From e3d22b571b417551d0a151f5ce8ff7c600b8ff35 Mon Sep 17 00:00:00 2001 From: SengokuCola <1026294844@qq.com> Date: Thu, 17 Apr 2025 23:43:41 +0800 Subject: [PATCH] =?UTF-8?q?feat:pfc=20Lite(hearfFC=EF=BC=89=E5=9C=A8?= =?UTF-8?q?=E7=BE=A4=E8=81=8A=E5=88=9D=E6=AD=A5=E5=8F=AF=E7=94=A8?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- interest_monitor_gui.py | 77 +- .../get_current_task.py | 0 src/do_tool/tool_use.py | 2 +- src/heart_flow/heartflow.py | 4 + src/heart_flow/sub_heartflow.py | 58 +- .../heartFC_chat/heartFC__generator.py | 2 +- .../chat_module/heartFC_chat/heartFC_chat.py | 171 +++-- .../chat_module/heartFC_chat/interest.py | 44 +- .../chat_module/heartFC_chat/pf_chatting.py | 726 ++++++++++++++++++ .../chat_module/heartFC_chat/pfchating.md | 22 + 10 files changed, 985 insertions(+), 121 deletions(-) rename src/do_tool/{tool_can_use => not_used}/get_current_task.py (100%) create mode 100644 src/plugins/chat_module/heartFC_chat/pf_chatting.py create mode 100644 src/plugins/chat_module/heartFC_chat/pfchating.md diff --git a/interest_monitor_gui.py b/interest_monitor_gui.py index 147c3635c..336d74ca5 100644 --- a/interest_monitor_gui.py +++ b/interest_monitor_gui.py @@ -93,6 +93,10 @@ class InterestMonitorApp: # --- 初始化和启动刷新 --- self.update_display() # 首次加载并开始刷新循环 + def on_stream_selected(self, event=None): + """当 Combobox 选择改变时调用,更新单个流的图表""" + self.update_single_stream_plot() + def get_random_color(self): """生成随机颜色用于区分线条""" return "#{:06x}".format(random.randint(0, 0xFFFFFF)) @@ -305,11 +309,82 @@ class InterestMonitorApp: self.ax_single_probability.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S')) selected_name = self.selected_stream_id.get() + selected_sid = None + + # --- 新增:根据选中的名称找到 stream_id --- + if selected_name: + for sid, name in self.stream_display_names.items(): + if name == selected_name: + selected_sid = sid + break + + all_times = [] # 用于确定 X 轴范围 + + # --- 新增:绘制兴趣度图 --- + if selected_sid and selected_sid in self.stream_history and self.stream_history[selected_sid]: + history = self.stream_history[selected_sid] + timestamps, interests = zip(*history) + try: + mpl_dates = [datetime.fromtimestamp(ts) for ts in timestamps] + all_times.extend(mpl_dates) + self.ax_single_interest.plot( + mpl_dates, + interests, + color=self.stream_colors.get(selected_sid, 'blue'), + marker='.', + markersize=3, + linestyle='-', + linewidth=1 + ) + except ValueError as e: + print(f"Skipping interest plot for {selected_sid} due to invalid timestamp: {e}") + + # --- 新增:绘制概率图 --- + if selected_sid and selected_sid in self.probability_history and self.probability_history[selected_sid]: + prob_history = self.probability_history[selected_sid] + prob_timestamps, probabilities = zip(*prob_history) + try: + prob_mpl_dates = [datetime.fromtimestamp(ts) for ts in prob_timestamps] + # 注意:概率图的时间点可能与兴趣度不同,也需要加入 all_times + all_times.extend(prob_mpl_dates) + self.ax_single_probability.plot( + prob_mpl_dates, + probabilities, + color=self.stream_colors.get(selected_sid, 'green'), # 可以用不同颜色 + marker='.', + markersize=3, + linestyle='-', + linewidth=1 + ) + except ValueError as e: + print(f"Skipping probability plot for {selected_sid} due to invalid timestamp: {e}") + + # --- 新增:调整 X 轴范围和格式 --- + if all_times: + min_time = min(all_times) + max_time = max(all_times) + # 设置共享的 X 轴范围 + self.ax_single_interest.set_xlim(min_time, max_time) + # self.ax_single_probability.set_xlim(min_time, max_time) # sharex 