Merge branch 'MaiM-with-u:main-fix' into main-fix

This commit is contained in:
UnCLAS-Prommer
2025-03-21 01:12:59 +08:00
committed by GitHub
16 changed files with 1032 additions and 140 deletions

1
.gitignore vendored
View File

@@ -29,6 +29,7 @@ run_dev.bat
elua.confirmed elua.confirmed
# C extensions # C extensions
*.so *.so
/results
# Distribution / packaging # Distribution / packaging
.Python .Python

View File

@@ -128,11 +128,11 @@
MaiMBot是一个开源项目我们非常欢迎你的参与。你的贡献无论是提交bug报告、功能需求还是代码pr都对项目非常宝贵。我们非常感谢你的支持🎉 但无序的讨论会降低沟通效率,进而影响问题的解决速度,因此在提交任何贡献前,请务必先阅读本项目的[贡献指南](CONTRIBUTE.md) MaiMBot是一个开源项目我们非常欢迎你的参与。你的贡献无论是提交bug报告、功能需求还是代码pr都对项目非常宝贵。我们非常感谢你的支持🎉 但无序的讨论会降低沟通效率,进而影响问题的解决速度,因此在提交任何贡献前,请务必先阅读本项目的[贡献指南](CONTRIBUTE.md)
### 💬交流群 ### 💬交流群
- [](https://qm.qq.com/q/VQ3XZrWgMs) 766798517 ,建议加下面的(开发和建议相关讨论)不一定有空回复,会优先写文档和代码 - [](https://qm.qq.com/q/JxvHZnxyec) 1022489779(开发和建议相关讨论)不一定有空回复,会优先写文档和代码
- [](https://qm.qq.com/q/RzmCiRtHEW) 571780722 (开发和建议相关讨论)不一定有空回复,会优先写文档和代码 - [](https://qm.qq.com/q/VQ3XZrWgMs) 766798517 【已满】(开发和建议相关讨论)不一定有空回复,会优先写文档和代码
- [](https://qm.qq.com/q/wlH5eT8OmQ) 1035228475(开发和建议相关讨论)不一定有空回复,会优先写文档和代码 - [](https://qm.qq.com/q/RzmCiRtHEW) 571780722 【已满】(开发和建议相关讨论)不一定有空回复,会优先写文档和代码
- [](https://qm.qq.com/q/wlH5eT8OmQ) 729957033(开发和建议相关讨论)不一定有空回复,会优先写文档和代码 - [](https://qm.qq.com/q/wlH5eT8OmQ) 1035228475【已满】(开发和建议相关讨论)不一定有空回复,会优先写文档和代码
- [四群](https://qm.qq.com/q/wlH5eT8OmQ) 729957033【已满】开发和建议相关讨论不一定有空回复会优先写文档和代码
<div align="left"> <div align="left">
@@ -251,10 +251,12 @@ SengokuCola~~纯编程外行面向cursor编程很多代码写得不好多
感谢各位大佬! 感谢各位大佬!
<a href="https://github.com/SengokuCola/MaiMBot/graphs/contributors"> <a href="https://github.com/MaiM-with-u/MaiBot/graphs/contributors">
<img src="https://contrib.rocks/image?repo=SengokuCola/MaiMBot" /> <img src="https://contrib.rocks/image?repo=MaiM-with-u/MaiBot" />
</a> </a>
**也感谢每一位给麦麦发展提出宝贵意见与建议的用户,感谢陪伴麦麦走到现在的你们**
## Stargazers over time ## Stargazers over time
[![Stargazers over time](https://starchart.cc/SengokuCola/MaiMBot.svg?variant=adaptive)](https://starchart.cc/SengokuCola/MaiMBot) [![Stargazers over time](https://starchart.cc/MaiM-with-u/MaiBot.svg?variant=adaptive)](https://starchart.cc/MaiM-with-u/MaiBot)

View File

@@ -1,46 +0,0 @@
{
"final_scores": {
"开放性": 5.5,
"尽责性": 5.0,
"外向性": 6.0,
"宜人性": 1.5,
"神经质": 6.0
},
"scenarios": [
{
"场景": "在团队项目中,你发现一个同事的工作质量明显低于预期,这可能会影响整个项目的进度。",
"评估维度": [
"尽责性",
"宜人性"
]
},
{
"场景": "你被邀请参加一个完全陌生的社交活动,现场都是不认识的人。",
"评估维度": [
"外向性",
"神经质"
]
},
{
"场景": "你的朋友向你推荐了一个新的艺术展览,但风格与你平时接触的完全不同。",
"评估维度": [
"开放性",
"外向性"
]
},
{
"场景": "在工作中,你遇到了一个技术难题,需要学习全新的技术栈。",
"评估维度": [
"开放性",
"尽责性"
]
},
{
"场景": "你的朋友因为个人原因情绪低落,向你寻求帮助。",
"评估维度": [
"宜人性",
"神经质"
]
}
]
}

View File

@@ -415,6 +415,16 @@ class ChatBot:
async def handle_forward_message(self, event: MessageEvent, bot: Bot) -> None: async def handle_forward_message(self, event: MessageEvent, bot: Bot) -> None:
"""专用于处理合并转发的消息处理器""" """专用于处理合并转发的消息处理器"""
# 用户屏蔽,不区分私聊/群聊
if event.user_id in global_config.ban_user_id:
return
if isinstance(event, GroupMessageEvent):
if event.group_id:
if event.group_id not in global_config.talk_allowed_groups:
return
# 获取合并转发消息的详细信息 # 获取合并转发消息的详细信息
forward_info = await bot.get_forward_msg(message_id=event.message_id) forward_info = await bot.get_forward_msg(message_id=event.message_id)
messages = forward_info["messages"] messages = forward_info["messages"]
@@ -425,22 +435,11 @@ class ChatBot:
# 提取发送者昵称 # 提取发送者昵称
nickname = node["sender"].get("nickname", "未知用户") nickname = node["sender"].get("nickname", "未知用户")
# 处理消息内容 # 递归处理消息内容
message_content = [] message_content = await self.process_message_segments(node["message"],layer=0)
for seg in node["message"]:
if seg["type"] == "text":
message_content.append(seg["data"]["text"])
elif seg["type"] == "image":
message_content.append("[图片]")
elif seg["type"] =="face":
message_content.append("[表情]")
elif seg["type"] == "at":
message_content.append(f"@{seg['data'].get('qq', '未知用户')}")
else:
message_content.append(f"[{seg['type']}]")
# 拼接为【昵称】+ 内容 # 拼接为【昵称】+ 内容
processed_messages.append(f"{nickname}{''.join(message_content)}") processed_messages.append(f"{nickname}{message_content}")
# 组合所有消息 # 组合所有消息
combined_message = "\n".join(processed_messages) combined_message = "\n".join(processed_messages)
@@ -459,7 +458,7 @@ class ChatBot:
if isinstance(event, GroupMessageEvent): if isinstance(event, GroupMessageEvent):
group_info = GroupInfo( group_info = GroupInfo(
group_id=event.group_id, group_id=event.group_id,
group_name= None, group_name=None,
platform="qq" platform="qq"
) )
@@ -476,5 +475,42 @@ class ChatBot:
# 进入标准消息处理流程 # 进入标准消息处理流程
await self.message_process(message_cq) await self.message_process(message_cq)
async def process_message_segments(self, segments: list,layer:int) -> str:
"""递归处理消息段"""
parts = []
for seg in segments:
part = await self.process_segment(seg,layer+1)
parts.append(part)
return "".join(parts)
async def process_segment(self, seg: dict , layer:int) -> str:
"""处理单个消息段"""
seg_type = seg["type"]
if layer > 3 :
#防止有那种100层转发消息炸飞麦麦
return "【转发消息】"
if seg_type == "text":
return seg["data"]["text"]
elif seg_type == "image":
return "[图片]"
elif seg_type == "face":
return "[表情]"
elif seg_type == "at":
return f"@{seg['data'].get('qq', '未知用户')}"
elif seg_type == "forward":
# 递归处理嵌套的合并转发消息
nested_nodes = seg["data"].get("content", [])
nested_messages = []
nested_messages.append("合并转发消息内容:")
for node in nested_nodes:
nickname = node["sender"].get("nickname", "未知用户")
content = await self.process_message_segments(node["message"],layer=layer)
# nested_messages.append('-' * layer)
nested_messages.append(f"{'--' * layer}{nickname}{content}")
# nested_messages.append(f"{'--' * layer}合并转发第【{layer}】层结束")
return "\n".join(nested_messages)
else:
return f"[{seg_type}]"
# 创建全局ChatBot实例 # 创建全局ChatBot实例
chat_bot = ChatBot() chat_bot = ChatBot()

