评结果"]
|
||||||
|
scenario_scores = existing_results["情景测评结果"]
|
||||||
|
|
||||||
|
# 直接进行结果对比分析
|
||||||
|
test.compare_and_display_results(questionnaire_scores, scenario_scores)
|
||||||
|
else:
|
||||||
|
print("\n未找到已有的测试结果,开始新的测试...")
|
||||||
|
test.run_combined_test()
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
@@ -11,7 +11,7 @@ logger = get_module_logger("offline_llm")
|
|||||||
|
|
||||||
|
|
||||||
class LLMModel:
|
class LLMModel:
|
||||||
def __init__(self, model_name="deepseek-ai/DeepSeek-V3", **kwargs):
|
def __init__(self, model_name="Pro/deepseek-ai/DeepSeek-V3", **kwargs):
|
||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
self.params = kwargs
|
self.params = kwargs
|
||||||
self.api_key = os.getenv("SILICONFLOW_KEY")
|
self.api_key = os.getenv("SILICONFLOW_KEY")
|
||||||
|
|||||||
110
src/plugins/personality/questionnaire.py
Normal file
110
src/plugins/personality/questionnaire.py
Normal file
@@ -0,0 +1,110 @@
|
|||||||
|
# 人格测试问卷题目 王孟成, 戴晓阳, & 姚树桥. (2011). 中国大五人格问卷的初步编制Ⅲ:简式版的制定及信效度检验. 中国临床心理学杂志, 19(04), Article 04.
|
||||||
|
# 王孟成, 戴晓阳, & 姚树桥. (2010). 中国大五人格问卷的初步编制Ⅰ:理论框架与信度分析. 中国临床心理学杂志, 18(05), Article 05.
|
||||||
|
|
||||||
|
PERSONALITY_QUESTIONS = [
|
||||||
|
# 神经质维度 (F1)
|
||||||
|
{"id": 1, "content": "我常担心有什么不好的事情要发生", "factor": "神经质", "reverse_scoring": False},
|
||||||
|
{"id": 2, "content": "我常感到害怕", "factor": "神经质", "reverse_scoring": False},
|
||||||
|
{"id": 3, "content": "有时我觉得自己一无是处", "factor": "神经质", "reverse_scoring": False},
|
||||||
|
{"id": 4, "content": "我很少感到忧郁或沮丧", "factor": "神经质", "reverse_scoring": True},
|
||||||
|
{"id": 5, "content": "别人一句漫不经心的话,我常会联系在自己身上", "factor": "神经质", "reverse_scoring": False},
|
||||||
|
{"id": 6, "content": "在面对压力时,我有种快要崩溃的感觉", "factor": "神经质", "reverse_scoring": False},
|
||||||
|
{"id": 7, "content": "我常担忧一些无关紧要的事情", "factor": "神经质", "reverse_scoring": False},
|
||||||
|
{"id": 8, "content": "我常常感到内心不踏实", "factor": "神经质", "reverse_scoring": False},
|
||||||
|
|
||||||
|
# 严谨性维度 (F2)
|
||||||
|
{"id": 9, "content": "在工作上,我常只求能应付过去便可", "factor": "严谨性", "reverse_scoring": True},
|
||||||
|
{"id": 10, "content": "一旦确定了目标,我会坚持努力地实现它", "factor": "严谨性", "reverse_scoring": False},
|
||||||
|
{"id": 11, "content": "我常常是仔细考虑之后才做出决定", "factor": "严谨性", "reverse_scoring": False},
|
||||||
|
{"id": 12, "content": "别人认为我是个慎重的人", "factor": "严谨性", "reverse_scoring": False},
|
||||||
|
{"id": 13, "content": "做事讲究逻辑和条理是我的一个特点", "factor": "严谨性", "reverse_scoring": False},
|
||||||
|
{"id": 14, "content": "我喜欢一开头就把事情计划好", "factor": "严谨性", "reverse_scoring": False},
|
||||||
|
{"id": 15, "content": "我工作或学习很勤奋", "factor": "严谨性", "reverse_scoring": False},
|
||||||
|
{"id": 16, "content": "我是个倾尽全力做事的人", "factor": "严谨性", "reverse_scoring": False},
|
||||||
|
|
||||||
|
# 宜人性维度 (F3)
|
||||||
|
{"id": 17, "content": "尽管人类社会存在着一些阴暗的东西(如战争、罪恶、欺诈),我仍然相信人性总的来说是善良的", "factor": "宜人性", "reverse_scoring": False},
|
||||||
|
{"id": 18, "content": "我觉得大部分人基本上是心怀善意的", "factor": "宜人性", "reverse_scoring": False},
|
||||||
|
{"id": 19, "content": "虽然社会上有骗子,但我觉得大部分人还是可信的", "factor": "宜人性", "reverse_scoring": False},
|
||||||
|
{"id": 20, "content": "我不太关心别人是否受到不公正的待遇", "factor": "宜人性", "reverse_scoring": True},
|
||||||
|
{"id": 21, "content": "我时常觉得别人的痛苦与我无关", "factor": "宜人性", "reverse_scoring": True},
|
||||||
|
{"id": 22, "content": "我常为那些遭遇不幸的人感到难过", "factor": "宜人性", "reverse_scoring": False},
|
||||||
|
{"id": 23, "content": "我是那种只照顾好自己,不替别人担忧的人", "factor": "宜人性", "reverse_scoring": True},
|
||||||
|
{"id": 24, "content": "当别人向我诉说不幸时,我常感到难过", "factor": "宜人性", "reverse_scoring": False},
|
||||||
|
|
||||||
|
# 开放性维度 (F4)
|
||||||
|
{"id": 25, "content": "我的想象力相当丰富", "factor": "开放性", "reverse_scoring": False},
|
||||||
|
{"id": 26, "content": "我头脑中经常充满生动的画面", "factor": "开放性", "reverse_scoring": False},
|
||||||
|
{"id": 27, "content": "我对许多事情有着很强的好奇心", "factor": "开放性", "reverse_scoring": False},
|
||||||
|
{"id": 28, "content": "我喜欢冒险", "factor": "开放性", "reverse_scoring": False},
|
||||||
|
{"id": 29, "content": "我是个勇于冒险,突破常规的人", "factor": "开放性", "reverse_scoring": False},
|