会自动同步 + # 自动格式化X轴标签 (应用到共享轴的最后一个子图上通常即可) + self.fig_single.autofmt_xdate() + else: + # 如果没有数据,设置一个默认的时间范围 + now = datetime.now() + one_hour_ago = now - timedelta(hours=1) + self.ax_single_interest.set_xlim(one_hour_ago, now) + # self.ax_single_probability.set_xlim(one_hour_ago, now) # sharex 会自动同步 + + # --- 新增:重新绘制画布 --- + self.canvas_single.draw() + def update_display(self): """主更新循环""" try: self.load_and_update_history() # 从文件加载数据并更新内部状态 - self.update_plot() # 根据内部状态更新图表 + # *** 修改:分别调用两个图表的更新方法 *** + self.update_all_streams_plot() # 更新所有流的图表 + self.update_single_stream_plot() # 更新单个流的图表 except Exception as e: # 提供更详细的错误信息 import traceback diff --git a/src/do_tool/tool_can_use/get_current_task.py b/src/do_tool/not_used/get_current_task.py similarity index 100% rename from src/do_tool/tool_can_use/get_current_task.py rename to src/do_tool/not_used/get_current_task.py diff --git a/src/do_tool/tool_use.py b/src/do_tool/tool_use.py index 0ee966f5f..8aad4dbc6 100644 --- a/src/do_tool/tool_use.py +++ b/src/do_tool/tool_use.py @@ -168,7 +168,7 @@ class ToolUser: tool_calls_str = "" for tool_call in tool_calls: tool_calls_str += f"{tool_call['function']['name']}\n" - logger.info(f"根据:\n{prompt}\n模型请求调用{len(tool_calls)}个工具: {tool_calls_str}") + logger.info(f"根据:\n{prompt[0:100]}...\n模型请求调用{len(tool_calls)}个工具: {tool_calls_str}") tool_results = [] structured_info = {} # 动态生成键 diff --git a/src/heart_flow/heartflow.py b/src/heart_flow/heartflow.py index 9e288c853..d34afb9d4 100644 --- a/src/heart_flow/heartflow.py +++ b/src/heart_flow/heartflow.py @@ -245,6 +245,10 @@ class Heartflow: """获取指定ID的SubHeartflow实例""" return self._subheartflows.get(observe_chat_id) + def get_all_subheartflows_streams_ids(self) -> list[Any]: + """获取当前所有活跃的子心流的 ID 列表""" + return list(self._subheartflows.keys()) + init_prompt() # 创建一个全局的管理器实例 diff --git a/src/heart_flow/sub_heartflow.py b/src/heart_flow/sub_heartflow.py index 998c7a8ba..c6341601f 100644 --- a/src/heart_flow/sub_heartflow.py +++ b/src/heart_flow/sub_heartflow.py @@ -37,13 +37,13 @@ def init_prompt(): # prompt += f"麦麦的总体想法是:{self.main_heartflow_info}\n\n" prompt += "{extra_info}\n" # prompt += "{prompt_schedule}\n" - prompt += "{relation_prompt_all}\n" + # prompt += "{relation_prompt_all}\n" prompt += "{prompt_personality}\n" prompt += "刚刚你的想法是{current_thinking_info}。可以适当转换话题\n" prompt += "-----------------------------------\n" prompt += "现在是{time_now},你正在上网,和qq群里的网友们聊天,群里正在聊的话题是:\n{chat_observe_info}\n" prompt += "你现在{mood_info}\n" - prompt += "你注意到{sender_name}刚刚说:{message_txt}\n" + # prompt += "你注意到{sender_name}刚刚说:{message_txt}\n" prompt += "现在你接下去继续思考,产生新的想法,不要分点输出,输出连贯的内心独白" prompt += "思考时可以想想如何对群聊内容进行回复。回复的要求是:平淡一些,简短一些,说中文,尽量不要说你说过的话。如果你要回复,最好只回复一个人的一个话题\n" prompt += "请注意不要输出多余内容(包括前后缀,冒号和引号,括号, 表情,等),不要带有括号和动作描写" @@ -199,7 +199,7 @@ class SubHeartflow: logger.error(f"[{self.subheartflow_id}] do_observe called but no valid observation found.") async def do_thinking_before_reply( - self, message_txt: str, sender_info: UserInfo, chat_stream: ChatStream, extra_info: str, obs_id: list[str] = None # 修改 obs_id 类型为 list[str] + self, chat_stream: ChatStream, extra_info: str, obs_id: list[str] = None # 修改 obs_id 类型为 list[str] ): async with self._thinking_lock: # 获取思考锁 # --- 在思考前确保观察已执行 --- # @@ -246,45 +246,45 @@ class SubHeartflow: identity_detail = individuality.identity.identity_detail if identity_detail: random.shuffle(identity_detail); prompt_personality += f",{identity_detail[0]}" - who_chat_in_group = [ - (chat_stream.platform, sender_info.user_id, sender_info.user_nickname) # 先添加当前发送者 - ] - # 获取最近发言者,排除当前发送者,避免重复 - recent_speakers = get_recent_group_speaker( - chat_stream.stream_id, - (chat_stream.platform, sender_info.user_id), - limit=global_config.MAX_CONTEXT_SIZE -1 # 减去当前发送者 - ) - who_chat_in_group.extend(recent_speakers) + # who_chat_in_group = [ + # (chat_stream.platform, sender_info.user_id, sender_info.user_nickname) # 先添加当前发送者 + # ] + # # 获取最近发言者,排除当前发送者,避免重复 + # recent_speakers = get_recent_group_speaker( + # chat_stream.stream_id, + # (chat_stream.platform, sender_info.user_id), + # limit=global_config.MAX_CONTEXT_SIZE -1 # 减去当前发送者 + # ) + # who_chat_in_group.extend(recent_speakers) - relation_prompt = "" - unique_speakers = set() # 确保人物信息不重复 - for person_tuple in who_chat_in_group: - person_key = (person_tuple[0], person_tuple[1]) # 使用 platform+id 作为唯一标识 - if person_key not in unique_speakers: - relation_prompt += await relationship_manager.build_relationship_info(person_tuple) - unique_speakers.add(person_key) + # relation_prompt = "" + # unique_speakers = set() # 确保人物信息不重复 + # for person_tuple in who_chat_in_group: + # person_key = (person_tuple[0], person_tuple[1]) # 使用 platform+id 作为唯一标识 + # if person_key not in unique_speakers: + # relation_prompt += await relationship_manager.build_relationship_info(person_tuple) + # unique_speakers.add(person_key) - relation_prompt_all = (await global_prompt_manager.get_prompt_async("relationship_prompt")).format( - relation_prompt, sender_info.user_nickname - ) + # relation_prompt_all = (await global_prompt_manager.get_prompt_async("relationship_prompt")).format( + # relation_prompt, sender_info.user_nickname + # ) - sender_name_sign = ( - f"<{chat_stream.platform}:{sender_info.user_id}:{sender_info.user_nickname}:{sender_info.user_cardname or 'NoCard'}>" - ) + # sender_name_sign = ( + # f"<{chat_stream.platform}:{sender_info.user_id}:{sender_info.user_nickname}:{sender_info.user_cardname or 'NoCard'}>" + # ) time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) prompt = (await global_prompt_manager.get_prompt_async("sub_heartflow_prompt_before")).format( extra_info=extra_info_prompt, - relation_prompt_all=relation_prompt_all, + # relation_prompt_all=relation_prompt_all, prompt_personality=prompt_personality, current_thinking_info=current_thinking_info, time_now=time_now, chat_observe_info=chat_observe_info, mood_info=mood_info, - sender_name=sender_name_sign, - message_txt=message_txt, + # sender_name=sender_name_sign, + # message_txt=message_txt, bot_name=self.bot_name, ) diff --git a/src/plugins/chat_module/heartFC_chat/heartFC__generator.py b/src/plugins/chat_module/heartFC_chat/heartFC__generator.py index f04eeb862..c317c79d2 100644 --- a/src/plugins/chat_module/heartFC_chat/heartFC__generator.py +++ b/src/plugins/chat_module/heartFC_chat/heartFC__generator.py @@ -38,7 +38,7 @@ class ResponseGenerator: self.current_model_type = "r1" # 默认使用 R1 self.current_model_name = "unknown model" - async def generate_response(self, message: MessageRecv, thinking_id: str) -> Optional[List[str]]: + async def generate_response(self, message: MessageRecv, thinking_id: str,) -> Optional[List[str]]: """根据当前模型类型选择对应的生成函数""" logger.info( diff --git