View File

@@ -7,14 +7,17 @@ import jieba
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import networkx as nx import networkx as nx
from dotenv import load_dotenv from dotenv import load_dotenv
from src.common.logger import get_module_logger from loguru import logger
# from src.common.logger import get_module_logger
logger = get_module_logger("draw_memory") # logger = get_module_logger("draw_memory")
# 添加项目根目录到 Python 路径 # 添加项目根目录到 Python 路径
root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../..")) root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../.."))
sys.path.append(root_path) sys.path.append(root_path)
print(root_path)
from src.common.database import db # noqa: E402 from src.common.database import db # noqa: E402
# 加载.env.dev文件 # 加载.env.dev文件

View File

@@ -594,7 +594,7 @@ class Hippocampus:
logger.info("[遗忘] 开始检查数据库... 当前Logger信息:") logger.info("[遗忘] 开始检查数据库... 当前Logger信息:")
# logger.info(f"- Logger名称: {logger.name}") # logger.info(f"- Logger名称: {logger.name}")
logger.info(f"- Logger等级: {logger.level}") # logger.info(f"- Logger等级: {logger.level}")
# logger.info(f"- Logger处理器: {[handler.__class__.__name__ for handler in logger.handlers]}") # logger.info(f"- Logger处理器: {[handler.__class__.__name__ for handler in logger.handlers]}")
# logger2 = setup_logger(LogModule.MEMORY) # logger2 = setup_logger(LogModule.MEMORY)