||||||
|
{"id": 30, "content": "我身上具有别人没有的冒险精神", "factor": "开放性", "reverse_scoring": False},
|
||||||
|
{"id": 31, "content": "我渴望学习一些新东西,即使它们与我的日常生活无关", "factor": "开放性", "reverse_scoring": False},
|
||||||
|
{"id": 32, "content": "我很愿意也很容易接受那些新事物、新观点、新想法", "factor": "开放性", "reverse_scoring": False},
|
||||||
|
|
||||||
|
# 外向性维度 (F5)
|
||||||
|
{"id": 33, "content": "我喜欢参加社交与娱乐聚会", "factor": "外向性", "reverse_scoring": False},
|
||||||
|
{"id": 34, "content": "我对人多的聚会感到乏味", "factor": "外向性", "reverse_scoring": True},
|
||||||
|
{"id": 35, "content": "我尽量避免参加人多的聚会和嘈杂的环境", "factor": "外向性", "reverse_scoring": True},
|
||||||
|
{"id": 36, "content": "在热闹的聚会上,我常常表现主动并尽情玩耍", "factor": "外向性", "reverse_scoring": False},
|
||||||
|
{"id": 37, "content": "有我在的场合一般不会冷场", "factor": "外向性", "reverse_scoring": False},
|
||||||
|
{"id": 38, "content": "我希望成为领导者而不是被领导者", "factor": "外向性", "reverse_scoring": False},
|
||||||
|
{"id": 39, "content": "在一个团体中,我希望处于领导地位", "factor": "外向性", "reverse_scoring": False},
|
||||||
|
{"id": 40, "content": "别人多认为我是一个热情和友好的人", "factor": "外向性", "reverse_scoring": False}
|
||||||
|
]
|
||||||
|
|
||||||
|
# 因子维度说明
|
||||||
|
FACTOR_DESCRIPTIONS = {
|
||||||
|
"外向性": {
|
||||||
|
"description": "反映个体神经系统的强弱和动力特征。外向性主要表现为个体在人际交往和社交活动中的倾向性,包括对社交活动的兴趣、对人群的态度、社交互动中的主动程度以及在群体中的影响力。高分者倾向于积极参与社交活动,乐于与人交往,善于表达自我,并往往在群体中发挥领导作用;低分者则倾向于独处,不喜欢热闹的社交场合,表现出内向、安静的特征。",
|
||||||
|
"trait_words": ["热情", "活力", "社交", "主动"],
|
||||||
|
"subfactors": {
|
||||||
|
"合群性": "个体愿意与他人聚在一起,即接近人群的倾向;高分表现乐群、好交际,低分表现封闭、独处",
|
||||||
|
"热情": "个体对待别人时所表现出的态度;高分表现热情好客,低分表现冷淡",
|
||||||
|
"支配性": "个体喜欢指使、操纵他人,倾向于领导别人的特点;高分表现好强、发号施令,低分表现顺从、低调",
|
||||||
|
"活跃": "个体精力充沛,活跃、主动性等特点;高分表现活跃,低分表现安静"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"神经质": {
|
||||||
|
"description": "反映个体情绪的状态和体验内心苦恼的倾向性。这个维度主要关注个体在面对压力、挫折和日常生活挑战时的情绪稳定性和适应能力。它包含了对焦虑、抑郁、愤怒等负面情绪的敏感程度,以及个体对这些情绪的调节和控制能力。高分者容易体验负面情绪,对压力较为敏感,情绪波动较大;低分者则表现出较强的情绪稳定性,能够较好地应对压力和挫折。",
|
||||||
|
"trait_words": ["稳定", "沉着", "从容", "坚韧"],
|
||||||
|
"subfactors": {
|
||||||
|
"焦虑": "个体体验焦虑感的个体差异;高分表现坐立不安,低分表现平静",
|
||||||
|
"抑郁": "个体体验抑郁情感的个体差异;高分表现郁郁寡欢,低分表现平静",
|
||||||
|
"敏感多疑": "个体常常关注自己的内心活动,行为和过于意识人对自己的看法、评价;高分表现敏感多疑,低分表现淡定、自信",
|
||||||
|
"脆弱性": "个体在危机或困难面前无力、脆弱的特点;高分表现无能、易受伤、逃避,低分表现坚强",
|
||||||
|
"愤怒-敌意": "个体准备体验愤怒,及相关情绪的状态;高分表现暴躁易怒,低分表现平静"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"严谨性": {
|
||||||
|
"description": "反映个体在目标导向行为上的组织、坚持和动机特征。这个维度体现了个体在工作、学习等目标性活动中的自我约束和行为管理能力。它涉及到个体的责任感、自律性、计划性、条理性以及完成任务的态度。高分者往往表现出强烈的责任心、良好的组织能力、谨慎的决策风格和持续的努力精神;低分者则可能表现出随意性强、缺乏规划、做事马虎或易放弃的特点。",
|
||||||
|
"trait_words": ["负责", "自律", "条理", "勤奋"],
|
||||||
|
"subfactors": {
|
||||||
|
"责任心": "个体对待任务和他人认真负责,以及对自己承诺的信守;高分表现有责任心、负责任,低分表现推卸责任、逃避处罚",
|
||||||
|
"自我控制": "个体约束自己的能力,及自始至终的坚持性;高分表现自制、有毅力,低分表现冲动、无毅力",
|
||||||
|
"审慎性": "个体在采取具体行动前的心理状态;高分表现谨慎、小心,低分表现鲁莽、草率",
|
||||||
|
"条理性": "个体处理事务和工作的秩序,条理和逻辑性;高分表现整洁、有秩序,低分表现混乱、遗漏",
|
||||||
|
"勤奋": "个体工作和学习的努力程度及为达到目标而表现出的进取精神;高分表现勤奋、刻苦,低分表现懒散"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"开放性": {
|
||||||
|
"description": "反映个体对新异事物、新观念和新经验的接受程度,以及在思维和行为方面的创新倾向。这个维度体现了个体在认知和体验方面的广度、深度和灵活性。它包括对艺术的欣赏能力、对知识的求知欲、想象力的丰富程度,以及对冒险和创新的态度。高分者往往具有丰富的想象力、广泛的兴趣、开放的思维方式和创新的倾向;低分者则倾向于保守、传统,喜欢熟悉和常规的事物。",
|
||||||
|
"trait_words": ["创新", "好奇", "艺术", "冒险"],
|
||||||
|
"subfactors": {
|
||||||
|
"幻想": "个体富于幻想和想象的水平;高分表现想象力丰富,低分表现想象力匮乏",
|
||||||
|
"审美": "个体对于艺术和美的敏感与热爱程度;高分表现富有艺术气息,低分表现一般对艺术不敏感",
|
||||||
|
"好奇心": "个体对未知事物的态度;高分表现兴趣广泛、好奇心浓,低分表现兴趣少、无好奇心",
|
||||||
|
"冒险精神": "个体愿意尝试有风险活动的个体差异;高分表现好冒险,低分表现保守",
|
||||||
|
"价值观念": "个体对新事物、新观念、怪异想法的态度;高分表现开放、坦然接受新事物,低分则相反"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"宜人性": {
|
||||||
|
"description": "反映个体在人际关系中的亲和倾向,体现了对他人的关心、同情和合作意愿。这个维度主要关注个体与他人互动时的态度和行为特征,包括对他人的信任程度、同理心水平、助人意愿以及在人际冲突中的处理方式。高分者通常表现出友善、富有同情心、乐于助人的特质,善于与他人建立和谐关系;低分者则可能表现出较少的人际关注,在社交互动中更注重自身利益,较少考虑他人感受。",
|
||||||
|
"trait_words": ["友善", "同理", "信任", "合作"],
|
||||||
|
"subfactors": {
|
||||||
|
"信任": "个体对他人和/或他人言论的相信程度;高分表现信任他人,低分表现怀疑",
|
||||||
|
"体贴": "个体对别人的兴趣和需要的关注程度;高分表现体贴、温存,低分表现冷漠、不在乎",
|
||||||
|