View File

@@ -0,0 +1,122 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# from .questionnaire import PERSONALITY_QUESTIONS, FACTOR_DESCRIPTIONS
import os
import sys
from pathlib import Path
import random
current_dir = Path(__file__).resolve().parent
project_root = current_dir.parent.parent.parent
env_path = project_root / ".env.prod"
root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../.."))
sys.path.append(root_path)
from src.plugins.personality.scene import get_scene_by_factor,get_all_scenes,PERSONALITY_SCENES
from src.plugins.personality.questionnaire import PERSONALITY_QUESTIONS,FACTOR_DESCRIPTIONS
from src.plugins.personality.offline_llm import LLMModel
class BigFiveTest:
def __init__(self):
self.questions = PERSONALITY_QUESTIONS
self.factors = FACTOR_DESCRIPTIONS
def run_test(self):
"""运行测试并收集答案"""
print("\n欢迎参加中国大五人格测试!")
print("\n本测试采用六级评分,请根据每个描述与您的符合程度进行打分:")
print("1 = 完全不符合")
print("2 = 比较不符合")
print("3 = 有点不符合")
print("4 = 有点符合")
print("5 = 比较符合")
print("6 = 完全符合")
print("\n请认真阅读每个描述,选择最符合您实际情况的选项。\n")
# 创建题目序号到题目的映射
questions_map = {q['id']: q for q in self.questions}
# 获取所有题目ID并随机打乱顺序
question_ids = list(questions_map.keys())
random.shuffle(question_ids)
answers = {}
total_questions = len(question_ids)
for i, question_id in enumerate(question_ids, 1):
question = questions_map[question_id]
while True:
try:
print(f"\n[{i}/{total_questions}] {question['content']}")
score = int(input("您的评分1-6: "))
if 1 <= score <= 6:
answers[question_id] = score
break
else:
print("请输入1-6之间的数字")
except ValueError:
print("请输入有效的数字!")
return self.calculate_scores(answers)
def calculate_scores(self, answers):
"""计算各维度得分"""
results = {}
factor_questions = {
"外向性": [],
"神经质": [],
"严谨性": [],
"开放性": [],
"宜人性": []
}
# 将题目按因子分类
for q in self.questions:
factor_questions[q['factor']].append(q)
# 计算每个维度的得分
for factor, questions in factor_questions.items():
total_score = 0
for q in questions:
score = answers[q['id']]
# 处理反向计分题目
if q['reverse_scoring']:
score = 7 - score # 6分量表反向计分为7减原始分
total_score += score
# 计算平均分
avg_score = round(total_score / len(questions), 2)
results[factor] = {
"得分": avg_score,
"题目数": len(questions),
"总分": total_score
}
return results
def get_factor_description(self, factor):
"""获取因子的详细描述"""
return self.factors[factor]
def main():
test = BigFiveTest()
results = test.run_test()
print("\n测试结果:")
print("=" * 50)
for factor, data in results.items():
print(f"\n{factor}:")
print(f"平均分: {data['得分']} (总分: {data['总分']}, 题目数: {data['题目数']})")
print("-" * 30)
description = test.get_factor_description(factor)
print("维度说明:", description['description'][:100] + "...")
print("\n特征词:", ", ".join(description['trait_words']))
print("=" * 50)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,361 @@
from typing import Dict, List
import json
import os
from pathlib import Path
import sys
from datetime import datetime
import random
from scipy import stats # 添加scipy导入用于t检验
current_dir = Path(__file__).resolve().parent
project_root = current_dir.parent.parent.parent
env_path = project_root / ".env.prod"
root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../.."))
sys.path.append(root_path)
from src.plugins.personality.big5_test import BigFiveTest
from src.plugins.personality.renqingziji import PersonalityEvaluator_direct
from src.plugins.personality.questionnaire import FACTOR_DESCRIPTIONS, PERSONALITY_QUESTIONS
class CombinedPersonalityTest:
def __init__(self):
self.big5_test = BigFiveTest()
self.scenario_test = PersonalityEvaluator_direct()
self.dimensions = ["开放性", "严谨性", "外向性", "宜人性", "神经质"]
def run_combined_test(self):
"""运行组合测试"""
print("\n=== 人格特征综合评估系统 ===")
print("\n本测试将通过两种方式评估人格特征:")
print("1. 传统问卷测评约40题")
print("2. 情景反应测评15个场景")
print("\n两种测评完成后,将对比分析结果的异同。")
input("\n准备好开始第一部分(问卷测评)了吗?按回车继续...")
# 运行问卷测试
print("\n=== 第一部分:问卷测评 ===")
print("本部分采用六级评分,请根据每个描述与您的符合程度进行打分:")
print("1 = 完全不符合")
print("2 = 比较不符合")
print("3 = 有点不符合")
print("4 = 有点符合")
print("5 = 比较符合")
print("6 = 完全符合")
print("\n重要提示:您可以选择以下两种方式之一来回答问题:")
print("1. 根据您自身的真实情况来回答")
print("2. 根据您想要扮演的角色特征来回答")
print("\n无论选择哪种方式,请保持一致并认真回答每个问题。")
input("\n按回车开始答题...")
questionnaire_results = self.run_questionnaire()
# 转换问卷结果格式以便比较
questionnaire_scores = {
factor: data["得分"]
for factor, data in questionnaire_results.items()
}
# 运行情景测试
print("\n=== 第二部分:情景反应测评 ===")
print("接下来,您将面对一系列具体场景,请描述您在每个场景中可能的反应。")
print("每个场景都会评估不同的人格维度共15个场景。")
print("您可以选择提供自己的真实反应,也可以选择扮演一个您创作的角色来回答。")
input("\n准备好开始了吗?按回车继续...")
scenario_results = self.run_scenario_test()
# 比较和展示结果
self.compare_and_display_results(questionnaire_scores, scenario_results)
# 保存结果
self.save_results(questionnaire_scores, scenario_results)
def run_questionnaire(self):
"""运行问卷测试部分"""
# 创建题目序号到题目的映射
questions_map = {q['id']: q for q in PERSONALITY_QUESTIONS}
# 获取所有题目ID并随机打乱顺序
question_ids = list(questions_map.keys())
random.shuffle(question_ids)
answers = {}
total_questions = len(question_ids)
for i, question_id in enumerate(question_ids, 1):
question = questions_map[question_id]
while True:
try:
print(f"\n问题 [{i}/{total_questions}]")
print(f"{question['content']}")
score = int(input("您的评分1-6: "))
if 1 <= score <= 6:
answers[question_id] = score
break
else:
print("请输入1-6之间的数字")
except ValueError:
print("请输入有效的数字!")
# 每10题显示一次进度
if i % 10 == 0:
print(f"\n已完成 {i}/{total_questions} 题 ({int(i/total_questions*100)}%)")
return self.calculate_questionnaire_scores(answers)
def calculate_questionnaire_scores(self, answers):
"""计算问卷测试的维度得分"""
results = {}
factor_questions = {
"外向性": [],
"神经质": [],
"严谨性": [],
"开放性": [],
"宜人性": []
}
# 将题目按因子分类
for q in PERSONALITY_QUESTIONS:
factor_questions[q['factor']].append(q)
# 计算每个维度的得分
for factor, questions in factor_questions.items():
total_score = 0
for q in questions:
score = answers[q['id']]
# 处理反向计分题目
if q['reverse_scoring']:
score = 7 - score # 6分量表反向计分为7减原始分
total_score += score
# 计算平均分
avg_score = round(total_score / len(questions), 2)
results[factor] = {
"得分": avg_score,
"题目数": len(questions),
"总分": total_score
}
return results
def run_scenario_test(self):
"""运行情景测试部分"""
final_scores = {"开放性": 0, "严谨性": 0, "外向性": 0, "宜人性": 0, "神经质": 0}
dimension_counts = {trait: 0 for trait in final_scores.keys()}
# 随机打乱场景顺序
scenarios = self.scenario_test.scenarios.copy()
random.shuffle(scenarios)
for i, scenario_data in enumerate(scenarios, 1):
print(f"\n场景 [{i}/{len(scenarios)}] - {scenario_data['场景编号']}")
print("-" * 50)
print(scenario_data["场景"])
print("\n请描述您在这种情况下会如何反应:")
response = input().strip()
if not response:
print("反应描述不能为空!")
continue
print("\n正在评估您的描述...")
scores = self.scenario_test.evaluate_response(
scenario_data["场景"],
response,
scenario_data["评估维度"]
)
# 更新分数
for dimension, score in scores.items():
final_scores[dimension] += score
dimension_counts[dimension] += 1
# print("\n当前场景评估结果")
# print("-" * 30)
# for dimension, score in scores.items():
# print(f"{dimension}: {score}/6")
# 每5个场景显示一次总进度
if i % 5 == 0:
print(f"\n已完成 {i}/{len(scenarios)} 个场景 ({int(i/len(scenarios)*100)}%)")
if i < len(scenarios):
input("\n按回车继续下一个场景...")
# 计算平均分
for dimension in final_scores:
if dimension_counts[dimension] > 0:
final_scores[dimension] = round(
final_scores[dimension] / dimension_counts[dimension],
2
)
return final_scores
def compare_and_display_results(self, questionnaire_scores: Dict, scenario_scores: Dict):
"""比较和展示两种测试的结果"""
print("\n=== 测评结果对比分析 ===")
print("\n" + "=" * 60)
print(f"{'维度':<8} {'问卷得分':>10} {'情景得分':>10} {'差异':>10} {'差异程度':>10}")
print("-" * 60)
# 收集每个维度的得分用于统计分析
questionnaire_values = []
scenario_values = []
diffs = []
for dimension in self.dimensions:
q_score = questionnaire_scores[dimension]
s_score = scenario_scores[dimension]
diff = round(abs(q_score - s_score), 2)
questionnaire_values.append(q_score)
scenario_values.append(s_score)
diffs.append(diff)
# 计算差异程度
diff_level = "" if diff < 0.5 else "" if diff < 1.0 else ""
print(f"{dimension:<8} {q_score:>10.2f} {s_score:>10.2f} {diff:>10.2f} {diff_level:>10}")
print("=" * 60)
# 计算整体统计指标
mean_diff = sum(diffs) / len(diffs)
std_diff = (sum((x - mean_diff) ** 2 for x in diffs) / (len(diffs) - 1)) ** 0.5
# 计算效应量 (Cohen's d)
pooled_std = ((sum((x - sum(questionnaire_values)/len(questionnaire_values))**2 for x in questionnaire_values) +
sum((x - sum(scenario_values)/len(scenario_values))**2 for x in scenario_values)) /
(2 * len(self.dimensions) - 2)) ** 0.5
if pooled_std != 0:
cohens_d = abs(mean_diff / pooled_std)
# 解释效应量
if cohens_d < 0.2:
effect_size = "微小"
elif cohens_d < 0.5:
effect_size = ""
elif cohens_d < 0.8:
effect_size = "中等"
else:
effect_size = ""
# 对所有维度进行整体t检验
t_stat, p_value = stats.ttest_rel(questionnaire_values, scenario_values)
print(f"\n整体统计分析:")
print(f"平均差异: {mean_diff:.3f}")
print(f"差异标准差: {std_diff:.3f}")
print(f"效应量(Cohen's d): {cohens_d:.3f}")
print(f"效应量大小: {effect_size}")
print(f"t统计量: {t_stat:.3f}")
print(f"p值: {p_value:.3f}")
if p_value < 0.05:
print("结论: 两种测评方法的结果存在显著差异 (p < 0.05)")
else:
print("结论: 两种测评方法的结果无显著差异 (p >= 0.05)")
print("\n维度说明:")
for dimension in self.dimensions:
print(f"\n{dimension}:")
desc = FACTOR_DESCRIPTIONS[dimension]
print(f"定义:{desc['description']}")
print(f"特征词:{', '.join(desc['trait_words'])}")
# 分析显著差异
significant_diffs = []
for dimension in self.dimensions:
diff = abs(questionnaire_scores[dimension] - scenario_scores[dimension])
if diff >= 1.0: # 差异大于等于1分视为显著
significant_diffs.append({
"dimension": dimension,
"diff": diff,
"questionnaire": questionnaire_scores[dimension],
"scenario": scenario_scores[dimension]
})
if significant_diffs:
print("\n\n显著差异分析:")
print("-" * 40)
for diff in significant_diffs:
print(f"\n{diff['dimension']}维度的测评结果存在显著差异:")
print(f"问卷得分:{diff['questionnaire']:.2f}")
print(f"情景得分:{diff['scenario']:.2f}")
print(f"差异值:{diff['diff']:.2f}")
# 分析可能的原因
if diff['questionnaire'] > diff['scenario']:
print("可能原因:在问卷中的自我评价较高,但在具体情景中的表现较为保守。")
else:
print("可能原因:在具体情景中表现出更多该维度特征,而在问卷自评时较为保守。")
def save_results(self, questionnaire_scores: Dict, scenario_scores: Dict):
"""保存测试结果"""
results = {
"测试时间": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"问卷测评结果": questionnaire_scores,
"情景测评结果": scenario_scores,
"维度说明": FACTOR_DESCRIPTIONS
}
# 确保目录存在
os.makedirs("results", exist_ok=True)
# 生成带时间戳的文件名
filename = f"results/personality_combined_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
# 保存到文件
with open(filename, "w", encoding="utf-8") as f:
json.dump(results, f, ensure_ascii=False, indent=2)
print(f"\n完整的测评结果已保存到:{filename}")
def load_existing_results():
"""检查并加载已有的测试结果"""
results_dir = "results"
if not os.path.exists(results_dir):
return None
# 获取所有personality_combined开头的文件
result_files = [f for f in os.listdir(results_dir)
if f.startswith("personality_combined_") and f.endswith(".json")]
if not result_files:
return None
# 按文件修改时间排序,获取最新的结果文件
latest_file = max(result_files,
key=lambda f: os.path.getmtime(os.path.join(results_dir, f)))
print(f"\n发现已有的测试结果:{latest_file}")
try:
with open(os.path.join(results_dir, latest_file), "r", encoding="utf-8") as f:
results = json.load(f)
return results
except Exception as e:
print(f"读取结果文件时出错:{str(e)}")
return None
def main():
test = CombinedPersonalityTest()
# 检查是否存在已有结果
existing_results = load_existing_results()
if existing_results:
print("\n=== 使用已有测试结果进行分析 ===")
print(f"测试时间:{existing_results['测试时间']}")
questionnaire_scores = existing_results["问卷测评结果"]
scenario_scores = existing_results["情景测评结果"]
# 直接进行结果对比分析
test.compare_and_display_results(questionnaire_scores, scenario_scores)
else:
print("\n未找到已有的测试结果,开始新的测试...")
test.run_combined_test()
if __name__ == "__main__":
main()