"同情": "个体对处于不利地位的人或物的态度;高分表现富有同情心,低分表现冷漠"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -1,3 +1,11 @@
|
|||||||
|
'''
|
||||||
|
The definition of artificial personality in this paper follows the dispositional para-digm and adapts a definition of personality developed for humans [17]:
|
||||||
|
Personality for a human is the "whole and organisation of relatively stable tendencies and patterns of experience and
|
||||||
|
behaviour within one person (distinguishing it from other persons)". This definition is modified for artificial personality:
|
||||||
|
Artificial personality describes the relatively stable tendencies and patterns of behav-iour of an AI-based machine that
|
||||||
|
can be designed by developers and designers via different modalities, such as language, creating the impression
|
||||||
|
of individuality of a humanized social agent when users interact with the machine.'''
|
||||||
|
|
||||||
from typing import Dict, List
|
from typing import Dict, List
|
||||||
import json
|
import json
|
||||||
import os
|
import os
|
||||||
@@ -5,16 +13,19 @@ from pathlib import Path
|
|||||||
from dotenv import load_dotenv
|
from dotenv import load_dotenv
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
|
'''
|
||||||
|
第一种方案:基于情景评估的人格测定
|
||||||
|
'''
|
||||||
current_dir = Path(__file__).resolve().parent
|
current_dir = Path(__file__).resolve().parent
|
||||||
# 获取项目根目录(上三层目录)
|
|
||||||
project_root = current_dir.parent.parent.parent
|
project_root = current_dir.parent.parent.parent
|
||||||
# env.dev文件路径
|
|
||||||
env_path = project_root / ".env.prod"
|
env_path = project_root / ".env.prod"
|
||||||
|
|
||||||
root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../.."))
|
root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../.."))
|
||||||
sys.path.append(root_path)
|
sys.path.append(root_path)
|
||||||
|
|
||||||
from src.plugins.personality.offline_llm import LLMModel # noqa E402
|
from src.plugins.personality.scene import get_scene_by_factor,get_all_scenes,PERSONALITY_SCENES
|
||||||
|
from src.plugins.personality.questionnaire import PERSONALITY_QUESTIONS,FACTOR_DESCRIPTIONS
|
||||||
|
from src.plugins.personality.offline_llm import LLMModel
|
||||||
|
|
||||||
# 加载环境变量
|
# 加载环境变量
|
||||||
if env_path.exists():
|
if env_path.exists():
|
||||||
@@ -25,48 +36,77 @@ else:
|
|||||||
print("将使用默认配置")
|
print("将使用默认配置")
|
||||||
|
|
||||||
|
|
||||||
class PersonalityEvaluator:
|
class PersonalityEvaluator_direct:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.personality_traits = {"开放性": 0, "尽责性": 0, "外向性": 0, "宜人性": 0, "神经质": 0}
|
self.personality_traits = {"开放性": 0, "严谨性": 0, "外向性": 0, "宜人性": 0, "神经质": 0}
|
||||||
self.scenarios = [
|
self.scenarios = []
|
||||||
{
|
|
||||||
"场景": "在团队项目中,你发现一个同事的工作质量明显低于预期,这可能会影响整个项目的进度。",
|
# 为每个人格特质获取对应的场景
|
||||||
"评估维度": ["尽责性", "宜人性"],
|
for trait in PERSONALITY_SCENES:
|
||||||
},
|
scenes = get_scene_by_factor(trait)
|
||||||
{"场景": "你被邀请参加一个完全陌生的社交活动,现场都是不认识的人。", "评估维度": ["外向性", "神经质"]},
|
if not scenes:
|
||||||
{
|
continue
|
||||||
"场景": "你的朋友向你推荐了一个新的艺术展览,但风格与你平时接触的完全不同。",
|
|
||||||
"评估维度": ["开放性", "外向性"],
|
# 从每个维度选择3个场景
|
||||||
},
|
import random
|
||||||
{"场景": "在工作中,你遇到了一个技术难题,需要学习全新的技术栈。", "评估维度": ["开放性", "尽责性"]},
|
scene_keys = list(scenes.keys())
|
||||||
{"场景": "你的朋友因为个人原因情绪低落,向你寻求帮助。", "评估维度": ["宜人性", "神经质"]},
|
selected_scenes = random.sample(scene_keys, min(3, len(scene_keys)))
|
||||||
]
|
|
||||||
|
for scene_key in selected_scenes:
|
||||||
|
scene = scenes[scene_key]
|
||||||
|
|
||||||
|
# 为每个场景添加评估维度
|
||||||
|
# 主维度是当前特质,次维度随机选择一个其他特质
|
||||||
|
other_traits = [t for t in PERSONALITY_SCENES if t != trait]
|
||||||
|
secondary_trait = random.choice(other_traits)
|
||||||
|
|
||||||
|
self.scenarios.append({
|
||||||
|
"场景": scene["scenario"],
|
||||||
|
"评估维度": [trait, secondary_trait],
|
||||||
|
"场景编号": scene_key
|
||||||
|
})
|
||||||
|
|
||||||
self.llm = LLMModel()
|
self.llm = LLMModel()
|
||||||
|
|
||||||
def evaluate_response(self, scenario: str, response: str, dimensions: List[str]) -> Dict[str, float]:
|
def evaluate_response(self, scenario: str, response: str, dimensions: List[str]) -> Dict[str, float]:
|
||||||
"""
|
"""
|
||||||
使用 DeepSeek AI 评估用户对特定场景的反应
|
使用 DeepSeek AI 评估用户对特定场景的反应
|
||||||
"""
|
"""
|
||||||
prompt = f"""请根据以下场景和用户描述,评估用户在大五人格模型中的相关维度得分(0-10分)。
|
# 构建维度描述
|
||||||
场景:{scenario}
|
dimension_descriptions = []
|
||||||
用户描述:{response}
|
for dim in dimensions:
|
||||||
|
desc = FACTOR_DESCRIPTIONS.get(dim, "")
|
||||||
|
if desc:
|
||||||
|
dimension_descriptions.append(f"- {dim}:{desc}")
|
||||||
|
|
||||||
需要评估的维度:{", ".join(dimensions)}
|
dimensions_text = "\n".join(dimension_descriptions)
|
||||||
|
|
||||||
|
prompt = f"""请根据以下场景和用户描述,评估用户在大五人格模型中的相关维度得分(1-6分)。
|
||||||
|
|
||||||
|
场景描述:
|
||||||
|
{scenario}
|
||||||
|
|
||||||
|
用户回应:
|
||||||
|
{response}
|
||||||
|
|
||||||
|
需要评估的维度说明:
|
||||||
|
{dimensions_text}
|
||||||
|
|
||||||
请按照以下格式输出评估结果(仅输出JSON格式):
|
请按照以下格式输出评估结果(仅输出JSON格式):
|
||||||
{{
|
{{
|
||||||
"维度1": 分数,
|
"{dimensions[0]}": 分数,
|
||||||
"维度2": 分数
|
"{dimensions[1]}": 分数
|
||||||
}}
|
}}
|
||||||
|
|
||||||
评估标准:
|
评分标准:
|
||||||
- 开放性:对新事物的接受程度和创造性思维
|
1 = 非常不符合该维度特征
|
||||||
- 尽责性:计划性、组织性和责任感
|
2 = 比较不符合该维度特征
|
||||||
- 外向性:社交倾向和能量水平
|
3 = 有点不符合该维度特征
|
||||||
- 宜人性:同理心、合作性和友善程度
|
4 = 有点符合该维度特征
|
||||||
- 神经质:情绪稳定性和压力应对能力
|
5 = 比较符合该维度特征
|
||||||
|
6 = 非常符合该维度特征
|
||||||
|
|
||||||
请确保分数在0-10之间,并给出合理的评估理由。"""
|
请根据用户的回应,结合场景和维度说明进行评分。确保分数在1-6之间,并给出合理的评估。"""
|
||||||
|
|
||||||
try:
|
try:
|
||||||
ai_response, _ = self.llm.generate_response(prompt)
|
ai_response, _ = self.llm.generate_response(prompt)
|
||||||
@@ -76,29 +116,30 @@ class PersonalityEvaluator:
|
|||||||
if start_idx != -1 and end_idx != 0:
|
if start_idx != -1 and end_idx != 0:
|
||||||
json_str = ai_response[start_idx:end_idx]
|
json_str = ai_response[start_idx:end_idx]
|
||||||
scores = json.loads(json_str)
|
scores = json.loads(json_str)
|
||||||
# 确保所有分数在0-10之间
|
# 确保所有分数在1-6之间
|
||||||
return {k: max(0, min(10, float(v))) for k, v in scores.items()}
|
return {k: max(1, min(6, float(v))) for k, v in scores.items()}
|
||||||
else:
|
else:
|
||||||
print("AI响应格式不正确,使用默认评分")
|
print("AI响应格式不正确,使用默认评分")
|
||||||
return {dim: 5.0 for dim in dimensions}
|
return {dim: 3.5 for dim in dimensions}
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"评估过程出错:{str(e)}")
|
print(f"评估过程出错:{str(e)}")
|
||||||
return {dim: 5.0 for dim in dimensions}
|
return {dim: 3.5 for dim in dimensions}
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
print("欢迎使用人格形象创建程序!")
|
print("欢迎使用人格形象创建程序!")
|
||||||
print("接下来,您将面对一系列场景。请根据您想要创建的角色形象,描述在该场景下可能的反应。")
|
print("接下来,您将面对一系列场景(共15个)。请根据您想要创建的角色形象,描述在该场景下可能的反应。")
|
||||||
print("每个场景都会评估不同的人格维度,最终得出完整的人格特征评估。")
|
print("每个场景都会评估不同的人格维度,最终得出完整的人格特征评估。")
|
||||||
|
print("评分标准:1=非常不符合,2=比较不符合,3=有点不符合,4=有点符合,5=比较符合,6=非常符合")
|
||||||
print("\n准备好了吗?按回车键开始...")
|
print("\n准备好了吗?按回车键开始...")
|
||||||
input()
|
input()
|
||||||
|
|
||||||
evaluator = PersonalityEvaluator()
|
evaluator = PersonalityEvaluator_direct()
|
||||||
final_scores = {"开放性": 0, "尽责性": 0, "外向性": 0, "宜人性": 0, "神经质": 0}
|
final_scores = {"开放性": 0, "严谨性": 0, "外向性": 0, "宜人性": 0, "神经质": 0}
|
||||||
dimension_counts = {trait: 0 for trait in final_scores.keys()}
|
dimension_counts = {trait: 0 for trait in final_scores.keys()}
|
||||||
|
|
||||||
for i, scenario_data in enumerate(evaluator.scenarios, 1):
|
for i, scenario_data in enumerate(evaluator.scenarios, 1):
|
||||||
print(f"\n场景 {i}/{len(evaluator.scenarios)}:")
|
print(f"\n场景 {i}/{len(evaluator.scenarios)} - {scenario_data['场景编号']}:")
|
||||||
print("-" * 50)
|
print("-" * 50)
|
||||||
print(scenario_data["场景"])
|
print(scenario_data["场景"])
|
||||||
print("\n请描述您的角色在这种情况下会如何反应:")
|
print("\n请描述您的角色在这种情况下会如何反应:")
|
||||||
@@ -119,7 +160,7 @@ def main():
|
|||||||
print("\n当前评估结果:")
|
print("\n当前评估结果:")
|
||||||
print("-" * 30)
|
print("-" * 30)
|
||||||
for dimension, score in scores.items():
|
for dimension, score in scores.items():
|
||||||
print(f"{dimension}: {score}/10")
|
print(f"{dimension}: {score}/6")
|
||||||
|
|
||||||
if i < len(evaluator.scenarios):
|
if i < len(evaluator.scenarios):
|
||||||
print("\n按回车键继续下一个场景...")