View File

@@ -11,7 +11,7 @@ logger = get_module_logger("offline_llm")
class LLMModel: class LLMModel:
def __init__(self, model_name="deepseek-ai/DeepSeek-V3", **kwargs): def __init__(self, model_name="Pro/deepseek-ai/DeepSeek-V3", **kwargs):
self.model_name = model_name self.model_name = model_name
self.params = kwargs self.params = kwargs
self.api_key = os.getenv("SILICONFLOW_KEY") self.api_key = os.getenv("SILICONFLOW_KEY")

View File

@@ -0,0 +1,110 @@
# 人格测试问卷题目 王孟成, 戴晓阳, & 姚树桥. (2011). 中国大五人格问卷的初步编制Ⅲ:简式版的制定及信效度检验. 中国临床心理学杂志, 19(04), Article 04.
# 王孟成, 戴晓阳, & 姚树桥. (2010). 中国大五人格问卷的初步编制Ⅰ:理论框架与信度分析. 中国临床心理学杂志, 18(05), Article 05.
PERSONALITY_QUESTIONS = [
# 神经质维度 (F1)
{"id": 1, "content": "我常担心有什么不好的事情要发生", "factor": "神经质", "reverse_scoring": False},
{"id": 2, "content": "我常感到害怕", "factor": "神经质", "reverse_scoring": False},
{"id": 3, "content": "有时我觉得自己一无是处", "factor": "神经质", "reverse_scoring": False},
{"id": 4, "content": "我很少感到忧郁或沮丧", "factor": "神经质", "reverse_scoring": True},
{"id": 5, "content": "别人一句漫不经心的话,我常会联系在自己身上", "factor": "神经质", "reverse_scoring": False},
{"id": 6, "content": "在面对压力时,我有种快要崩溃的感觉", "factor": "神经质", "reverse_scoring": False},
{"id": 7, "content": "我常担忧一些无关紧要的事情", "factor": "神经质", "reverse_scoring": False},
{"id": 8, "content": "我常常感到内心不踏实", "factor": "神经质", "reverse_scoring": False},
# 严谨性维度 (F2)
{"id": 9, "content": "在工作上,我常只求能应付过去便可", "factor": "严谨性", "reverse_scoring": True},
{"id": 10, "content": "一旦确定了目标,我会坚持努力地实现它", "factor": "严谨性", "reverse_scoring": False},
{"id": 11, "content": "我常常是仔细考虑之后才做出决定", "factor": "严谨性", "reverse_scoring": False},
{"id": 12, "content": "别人认为我是个慎重的人", "factor": "严谨性", "reverse_scoring": False},
{"id": 13, "content": "做事讲究逻辑和条理是我的一个特点", "factor": "严谨性", "reverse_scoring": False},
{"id": 14, "content": "我喜欢一开头就把事情计划好", "factor": "严谨性", "reverse_scoring": False},
{"id": 15, "content": "我工作或学习很勤奋", "factor": "严谨性", "reverse_scoring": False},
{"id": 16, "content": "我是个倾尽全力做事的人", "factor": "严谨性", "reverse_scoring": False},
# 宜人性维度 (F3)
{"id": 17, "content": "尽管人类社会存在着一些阴暗的东西(如战争、罪恶、欺诈),我仍然相信人性总的来说是善良的", "factor": "宜人性", "reverse_scoring": False},
{"id": 18, "content": "我觉得大部分人基本上是心怀善意的", "factor": "宜人性", "reverse_scoring": False},
{"id": 19, "content": "虽然社会上有骗子,但我觉得大部分人还是可信的", "factor": "宜人性", "reverse_scoring": False},
{"id": 20, "content": "我不太关心别人是否受到不公正的待遇", "factor": "宜人性", "reverse_scoring": True},
{"id": 21, "content": "我时常觉得别人的痛苦与我无关", "factor": "宜人性", "reverse_scoring": True},
{"id": 22, "content": "我常为那些遭遇不幸的人感到难过", "factor": "宜人性", "reverse_scoring": False},
{"id": 23, "content": "我是那种只照顾好自己,不替别人担忧的人", "factor": "宜人性", "reverse_scoring": True},
{"id": 24, "content": "当别人向我诉说不幸时,我常感到难过", "factor": "宜人性", "reverse_scoring": False},
# 开放性维度 (F4)
{"id": 25, "content": "我的想象力相当丰富", "factor": "开放性", "reverse_scoring": False},
{"id": 26, "content": "我头脑中经常充满生动的画面", "factor": "开放性", "reverse_scoring": False},
{"id": 27, "content": "我对许多事情有着很强的好奇心", "factor": "开放性", "reverse_scoring": False},
{"id": 28, "content": "我喜欢冒险", "factor": "开放性", "reverse_scoring": False},
{"id": 29, "content": "我是个勇于冒险,突破常规的人", "factor": "开放性", "reverse_scoring": False},
{"id": 30, "content": "我身上具有别人没有的冒险精神", "factor": "开放性", "reverse_scoring": False},
{"id": 31, "content": "我渴望学习一些新东西,即使它们与我的日常生活无关", "factor": "开放性", "reverse_scoring": False},
{"id": 32, "content": "我很愿意也很容易接受那些新事物、新观点、新想法", "factor": "开放性", "reverse_scoring": False},
# 外向性维度 (F5)
{"id": 33, "content": "我喜欢参加社交与娱乐聚会", "factor": "外向性", "reverse_scoring": False},
{"id": 34, "content": "我对人多的聚会感到乏味", "factor": "外向性", "reverse_scoring": True},
{"id": 35, "content": "我尽量避免参加人多的聚会和嘈杂的环境", "factor": "外向性", "reverse_scoring": True},
{"id": 36, "content": "在热闹的聚会上,我常常表现主动并尽情玩耍", "factor": "外向性", "reverse_scoring": False},
{"id": 37, "content": "有我在的场合一般不会冷场", "factor": "外向性", "reverse_scoring": False},
{"id": 38, "content": "我希望成为领导者而不是被领导者", "factor": "外向性", "reverse_scoring": False},
{"id": 39, "content": "在一个团体中,我希望处于领导地位", "factor": "外向性", "reverse_scoring": False},
{"id": 40, "content": "别人多认为我是一个热情和友好的人", "factor": "外向性", "reverse_scoring": False}
]
# 因子维度说明
FACTOR_DESCRIPTIONS = {
"外向性": {
"description": "反映个体神经系统的强弱和动力特征。外向性主要表现为个体在人际交往和社交活动中的倾向性,包括对社交活动的兴趣、对人群的态度、社交互动中的主动程度以及在群体中的影响力。高分者倾向于积极参与社交活动,乐于与人交往,善于表达自我,并往往在群体中发挥领导作用;低分者则倾向于独处,不喜欢热闹的社交场合,表现出内向、安静的特征。",
"trait_words": ["热情", "活力", "社交", "主动"],
"subfactors": {
"合群性": "个体愿意与他人聚在一起,即接近人群的倾向;高分表现乐群、好交际,低分表现封闭、独处",
"热情": "个体对待别人时所表现出的态度;高分表现热情好客,低分表现冷淡",
"支配性": "个体喜欢指使、操纵他人,倾向于领导别人的特点;高分表现好强、发号施令,低分表现顺从、低调",
"活跃": "个体精力充沛,活跃、主动性等特点;高分表现活跃,低分表现安静"
}
},
"神经质": {
"description": "反映个体情绪的状态和体验内心苦恼的倾向性。这个维度主要关注个体在面对压力、挫折和日常生活挑战时的情绪稳定性和适应能力。它包含了对焦虑、抑郁、愤怒等负面情绪的敏感程度,以及个体对这些情绪的调节和控制能力。高分者容易体验负面情绪,对压力较为敏感,情绪波动较大;低分者则表现出较强的情绪稳定性,能够较好地应对压力和挫折。",
"trait_words": ["稳定", "沉着", "从容", "坚韧"],
"subfactors": {
"焦虑": "个体体验焦虑感的个体差异;高分表现坐立不安,低分表现平静",
"抑郁": "个体体验抑郁情感的个体差异;高分表现郁郁寡欢,低分表现平静",
"敏感多疑": "个体常常关注自己的内心活动,行为和过于意识人对自己的看法、评价;高分表现敏感多疑,低分表现淡定、自信",
"脆弱性": "个体在危机或困难面前无力、脆弱的特点;高分表现无能、易受伤、逃避,低分表现坚强",
"愤怒-敌意": "个体准备体验愤怒,及相关情绪的状态;高分表现暴躁易怒,低分表现平静"
}
},
"严谨性": {
"description": "反映个体在目标导向行为上的组织、坚持和动机特征。这个维度体现了个体在工作、学习等目标性活动中的自我约束和行为管理能力。它涉及到个体的责任感、自律性、计划性、条理性以及完成任务的态度。高分者往往表现出强烈的责任心、良好的组织能力、谨慎的决策风格和持续的努力精神;低分者则可能表现出随意性强、缺乏规划、做事马虎或易放弃的特点。",
"trait_words": ["负责", "自律", "条理", "勤奋"],
"subfactors": {
"责任心": "个体对待任务和他人认真负责,以及对自己承诺的信守;高分表现有责任心、负责任,低分表现推卸责任、逃避处罚",
"自我控制": "个体约束自己的能力,及自始至终的坚持性;高分表现自制、有毅力,低分表现冲动、无毅力",
"审慎性": "个体在采取具体行动前的心理状态;高分表现谨慎、小心,低分表现鲁莽、草率",
"条理性": "个体处理事务和工作的秩序,条理和逻辑性;高分表现整洁、有秩序,低分表现混乱、遗漏",
"勤奋": "个体工作和学习的努力程度及为达到目标而表现出的进取精神;高分表现勤奋、刻苦,低分表现懒散"
}
},
"开放性": {
"description": "反映个体对新异事物、新观念和新经验的接受程度,以及在思维和行为方面的创新倾向。这个维度体现了个体在认知和体验方面的广度、深度和灵活性。它包括对艺术的欣赏能力、对知识的求知欲、想象力的丰富程度,以及对冒险和创新的态度。高分者往往具有丰富的想象力、广泛的兴趣、开放的思维方式和创新的倾向;低分者则倾向于保守、传统,喜欢熟悉和常规的事物。",
"trait_words": ["创新", "好奇", "艺术", "冒险"],
"subfactors": {
"幻想": "个体富于幻想和想象的水平;高分表现想象力丰富,低分表现想象力匮乏",
"审美": "个体对于艺术和美的敏感与热爱程度;高分表现富有艺术气息,低分表现一般对艺术不敏感",
"好奇心": "个体对未知事物的态度;高分表现兴趣广泛、好奇心浓,低分表现兴趣少、无好奇心",
"冒险精神": "个体愿意尝试有风险活动的个体差异;高分表现好冒险,低分表现保守",
"价值观念": "个体对新事物、新观念、怪异想法的态度;高分表现开放、坦然接受新事物,低分则相反"
}
},
"宜人性": {
"description": "反映个体在人际关系中的亲和倾向,体现了对他人的关心、同情和合作意愿。这个维度主要关注个体与他人互动时的态度和行为特征,包括对他人的信任程度、同理心水平、助人意愿以及在人际冲突中的处理方式。高分者通常表现出友善、富有同情心、乐于助人的特质,善于与他人建立和谐关系;低分者则可能表现出较少的人际关注,在社交互动中更注重自身利益,较少考虑他人感受。",
"trait_words": ["友善", "同理", "信任", "合作"],
"subfactors": {
"信任": "个体对他人和/或他人言论的相信程度;高分表现信任他人,低分表现怀疑",
"体贴": "个体对别人的兴趣和需要的关注程度;高分表现体贴、温存,低分表现冷漠、不在乎",
"同情": "个体对处于不利地位的人或物的态度;高分表现富有同情心,低分表现冷漠"
}
}
}

View File

@@ -1,3 +1,11 @@
'''
The definition of artificial personality in this paper follows the dispositional para-digm and adapts a definition of personality developed for humans [17]:
Personality for a human is the "whole and organisation of relatively stable tendencies and patterns of experience and
behaviour within one person (distinguishing it from other persons)". This definition is modified for artificial personality:
Artificial personality describes the relatively stable tendencies and patterns of behav-iour of an AI-based machine that
can be designed by developers and designers via different modalities, such as language, creating the impression
of individuality of a humanized social agent when users interact with the machine.'''
from typing import Dict, List from typing import Dict, List
import json import json
import os import os
@@ -5,16 +13,19 @@ from pathlib import Path
from dotenv import load_dotenv from dotenv import load_dotenv
import sys import sys
'''
第一种方案:基于情景评估的人格测定
'''
current_dir = Path(__file__).resolve().parent current_dir = Path(__file__).resolve().parent
# 获取项目根目录(上三层目录)
project_root = current_dir.parent.parent.parent project_root = current_dir.parent.parent.parent
# env.dev文件路径
env_path = project_root / ".env.prod" env_path = project_root / ".env.prod"
root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../..")) root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../.."))
sys.path.append(root_path) sys.path.append(root_path)
from src.plugins.personality.offline_llm import LLMModel # noqa E402 from src.plugins.personality.scene import get_scene_by_factor,get_all_scenes,PERSONALITY_SCENES
from src.plugins.personality.questionnaire import PERSONALITY_QUESTIONS,FACTOR_DESCRIPTIONS
from src.plugins.personality.offline_llm import LLMModel
# 加载环境变量 # 加载环境变量
if env_path.exists(): if env_path.exists():
@@ -25,48 +36,77 @@ else:
print("将使用默认配置") print("将使用默认配置")
class PersonalityEvaluator: class PersonalityEvaluator_direct:
def __init__(self): def __init__(self):
self.personality_traits = {"开放性": 0, "尽责": 0, "外向性": 0, "宜人性": 0, "神经质": 0} self.personality_traits = {"开放性": 0, "严谨": 0, "外向性": 0, "宜人性": 0, "神经质": 0}
self.scenarios = [ self.scenarios = []
{
"场景": "在团队项目中,你发现一个同事的工作质量明显低于预期,这可能会影响整个项目的进度。", # 为每个人格特质获取对应的场景
"评估维度": ["尽责性", "宜人性"], for trait in PERSONALITY_SCENES:
}, scenes = get_scene_by_factor(trait)
{"场景": "你被邀请参加一个完全陌生的社交活动,现场都是不认识的人。", "评估维度": ["外向性", "神经质"]}, if not scenes:
{ continue
"场景": "你的朋友向你推荐了一个新的艺术展览,但风格与你平时接触的完全不同。",
"评估维度": ["开放性", "外向性"], # 从每个维度选择3个场景
}, import random
{"场景": "在工作中,你遇到了一个技术难题,需要学习全新的技术栈。", "评估维度": ["开放性", "尽责性"]}, scene_keys = list(scenes.keys())
{"场景": "你的朋友因为个人原因情绪低落,向你寻求帮助。", "评估维度": ["宜人性", "神经质"]}, selected_scenes = random.sample(scene_keys, min(3, len(scene_keys)))
]
for scene_key in selected_scenes:
scene = scenes[scene_key]
# 为每个场景添加评估维度
# 主维度是当前特质,次维度随机选择一个其他特质
other_traits = [t for t in PERSONALITY_SCENES if t != trait]
secondary_trait = random.choice(other_traits)
self.scenarios.append({
"场景": scene["scenario"],
"评估维度": [trait, secondary_trait],
"场景编号": scene_key
})
self.llm = LLMModel() self.llm = LLMModel()
def evaluate_response(self, scenario: str, response: str, dimensions: List[str]) -> Dict[str, float]: def evaluate_response(self, scenario: str, response: str, dimensions: List[str]) -> Dict[str, float]:
""" """
使用 DeepSeek AI 评估用户对特定场景的反应 使用 DeepSeek AI 评估用户对特定场景的反应
""" """
prompt = f"""请根据以下场景和用户描述评估用户在大五人格模型中的相关维度得分0-10分 # 构建维度描述
场景:{scenario} dimension_descriptions = []
用户描述:{response} for dim in dimensions:
desc = FACTOR_DESCRIPTIONS.get(dim, "")
if desc:
dimension_descriptions.append(f"- {dim}{desc}")
需要评估的维度:{", ".join(dimensions)} dimensions_text = "\n".join(dimension_descriptions)
prompt = f"""请根据以下场景和用户描述评估用户在大五人格模型中的相关维度得分1-6分
场景描述:
{scenario}
用户回应:
{response}
需要评估的维度说明:
{dimensions_text}
请按照以下格式输出评估结果仅输出JSON格式 请按照以下格式输出评估结果仅输出JSON格式
{{ {{
"维度1": 分数, "{dimensions[0]}": 分数,
"维度2": 分数 "{dimensions[1]}": 分数
}} }}
标准: 标准:
- 开放性:对新事物的接受程度和创造性思维 1 = 非常不符合该维度特征
- 尽责性:计划性、组织性和责任感 2 = 比较不符合该维度特征
- 外向性:社交倾向和能量水平 3 = 有点不符合该维度特征
- 宜人性:同理心、合作性和友善程度 4 = 有点符合该维度特征
- 神经质:情绪稳定性和压力应对能力 5 = 比较符合该维度特征
6 = 非常符合该维度特征
请确保分数在0-10之间,并给出合理的评估理由""" 根据用户的回应,结合场景和维度说明进行评分。确保分数在1-6之间,并给出合理的评估。"""
try: try:
ai_response, _ = self.llm.generate_response(prompt) ai_response, _ = self.llm.generate_response(prompt)
@@ -76,29 +116,30 @@ class PersonalityEvaluator:
if start_idx != -1 and end_idx != 0: if start_idx != -1 and end_idx != 0:
json_str = ai_response[start_idx:end_idx] json_str = ai_response[start_idx:end_idx]
scores = json.loads(json_str) scores = json.loads(json_str)
# 确保所有分数在0-10之间 # 确保所有分数在1-6之间
return {k: max(0, min(10, float(v))) for k, v in scores.items()} return {k: max(1, min(6, float(v))) for k, v in scores.items()}
else: else:
print("AI响应格式不正确使用默认评分") print("AI响应格式不正确使用默认评分")
return {dim: 5.0 for dim in dimensions} return {dim: 3.5 for dim in dimensions}
except Exception as e: except Exception as e:
print(f"评估过程出错:{str(e)}") print(f"评估过程出错:{str(e)}")
return {dim: 5.0 for dim in dimensions} return {dim: 3.5 for dim in dimensions}
def main(): def main():
print("欢迎使用人格形象创建程序!") print("欢迎使用人格形象创建程序!")
print("接下来,您将面对一系列场景。请根据您想要创建的角色形象,描述在该场景下可能的反应。") print("接下来,您将面对一系列场景共15个。请根据您想要创建的角色形象,描述在该场景下可能的反应。")
print("每个场景都会评估不同的人格维度,最终得出完整的人格特征评估。") print("每个场景都会评估不同的人格维度,最终得出完整的人格特征评估。")
print("评分标准1=非常不符合2=比较不符合3=有点不符合4=有点符合5=比较符合6=非常符合")
print("\n准备好了吗?按回车键开始...") print("\n准备好了吗?按回车键开始...")
input() input()
evaluator = PersonalityEvaluator() evaluator = PersonalityEvaluator_direct()
final_scores = {"开放性": 0, "尽责": 0, "外向性": 0, "宜人性": 0, "神经质": 0} final_scores = {"开放性": 0, "严谨": 0, "外向性": 0, "宜人性": 0, "神经质": 0}
dimension_counts = {trait: 0 for trait in final_scores.keys()} dimension_counts = {trait: 0 for trait in final_scores.keys()}
for i, scenario_data in enumerate(evaluator.scenarios, 1): for i, scenario_data in enumerate(evaluator.scenarios, 1):
print(f"\n场景 {i}/{len(evaluator.scenarios)}:") print(f"\n场景 {i}/{len(evaluator.scenarios)} - {scenario_data['场景编号']}:")
print("-" * 50) print("-" * 50)
print(scenario_data["场景"]) print(scenario_data["场景"])
print("\n请描述您的角色在这种情况下会如何反应:") print("\n请描述您的角色在这种情况下会如何反应:")
@@ -119,7 +160,7 @@ def main():
print("\n当前评估结果:") print("\n当前评估结果:")
print("-" * 30) print("-" * 30)
for dimension, score in scores.items(): for dimension, score in scores.items():
print(f"{dimension}: {score}/10") print(f"{dimension}: {score}/6")
if i < len(evaluator.scenarios): if i < len(evaluator.scenarios):
print("\n按回车键继续下一个场景...") print("\n按回车键继续下一个场景...")
@@ -133,10 +174,15 @@ def main():
print("\n最终人格特征评估结果:") print("\n最终人格特征评估结果:")
print("-" * 30) print("-" * 30)
for trait, score in final_scores.items(): for trait, score in final_scores.items():
print(f"{trait}: {score}/10") print(f"{trait}: {score}/6")
print(f"测试场景数:{dimension_counts[trait]}")
# 保存结果 # 保存结果
result = {"final_scores": final_scores, "scenarios": evaluator.scenarios} result = {
"final_scores": final_scores,
"dimension_counts": dimension_counts,
"scenarios": evaluator.scenarios
}
# 确保目录存在 # 确保目录存在
os.makedirs("results", exist_ok=True) os.makedirs("results", exist_ok=True)