|
print("\n按回车键继续下一个场景...")
|
||||||
@@ -133,10 +174,15 @@ def main():
|
|||||||
print("\n最终人格特征评估结果:")
|
print("\n最终人格特征评估结果:")
|
||||||
print("-" * 30)
|
print("-" * 30)
|
||||||
for trait, score in final_scores.items():
|
for trait, score in final_scores.items():
|
||||||
print(f"{trait}: {score}/10")
|
print(f"{trait}: {score}/6")
|
||||||
|
print(f"测试场景数:{dimension_counts[trait]}")
|
||||||
|
|
||||||
# 保存结果
|
# 保存结果
|
||||||
result = {"final_scores": final_scores, "scenarios": evaluator.scenarios}
|
result = {
|
||||||
|
"final_scores": final_scores,
|
||||||
|
"dimension_counts": dimension_counts,
|
||||||
|
"scenarios": evaluator.scenarios
|
||||||
|
}
|
||||||
|
|
||||||
# 确保目录存在
|
# 确保目录存在
|
||||||
os.makedirs("results", exist_ok=True)
|
os.makedirs("results", exist_ok=True)
|
||||||
|
|||||||
258
src/plugins/personality/scene.py
Normal file
258
src/plugins/personality/scene.py
Normal file
@@ -0,0 +1,258 @@
|
|||||||
|
from typing import Dict, List
|
||||||
|
|
||||||
|
PERSONALITY_SCENES = {
|
||||||
|
"外向性": {
|
||||||
|
"场景1": {
|
||||||
|
"scenario": """你刚刚搬到一个新的城市工作。今天是你入职的第一天,在公司的电梯里,一位同事微笑着和你打招呼:
|
||||||
|
|
||||||
|
同事:「嗨!你是新来的同事吧?我是市场部的小林。」
|
||||||
|
|
||||||
|
同事看起来很友善,还主动介绍说:「待会午饭时间,我们部门有几个人准备一起去楼下新开的餐厅,你要一起来吗?可以认识一下其他同事。」""",
|
||||||
|
"explanation": "这个场景通过职场社交情境,观察个体对于新环境、新社交圈的态度和反应倾向。"
|
||||||
|
},
|
||||||
|
"场景2": {
|
||||||
|
"scenario": """在大学班级群里,班长发起了一个组织班级联谊活动的投票:
|
||||||
|
|
||||||
|
班长:「大家好!下周末我们准备举办一次班级联谊活动,地点在学校附近的KTV。想请大家报名参加,也欢迎大家邀请其他班级的同学!」
|
||||||
|
|
||||||
|
已经有几个同学在群里积极响应,有人@你问你要不要一起参加。""",
|
||||||
|
"explanation": "通过班级活动场景,观察个体对群体社交活动的参与意愿。"
|
||||||
|
},
|
||||||
|
"场景3": {
|
||||||
|
"scenario": """你在社交平台上发布了一条动态,收到了很多陌生网友的评论和私信:
|
||||||
|
|
||||||
|
网友A:「你说的这个观点很有意思!想和你多交流一下。」
|
||||||
|
|
||||||
|
网友B:「我也对这个话题很感兴趣,要不要建个群一起讨论?」""",
|
||||||
|
"explanation": "通过网络社交场景,观察个体对线上社交的态度。"
|
||||||
|
},
|
||||||
|
"场景4": {
|
||||||
|
"scenario": """你暗恋的对象今天主动来找你:
|
||||||
|
|
||||||
|
对方:「那个...我最近在准备一个演讲比赛,听说你口才很好。能不能请你帮我看看演讲稿,顺便给我一些建议?如果你有时间的话,可以一起吃个饭聊聊。」""",
|
||||||
|
"explanation": "通过恋爱情境,观察个体在面对心仪对象时的社交表现。"
|
||||||
|
},
|
||||||
|
"场景5": {
|
||||||
|
"scenario": """在一次线下读书会上,主持人突然点名让你分享读后感:
|
||||||
|
|
||||||
|
主持人:「听说你对这本书很有见解,能不能和大家分享一下你的想法?」
|
||||||
|
|
||||||
|
现场有二十多个陌生的读书爱好者,都期待地看着你。""",
|
||||||
|
"explanation": "通过即兴发言场景,观察个体的社交表现欲和公众表达能力。"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
|
||||||
|
"神经质": {
|
||||||
|
"场景1": {
|
||||||
|
"scenario": """你正在准备一个重要的项目演示,这关系到你的晋升机会。就在演示前30分钟,你收到了主管发来的消息:
|
||||||
|
|
||||||
|
主管:「临时有个变动,CEO也会来听你的演示。他对这个项目特别感兴趣。」
|
||||||
|
|
||||||
|
正当你准备回复时,主管又发来一条:「对了,能不能把演示时间压缩到15分钟?CEO下午还有其他安排。你之前准备的是30分钟的版本对吧?」""",
|
||||||
|
"explanation": "这个场景通过突发的压力情境,观察个体在面对计划外变化时的情绪反应和调节能力。"
|
||||||
|
},
|
||||||
|
"场景2": {
|
||||||
|
"scenario": """期末考试前一天晚上,你收到了好朋友发来的消息:
|
||||||
|
|
||||||
|
好朋友:「不好意思这么晚打扰你...我看你平时成绩很好,能不能帮我解答几个问题?我真的很担心明天的考试。」
|
||||||
|
|
||||||
|
你看了看时间,已经是晚上11点,而你原本计划的复习还没完成。""",
|
||||||
|
"explanation": "通过考试压力场景,观察个体在时间紧张时的情绪管理。"
|
||||||
|
},
|
||||||
|
"场景3": {
|
||||||
|
"scenario": """你在社交媒体上发表的一个观点引发了争议,有不少人开始批评你:
|
||||||
|
|
||||||
|
网友A:「这种观点也好意思说出来,真是无知。」
|
||||||
|
|
||||||
|
网友B:「建议楼主先去补补课再来发言。」
|
||||||
|
|
||||||
|
评论区里的负面评论越来越多,还有人开始人身攻击。""",
|
||||||
|
"explanation": "通过网络争议场景,观察个体面对批评时的心理承受能力。"
|
||||||
|
},
|
||||||
|
"场景4": {
|
||||||
|
"scenario": """你和恋人约好今天一起看电影,但在约定时间前半小时,对方发来消息:
|
||||||
|
|
||||||
|
恋人:「对不起,我临时有点事,可能要迟到一会儿。」
|
||||||
|
|