View File

@@ -0,0 +1,258 @@
from typing import Dict, List
PERSONALITY_SCENES = {
"外向性": {
"场景1": {
"scenario": """你刚刚搬到一个新的城市工作。今天是你入职的第一天,在公司的电梯里,一位同事微笑着和你打招呼:
同事:「嗨!你是新来的同事吧?我是市场部的小林。」
同事看起来很友善,还主动介绍说:「待会午饭时间,我们部门有几个人准备一起去楼下新开的餐厅,你要一起来吗?可以认识一下其他同事。」""",
"explanation": "这个场景通过职场社交情境,观察个体对于新环境、新社交圈的态度和反应倾向。"
},
"场景2": {
"scenario": """在大学班级群里,班长发起了一个组织班级联谊活动的投票:
班长「大家好下周末我们准备举办一次班级联谊活动地点在学校附近的KTV。想请大家报名参加也欢迎大家邀请其他班级的同学
已经有几个同学在群里积极响应,有人@你问你要不要一起参加。""",
"explanation": "通过班级活动场景,观察个体对群体社交活动的参与意愿。"
},
"场景3": {
"scenario": """你在社交平台上发布了一条动态,收到了很多陌生网友的评论和私信:
网友A「你说的这个观点很有意思想和你多交流一下。」
网友B「我也对这个话题很感兴趣要不要建个群一起讨论""",
"explanation": "通过网络社交场景,观察个体对线上社交的态度。"
},
"场景4": {
"scenario": """你暗恋的对象今天主动来找你:
对方:「那个...我最近在准备一个演讲比赛,听说你口才很好。能不能请你帮我看看演讲稿,顺便给我一些建议?如果你有时间的话,可以一起吃个饭聊聊。」""",
"explanation": "通过恋爱情境,观察个体在面对心仪对象时的社交表现。"
},
"场景5": {
"scenario": """在一次线下读书会上,主持人突然点名让你分享读后感:
主持人:「听说你对这本书很有见解,能不能和大家分享一下你的想法?」
现场有二十多个陌生的读书爱好者,都期待地看着你。""",
"explanation": "通过即兴发言场景,观察个体的社交表现欲和公众表达能力。"
}
},
"神经质": {
"场景1": {
"scenario": """你正在准备一个重要的项目演示这关系到你的晋升机会。就在演示前30分钟你收到了主管发来的消息
主管「临时有个变动CEO也会来听你的演示。他对这个项目特别感兴趣。」
正当你准备回复时主管又发来一条「对了能不能把演示时间压缩到15分钟CEO下午还有其他安排。你之前准备的是30分钟的版本对吧""",
"explanation": "这个场景通过突发的压力情境,观察个体在面对计划外变化时的情绪反应和调节能力。"
},
"场景2": {
"scenario": """期末考试前一天晚上,你收到了好朋友发来的消息:
好朋友:「不好意思这么晚打扰你...我看你平时成绩很好,能不能帮我解答几个问题?我真的很担心明天的考试。」
你看了看时间已经是晚上11点而你原本计划的复习还没完成。""",
"explanation": "通过考试压力场景,观察个体在时间紧张时的情绪管理。"
},
"场景3": {
"scenario": """你在社交媒体上发表的一个观点引发了争议,有不少人开始批评你:
网友A「这种观点也好意思说出来真是无知。」
网友B「建议楼主先去补补课再来发言。」
评论区里的负面评论越来越多,还有人开始人身攻击。""",
"explanation": "通过网络争议场景,观察个体面对批评时的心理承受能力。"
},
"场景4": {
"scenario": """你和恋人约好今天一起看电影,但在约定时间前半小时,对方发来消息:
恋人:「对不起,我临时有点事,可能要迟到一会儿。」
二十分钟后,对方又发来消息:「可能要再等等,抱歉!」
电影快要开始了,但对方还是没有出现。""",
"explanation": "通过恋爱情境,观察个体对不确定性的忍耐程度。"
},
"场景5": {
"scenario": """在一次重要的小组展示中,你的组员在演示途中突然卡壳了:
组员小声对你说:「我忘词了,接下来的部分是什么来着...」
台下的老师和同学都在等待,气氛有些尴尬。""",
"explanation": "通过公开场合的突发状况,观察个体的应急反应和压力处理能力。"
}
},
"严谨性": {
"场景1": {
"scenario": """你是团队的项目负责人,刚刚接手了一个为期两个月的重要项目。在第一次团队会议上:
小王:「老大,我觉得两个月时间很充裕,我们先做着看吧,遇到问题再解决。」
小张:「要不要先列个时间表?不过感觉太详细的计划也没必要,点到为止就行。」
小李:「客户那边说如果能提前完成有奖励,我觉得我们可以先做快一点的部分。」""",
"explanation": "这个场景通过项目管理情境,体现个体在工作方法、计划性和责任心方面的特征。"
},
"场景2": {
"scenario": """期末小组作业,组长让大家分工完成一份研究报告。在截止日期前三天:
组员A「我的部分大概写完了感觉还行。」
组员B「我这边可能还要一天才能完成最近太忙了。」
组员C发来一份没有任何引用出处、可能存在抄袭的内容「我写完了你们看看怎么样""",
"explanation": "通过学习场景,观察个体对学术规范和质量要求的重视程度。"
},
"场景3": {
"scenario": """你在一个兴趣小组的群聊中,大家正在讨论举办一次线下活动:
成员A「到时候见面就知道具体怎么玩了
成员B「对啊随意一点挺好的。」
成员C「人来了自然就热闹了。」""",
"explanation": "通过活动组织场景,观察个体对活动计划的态度。"
},
"场景4": {
"scenario": """你和恋人计划一起去旅游,对方说:
恋人:「我们就随心而行吧!订个目的地,其他的到了再说,这样更有意思。」
距离出发还有一周时间,但机票、住宿和具体行程都还没有确定。""",
"explanation": "通过旅行规划场景,观察个体的计划性和对不确定性的接受程度。"
},
"场景5": {
"scenario": """在一个重要的团队项目中,你发现一个同事的工作存在明显错误:
同事:「差不多就行了,反正领导也看不出来。」
这个错误可能不会立即造成问题,但长期来看可能会影响项目质量。""",
"explanation": "通过工作质量场景,观察个体对细节和标准的坚持程度。"
}
},
"开放性": {
"场景1": {
"scenario": """周末下午,你的好友小美兴致勃勃地给你打电话:
小美「我刚发现一个特别有意思的沉浸式艺术展不是传统那种挂画的展览而是把整个空间都变成了艺术品。观众要穿特制的服装还要带上VR眼镜好像还有AI实时互动
小美继续说:「虽然票价不便宜,但听说体验很独特。网上评价两极分化,有人说是前所未有的艺术革新,也有人说是哗众取宠。要不要周末一起去体验一下?」""",
"explanation": "这个场景通过新型艺术体验,反映个体对创新事物的接受程度和尝试意愿。"
},
"场景2": {
"scenario": """在一节创意写作课上,老师提出了一个特别的作业:
老师「下周的作业是用AI写作工具协助创作一篇小说。你们可以自由探索如何与AI合作打破传统写作方式。」
班上随即展开了激烈讨论,有人认为这是对创作的亵渎,也有人对这种新形式感到兴奋。""",
"explanation": "通过新技术应用场景,观察个体对创新学习方式的态度。"
},
"场景3": {
"scenario": """在社交媒体上,你看到一个朋友分享了一种新的生活方式:
「最近我在尝试'数字游牧'生活,就是一边远程工作一边环游世界。没有固定住所,住青旅或短租,认识来自世界各地的朋友。虽然有时会很不稳定,但这种自由的生活方式真的很棒!」
评论区里争论不断,有人向往这种生活,也有人觉得太冒险。""",
"explanation": "通过另类生活方式,观察个体对非传统选择的态度。"
},
"场景4": {
"scenario": """你的恋人突然提出了一个想法:
恋人:「我们要不要尝试一下开放式关系?就是在保持彼此关系的同时,也允许和其他人发展感情。现在国外很多年轻人都这样。」
这个提议让你感到意外,你之前从未考虑过这种可能性。""",
"explanation": "通过感情观念场景,观察个体对非传统关系模式的接受度。"
},
"场景5": {
"scenario": """在一次朋友聚会上,大家正在讨论未来职业规划:
朋友A「我准备辞职去做自媒体专门介绍一些小众的文化和艺术。」
朋友B「我想去学习生物科技准备转行做人造肉研发。」
朋友C「我在考虑加入一个区块链创业项目虽然风险很大。」""",
"explanation": "通过职业选择场景,观察个体对新兴领域的探索意愿。"
}
},
"宜人性": {
"场景1": {
"scenario": """在回家的公交车上,你遇到这样一幕:
一位老奶奶颤颤巍巍地上了车,车上座位已经坐满了。她站在你旁边,看起来很疲惫。这时你听到前排两个年轻人的对话:
年轻人A「那个老太太好像站不稳看起来挺累的。」
年轻人B「现在的老年人真是...我看她包里还有菜,肯定是去菜市场买完菜回来的,这么多人都不知道叫子女开车接送。」
就在这时,老奶奶一个趔趄,差点摔倒。她扶住了扶手,但包里的东西洒了一些出来。""",
"explanation": "这个场景通过公共场合的助人情境,体现个体的同理心和对他人需求的关注程度。"
},
"场景2": {
"scenario": """在班级群里,有同学发起为生病住院的同学捐款:
同学A「大家好小林最近得了重病住院医药费很贵家里负担很重。我们要不要一起帮帮他
同学B「我觉得这是他家里的事我们不方便参与吧。」
同学C「但是都是同学一场帮帮忙也是应该的。」""",
"explanation": "通过同学互助场景,观察个体的助人意愿和同理心。"
},
"场景3": {
"scenario": """在一个网络讨论组里,有人发布了求助信息:
求助者:「最近心情很低落,感觉生活很压抑,不知道该怎么办...」
评论区里已经有一些回复:
「生活本来就是这样,想开点!」
「你这样子太消极了,要积极面对。」
「谁还没点烦心事啊,过段时间就好了。」""",
"explanation": "通过网络互助场景,观察个体的共情能力和安慰方式。"
},
"场景4": {
"scenario": """你的恋人向你倾诉工作压力:
恋人:「最近工作真的好累,感觉快坚持不下去了...」
但今天你也遇到了很多烦心事,心情也不太好。""",
"explanation": "通过感情关系场景,观察个体在自身状态不佳时的关怀能力。"
},
"场景5": {
"scenario": """在一次团队项目中,新来的同事小王因为经验不足,造成了一个严重的错误。在部门会议上:
主管:「这个错误造成了很大的损失,是谁负责的这部分?」
小王看起来很紧张,欲言又止。你知道是他造成的错误,同时你也是这个项目的共同负责人。""",
"explanation": "通过职场情境,观察个体在面对他人过错时的态度和处理方式。"
}
}
}
def get_scene_by_factor(factor: str) -> Dict:
"""
根据人格因子获取对应的情景测试
Args:
factor (str): 人格因子名称
Returns:
Dict: 包含情景描述的字典
"""
return PERSONALITY_SCENES.get(factor, None)
def get_all_scenes() -> Dict:
"""
获取所有情景测试
Returns:
Dict: 所有情景测试的字典
"""
return PERSONALITY_SCENES

View File

@@ -0,0 +1 @@
那是以后会用到的妙妙小工具.jpg

View File

@@ -54,7 +54,7 @@ class WillingManager:
self.chat_reply_willing[chat_id] = min(current_willing, 3.0) self.chat_reply_willing[chat_id] = min(current_willing, 3.0)
reply_probability = min(max((current_willing - 0.5), 0.03) * config.response_willing_amplifier * 2, 1) reply_probability = min(max((current_willing - 0.5), 0.01) * config.response_willing_amplifier * 2, 1)
# 检查群组权限(如果是群聊) # 检查群组权限(如果是群聊)
if chat_stream.group_info and config: if chat_stream.group_info and config:

View File

@@ -16,7 +16,7 @@ version = "0.0.10"
[bot] [bot]
qq = 123 qq = 123
nickname = "麦麦" nickname = "麦麦"
alias_names = ["麦", "麦"] alias_names = ["麦", "麦"]
[personality] [personality]
prompt_personality = [ prompt_personality = [
@@ -37,7 +37,7 @@ thinking_timeout = 120 # 麦麦思考时间
response_willing_amplifier = 1 # 麦麦回复意愿放大系数一般为1 response_willing_amplifier = 1 # 麦麦回复意愿放大系数一般为1
response_interested_rate_amplifier = 1 # 麦麦回复兴趣度放大系数,听到记忆里的内容时放大系数 response_interested_rate_amplifier = 1 # 麦麦回复兴趣度放大系数,听到记忆里的内容时放大系数
down_frequency_rate = 3.5 # 降低回复频率的群组回复意愿降低系数 down_frequency_rate = 3 # 降低回复频率的群组回复意愿降低系数 除法
ban_words = [ ban_words = [
# "403","张三" # "403","张三"
] ]
@@ -126,27 +126,14 @@ ban_user_id = [] #禁止回复消息的QQ号
enable = true enable = true
#V3
#name = "deepseek-chat"
#base_url = "DEEP_SEEK_BASE_URL"
#key = "DEEP_SEEK_KEY"
#R1
#name = "deepseek-reasoner"
#base_url = "DEEP_SEEK_BASE_URL"
#key = "DEEP_SEEK_KEY"
#下面的模型若使用硅基流动则不需要更改使用ds官方则改成.env.prod自定义的宏使用自定义模型则选择定位相似的模型自己填写 #下面的模型若使用硅基流动则不需要更改使用ds官方则改成.env.prod自定义的宏使用自定义模型则选择定位相似的模型自己填写
#推理模型: #推理模型:
[model.llm_reasoning] #回复模型1 主要回复模型 [model.llm_reasoning] #回复模型1 主要回复模型
name = "Pro/deepseek-ai/DeepSeek-R1" name = "Pro/deepseek-ai/DeepSeek-R1"
provider = "SILICONFLOW" provider = "SILICONFLOW"
pri_in = 0 #模型的输入价格(非必填,可以记录消耗) pri_in = 0 #模型的输入价格(非必填,可以记录消耗)
pri_out = 0 #模型的输出价格(非必填,可以记录消耗) pri_out = 0 #模型的输出价格(非必填,可以记录消耗)
[model.llm_reasoning_minor] #回复模型3 次要回复模型 [model.llm_reasoning_minor] #回复模型3 次要回复模型
name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B" name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
provider = "SILICONFLOW" provider = "SILICONFLOW"

View File

@@ -1,17 +1,27 @@
@echo off @echo off
chcp 65001 > nul
setlocal enabledelayedexpansion setlocal enabledelayedexpansion
chcp 65001
cd /d %~dp0 cd /d %~dp0
echo ===================================== title 麦麦学习系统
echo 选择Python环境:
cls
echo ======================================
echo 警告提示
echo ======================================
echo 1.这是一个demo系统,不完善不稳定,仅用于体验/不要塞入过长过大的文本,这会导致信息提取迟缓
echo ======================================
echo.
echo ======================================
echo 请选择Python环境:
echo 1 - venv (推荐) echo 1 - venv (推荐)
echo 2 - conda echo 2 - conda
echo ===================================== echo ======================================
choice /c 12 /n /m "输入数字(1或2): " choice /c 12 /n /m "输入数字选择(1或2): "
if errorlevel 2 ( if errorlevel 2 (
echo ===================================== echo ======================================
set "CONDA_ENV=" set "CONDA_ENV="
set /p CONDA_ENV="请输入要激活的 conda 环境名称: " set /p CONDA_ENV="请输入要激活的 conda 环境名称: "
@@ -35,11 +45,12 @@ if errorlevel 2 (
if exist "venv\Scripts\python.exe" ( if exist "venv\Scripts\python.exe" (
venv\Scripts\python src/plugins/zhishi/knowledge_library.py venv\Scripts\python src/plugins/zhishi/knowledge_library.py
) else ( ) else (
echo ===================================== echo ======================================
echo 错误: venv环境不存在请先创建虚拟环境 echo 错误: venv环境不存在请先创建虚拟环境
pause pause
exit /b 1 exit /b 1
) )
) )
endlocal endlocal
pause pause