||||||
|
二十分钟后,对方又发来消息:「可能要再等等,抱歉!」
|
||||||
|
|
||||||
|
电影快要开始了,但对方还是没有出现。""",
|
||||||
|
"explanation": "通过恋爱情境,观察个体对不确定性的忍耐程度。"
|
||||||
|
},
|
||||||
|
"场景5": {
|
||||||
|
"scenario": """在一次重要的小组展示中,你的组员在演示途中突然卡壳了:
|
||||||
|
|
||||||
|
组员小声对你说:「我忘词了,接下来的部分是什么来着...」
|
||||||
|
|
||||||
|
台下的老师和同学都在等待,气氛有些尴尬。""",
|
||||||
|
"explanation": "通过公开场合的突发状况,观察个体的应急反应和压力处理能力。"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
|
||||||
|
"严谨性": {
|
||||||
|
"场景1": {
|
||||||
|
"scenario": """你是团队的项目负责人,刚刚接手了一个为期两个月的重要项目。在第一次团队会议上:
|
||||||
|
|
||||||
|
小王:「老大,我觉得两个月时间很充裕,我们先做着看吧,遇到问题再解决。」
|
||||||
|
|
||||||
|
小张:「要不要先列个时间表?不过感觉太详细的计划也没必要,点到为止就行。」
|
||||||
|
|
||||||
|
小李:「客户那边说如果能提前完成有奖励,我觉得我们可以先做快一点的部分。」""",
|
||||||
|
"explanation": "这个场景通过项目管理情境,体现个体在工作方法、计划性和责任心方面的特征。"
|
||||||
|
},
|
||||||
|
"场景2": {
|
||||||
|
"scenario": """期末小组作业,组长让大家分工完成一份研究报告。在截止日期前三天:
|
||||||
|
|
||||||
|
组员A:「我的部分大概写完了,感觉还行。」
|
||||||
|
|
||||||
|
组员B:「我这边可能还要一天才能完成,最近太忙了。」
|
||||||
|
|
||||||
|
组员C发来一份没有任何引用出处、可能存在抄袭的内容:「我写完了,你们看看怎么样?」""",
|
||||||
|
"explanation": "通过学习场景,观察个体对学术规范和质量要求的重视程度。"
|
||||||
|
},
|
||||||
|
"场景3": {
|
||||||
|
"scenario": """你在一个兴趣小组的群聊中,大家正在讨论举办一次线下活动:
|
||||||
|
|
||||||
|
成员A:「到时候见面就知道具体怎么玩了!」
|
||||||
|
|
||||||
|
成员B:「对啊,随意一点挺好的。」
|
||||||
|
|
||||||
|
成员C:「人来了自然就热闹了。」""",
|
||||||
|
"explanation": "通过活动组织场景,观察个体对活动计划的态度。"
|
||||||
|
},
|
||||||
|
"场景4": {
|
||||||
|
"scenario": """你和恋人计划一起去旅游,对方说:
|
||||||
|
|
||||||
|
恋人:「我们就随心而行吧!订个目的地,其他的到了再说,这样更有意思。」
|
||||||
|
|
||||||
|
距离出发还有一周时间,但机票、住宿和具体行程都还没有确定。""",
|
||||||
|
"explanation": "通过旅行规划场景,观察个体的计划性和对不确定性的接受程度。"
|
||||||
|
},
|
||||||
|
"场景5": {
|
||||||
|
"scenario": """在一个重要的团队项目中,你发现一个同事的工作存在明显错误:
|
||||||
|
|
||||||
|
同事:「差不多就行了,反正领导也看不出来。」
|
||||||
|
|
||||||
|
这个错误可能不会立即造成问题,但长期来看可能会影响项目质量。""",
|
||||||
|
"explanation": "通过工作质量场景,观察个体对细节和标准的坚持程度。"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
|
||||||
|
"开放性": {
|
||||||
|
"场景1": {
|
||||||
|
"scenario": """周末下午,你的好友小美兴致勃勃地给你打电话:
|
||||||
|
|
||||||
|
小美:「我刚发现一个特别有意思的沉浸式艺术展!不是传统那种挂画的展览,而是把整个空间都变成了艺术品。观众要穿特制的服装,还要带上VR眼镜,好像还有AI实时互动!」
|
||||||
|
|
||||||
|
小美继续说:「虽然票价不便宜,但听说体验很独特。网上评价两极分化,有人说是前所未有的艺术革新,也有人说是哗众取宠。要不要周末一起去体验一下?」""",
|
||||||
|
"explanation": "这个场景通过新型艺术体验,反映个体对创新事物的接受程度和尝试意愿。"
|
||||||
|
},
|
||||||
|
"场景2": {
|
||||||
|
"scenario": """在一节创意写作课上,老师提出了一个特别的作业:
|
||||||
|
|
||||||
|
老师:「下周的作业是用AI写作工具协助创作一篇小说。你们可以自由探索如何与AI合作,打破传统写作方式。」
|
||||||
|
|
||||||
|
班上随即展开了激烈讨论,有人认为这是对创作的亵渎,也有人对这种新形式感到兴奋。""",
|
||||||
|
"explanation": "通过新技术应用场景,观察个体对创新学习方式的态度。"
|
||||||
|
},
|
||||||
|
"场景3": {
|
||||||
|
"scenario": """在社交媒体上,你看到一个朋友分享了一种新的生活方式:
|
||||||
|
|
||||||
|
「最近我在尝试'数字游牧'生活,就是一边远程工作一边环游世界。没有固定住所,住青旅或短租,认识来自世界各地的朋友。虽然有时会很不稳定,但这种自由的生活方式真的很棒!」
|
||||||
|
|
||||||
|
评论区里争论不断,有人向往这种生活,也有人觉得太冒险。""",
|
||||||
|
"explanation": "通过另类生活方式,观察个体对非传统选择的态度。"
|
||||||
|
},
|
||||||
|
"场景4": {
|
||||||
|
"scenario": """你的恋人突然提出了一个想法:
|
||||||
|
|
||||||
|
恋人:「我们要不要尝试一下开放式关系?就是在保持彼此关系的同时,也允许和其他人发展感情。现在国外很多年轻人都这样。」
|
||||||
|
|
||||||
|
这个提议让你感到意外,你之前从未考虑过这种可能性。""",
|
||||||
|
"explanation": "通过感情观念场景,观察个体对非传统关系模式的接受度。"
|
||||||
|
},
|
||||||
|
"场景5": {
|
||||||
|
"scenario": """在一次朋友聚会上,大家正在讨论未来职业规划:
|
||||||
|
|
||||||
|
朋友A:「我准备辞职去做自媒体,专门介绍一些小众的文化和艺术。」
|
||||||
|
|
||||||
|
朋友B:「我想去学习生物科技,准备转行做人造肉研发。」
|
||||||
|
|
||||||
|
朋友C:「我在考虑加入一个区块链创业项目,虽然风险很大。」""",
|
||||||
|
"explanation": "通过职业选择场景,观察个体对新兴领域的探索意愿。"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
|
||||||
|
"宜人性": {
|
||||||
|
"场景1": {
|
||||||
|
"scenario": """在回家的公交车上,你遇到这样一幕:
|
||||||
|
|
||||||
|
一位老奶奶颤颤巍巍地上了车,车上座位已经坐满了。她站在你旁边,看起来很疲惫。这时你听到前排两个年轻人的对话:
|
||||||
|
|
||||||
|
年轻人A:「那个老太太好像站不稳,看起来挺累的。」
|
||||||
|
|
||||||
|
年轻人B:「现在的老年人真是...我看她包里还有菜,肯定是去菜市场买完菜回来的,这么多人都不知道叫子女开车接送。」
|
||||||
|
|
||||||
|
就在这时,老奶奶一个趔趄,差点摔倒。她扶住了扶手,但包里的东西洒了一些出来。""",
|
||||||
|
"explanation": "这个场景通过公共场合的助人情境,体现个体的同理心和对他人需求的关注程度。"
|
||||||
|
},
|
||||||
|
"场景2": {
|
||||||
|
"scenario": """在班级群里,有同学发起为生病住院的同学捐款:
|
||||||
|
|
||||||
|
同学A:「大家好,小林最近得了重病住院,医药费很贵,家里负担很重。我们要不要一起帮帮他?」
|
||||||
|
|
||||||
|
同学B:「我觉得这是他家里的事,我们不方便参与吧。」
|
||||||
|
|
||||||
|
同学C:「但是都是同学一场,帮帮忙也是应该的。」""",
|
||||||
|
"explanation": "通过同学互助场景,观察个体的助人意愿和同理心。"
|
||||||
|
},
|
||||||
|
"场景3": {
|
||||||
|
"scenario": """在一个网络讨论组里,有人发布了求助信息:
|
||||||
|
|
||||||
|
求助者:「最近心情很低落,感觉生活很压抑,不知道该怎么办...」
|
||||||
|
|
||||||
|
评论区里已经有一些回复:
|
||||||
|
「生活本来就是这样,想开点!」
|
||||||
|
「你这样子太消极了,要积极面对。」
|
||||||
|
「谁还没点烦心事啊,过段时间就好了。」""",
|
||||||
|
"explanation": "通过网络互助场景,观察个体的共情能力和安慰方式。"
|
||||||
|
},
|
||||||
|
"场景4": {
|
||||||
|
"scenario": """你的恋人向你倾诉工作压力:
|
||||||
|
|
||||||
|
恋人:「最近工作真的好累,感觉快坚持不下去了...」
|
||||||
|
|
||||||
|
但今天你也遇到了很多烦心事,心情也不太好。""",
|
||||||
|
"explanation": "通过感情关系场景,观察个体在自身状态不佳时的关怀能力。"
|
||||||
|
},
|
||||||
|
"场景5": {
|
||||||
|
"scenario": """在一次团队项目中,新来的同事小王因为经验不足,造成了一个严重的错误。在部门会议上:
|
||||||
|
|
||||||
|
主管:「这个错误造成了很大的损失,是谁负责的这部分?」
|
||||||
|
|
||||||
|
小王看起来很紧张,欲言又止。你知道是他造成的错误,同时你也是这个项目的共同负责人。""",
|
||||||
|
"explanation": "通过职场情境,观察个体在面对他人过错时的态度和处理方式。"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
def get_scene_by_factor(factor: str) -> Dict:
|
||||||
|
"""
|
||||||
|
根据人格因子获取对应的情景测试
|
||||||
|
|
||||||
|
Args:
|
||||||
|
factor (str): 人格因子名称
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Dict: 包含情景描述的字典
|
||||||
|
"""
|
||||||
|
return PERSONALITY_SCENES.get(factor, None)
|
||||||
|
|
||||||
|
def get_all_scenes() -> Dict:
|
||||||
|
"""
|
||||||
|
获取所有情景测试
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Dict: 所有情景测试的字典
|
||||||
|
"""
|
||||||
|
return PERSONALITY_SCENES
|
||||||
1
src/plugins/personality/看我.txt
Normal file
1
src/plugins/personality/看我.txt
Normal file
@@ -0,0 +1 @@
|
|||||||
|
那是以后会用到的妙妙小工具.jpg
|
||||||
@@ -54,7 +54,7 @@ class WillingManager:
|
|||||||
|
|
||||||
self.chat_reply_willing[chat_id] = min(current_willing, 3.0)
|
self.chat_reply_willing[chat_id] = min(current_willing, 3.0)
|
||||||
|
|
||||||
reply_probability = min(max((current_willing - 0.5), 0.03) * config.response_willing_amplifier * 2, 1)
|
reply_probability = min(max((current_willing - 0.5), 0.01) * config.response_willing_amplifier * 2, 1)
|
||||||
|
|
||||||
# 检查群组权限(如果是群聊)
|
# 检查群组权限(如果是群聊)
|
||||||
if chat_stream.group_info and config:
|
if chat_stream.group_info and config:
|
||||||
|
|||||||
@@ -16,7 +16,7 @@ version = "0.0.10"
|
|||||||
[bot]
|
[bot]
|
||||||
qq = 123
|
qq = 123
|
||||||
nickname = "麦麦"
|
nickname = "麦麦"
|
||||||
alias_names = ["小麦", "阿麦"]
|
alias_names = ["麦叠", "牢麦"]
|
||||||
|
|
||||||
[personality]
|
[personality]
|
||||||
prompt_personality = [
|
prompt_personality = [
|
||||||
@@ -37,7 +37,7 @@ thinking_timeout = 120 # 麦麦思考时间
|
|||||||
|
|
||||||
response_willing_amplifier = 1 # 麦麦回复意愿放大系数,一般为1
|
response_willing_amplifier = 1 # 麦麦回复意愿放大系数,一般为1
|
||||||
response_interested_rate_amplifier = 1 # 麦麦回复兴趣度放大系数,听到记忆里的内容时放大系数
|
response_interested_rate_amplifier = 1 # 麦麦回复兴趣度放大系数,听到记忆里的内容时放大系数
|
||||||
down_frequency_rate = 3.5 # 降低回复频率的群组回复意愿降低系数
|
down_frequency_rate = 3 # 降低回复频率的群组回复意愿降低系数 除法
|
||||||
ban_words = [
|
ban_words = [
|
||||||
# "403","张三"
|
# "403","张三"
|
||||||
]
|
]
|
||||||
@@ -126,27 +126,14 @@ ban_user_id = [] #禁止回复消息的QQ号
|
|||||||
enable = true
|
enable = true
|
||||||
|
|
||||||
|
|
||||||
#V3
|
|
||||||
#name = "deepseek-chat"
|
|
||||||
#base_url = "DEEP_SEEK_BASE_URL"
|
|
||||||
#key = "DEEP_SEEK_KEY"
|
|
||||||
|
|
||||||
#R1
|
|
||||||
#name = "deepseek-reasoner"
|
|
||||||
#base_url = "DEEP_SEEK_BASE_URL"
|
|
||||||
#key = "DEEP_SEEK_KEY"
|
|
||||||
|
|
||||||
#下面的模型若使用硅基流动则不需要更改,使用ds官方则改成.env.prod自定义的宏,使用自定义模型则选择定位相似的模型自己填写
|
#下面的模型若使用硅基流动则不需要更改,使用ds官方则改成.env.prod自定义的宏,使用自定义模型则选择定位相似的模型自己填写
|
||||||
|
|
||||||
#推理模型:
|
#推理模型:
|
||||||
|
|
||||||
[model.llm_reasoning] #回复模型1 主要回复模型
|
[model.llm_reasoning] #回复模型1 主要回复模型
|
||||||
name = "Pro/deepseek-ai/DeepSeek-R1"
|
name = "Pro/deepseek-ai/DeepSeek-R1"
|
||||||
provider = "SILICONFLOW"
|
provider = "SILICONFLOW"
|
||||||
pri_in = 0 #模型的输入价格(非必填,可以记录消耗)
|
pri_in = 0 #模型的输入价格(非必填,可以记录消耗)
|
||||||
pri_out = 0 #模型的输出价格(非必填,可以记录消耗)
|
pri_out = 0 #模型的输出价格(非必填,可以记录消耗)
|
||||||
|
|
||||||
|
|
||||||
[model.llm_reasoning_minor] #回复模型3 次要回复模型
|
[model.llm_reasoning_minor] #回复模型3 次要回复模型
|
||||||
name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
|
name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
|
||||||
provider = "SILICONFLOW"
|
provider = "SILICONFLOW"
|
||||||
|
|||||||
25
麦麦开始学习.bat
25
麦麦开始学习.bat
@@ -1,17 +1,27 @@
|
|||||||
@echo off
|
@echo off
|
||||||
|
chcp 65001 > nul
|
||||||
setlocal enabledelayedexpansion
|
setlocal enabledelayedexpansion
|
||||||
chcp 65001
|
|
||||||
cd /d %~dp0
|
cd /d %~dp0
|
||||||
|
|
||||||
echo =====================================
|
title 麦麦学习系统
|
||||||
echo 选择Python环境:
|
|
||||||
|
cls
|
||||||
|
echo ======================================
|
||||||
|
echo 警告提示
|
||||||
|
echo ======================================
|
||||||
|
echo 1.这是一个demo系统,不完善不稳定,仅用于体验/不要塞入过长过大的文本,这会导致信息提取迟缓
|
||||||
|
echo ======================================
|
||||||
|
|
||||||
|
echo.
|
||||||
|
echo ======================================
|
||||||
|
echo 请选择Python环境:
|
||||||
echo 1 - venv (推荐)
|
echo 1 - venv (推荐)
|
||||||
echo 2 - conda
|
echo 2 - conda
|
||||||
echo =====================================
|
echo ======================================
|
||||||
choice /c 12 /n /m "输入数字(1或2): "
|
choice /c 12 /n /m "请输入数字选择(1或2): "
|
||||||
|
|
||||||
if errorlevel 2 (
|
if errorlevel 2 (
|
||||||
echo =====================================
|
echo ======================================
|
||||||
set "CONDA_ENV="
|
set "CONDA_ENV="
|
||||||
set /p CONDA_ENV="请输入要激活的 conda 环境名称: "
|
set /p CONDA_ENV="请输入要激活的 conda 环境名称: "
|
||||||
|
|
||||||
@@ -35,11 +45,12 @@ if errorlevel 2 (
|
|||||||
if exist "venv\Scripts\python.exe" (
|
if exist "venv\Scripts\python.exe" (
|
||||||
venv\Scripts\python src/plugins/zhishi/knowledge_library.py
|
venv\Scripts\python src/plugins/zhishi/knowledge_library.py
|
||||||
) else (
|
) else (
|
||||||
echo =====================================
|
echo ======================================
|
||||||
echo 错误: venv环境不存在,请先创建虚拟环境
|
echo 错误: venv环境不存在,请先创建虚拟环境
|
||||||
pause
|
pause
|
||||||
exit /b 1
|
exit /b 1
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
endlocal
|
endlocal
|
||||||
pause
|
pause
|
||||||
|
|||||||
Reference in New Issue
Block a user