a/src/plugins/chat_module/heartFC_chat/heartFC_chat.py b/src/plugins/chat_module/heartFC_chat/heartFC_chat.py index 0e6d95e23..990cb0c02 100644 --- a/src/plugins/chat_module/heartFC_chat/heartFC_chat.py +++ b/src/plugins/chat_module/heartFC_chat/heartFC_chat.py @@ -1,8 +1,9 @@ import time from random import random import traceback -from typing import List, Optional +from typing import List, Optional, Dict import asyncio +from asyncio import Lock from ...moods.moods import MoodManager from ....config.config import global_config from ...chat.emoji_manager import emoji_manager @@ -19,7 +20,8 @@ from ...utils.timer_calculater import Timer from src.do_tool.tool_use import ToolUser from .interest import InterestManager, InterestChatting from src.plugins.chat.chat_stream import chat_manager -from src.plugins.chat.message import MessageInfo +from src.plugins.chat.message import BaseMessageInfo +from .pf_chatting import PFChatting # 定义日志配置 chat_config = LogConfig( @@ -33,13 +35,32 @@ logger = get_module_logger("heartFC_chat", config=chat_config) INTEREST_MONITOR_INTERVAL_SECONDS = 1 class HeartFC_Chat: + _instance = None # For potential singleton access if needed by MessageManager + def __init__(self): + # --- Updated Init --- + if HeartFC_Chat._instance is not None: + # Prevent re-initialization if used as a singleton + return + self.logger = logger # Make logger accessible via self self.gpt = ResponseGenerator() self.mood_manager = MoodManager.get_instance() self.mood_manager.start_mood_update() self.tool_user = ToolUser() self.interest_manager = InterestManager() self._interest_monitor_task: Optional[asyncio.Task] = None + # --- New PFChatting Management --- + self.pf_chatting_instances: Dict[str, PFChatting] = {} + self._pf_chatting_lock = Lock() + # --- End New PFChatting Management --- + HeartFC_Chat._instance = self # Register instance + # --- End Updated Init --- + + # --- Added Class Method for Singleton Access --- + @classmethod + def get_instance(cls): + return cls._instance + # --- End Added Class Method --- async def start(self): """启动异步任务,如兴趣监控器""" @@ -61,14 +82,29 @@ class HeartFC_Chat: else: logger.warning("跳过兴趣监控任务创建:任务已存在或正在运行。") + # --- Added PFChatting Instance Manager --- + async def _get_or_create_pf_chatting(self, stream_id: str) -> Optional[PFChatting]: + """获取现有PFChatting实例或创建新实例。""" + async with self._pf_chatting_lock: + if stream_id not in self.pf_chatting_instances: + self.logger.info(f"为流 {stream_id} 创建新的PFChatting实例") + # 传递 self (HeartFC_Chat 实例) 进行依赖注入 + instance = PFChatting(stream_id, self) + # 执行异步初始化 + if not await instance._initialize(): + self.logger.error(f"为流 {stream_id} 初始化PFChatting失败") + return None + self.pf_chatting_instances[stream_id] = instance + return self.pf_chatting_instances[stream_id] + # --- End Added PFChatting Instance Manager --- + async def _interest_monitor_loop(self): """后台任务,定期检查兴趣度变化并触发回复""" logger.info("兴趣监控循环开始...") while True: await asyncio.sleep(INTEREST_MONITOR_INTERVAL_SECONDS) try: - # --- 修改:遍历 SubHeartflow 并检查触发器 --- - active_stream_ids = list(heartflow.get_all_subheartflows_streams_ids()) # 需要 heartflow 提供此方法 + active_stream_ids = list(heartflow.get_all_subheartflows_streams_ids()) logger.trace(f"检查 {len(active_stream_ids)} 个活跃流是否足以开启心流对话...") for stream_id in active_stream_ids: @@ -77,26 +113,28 @@ class HeartFC_Chat: logger.warning(f"监控循环: 无法获取活跃流 {stream_id} 的 sub_hf") continue - # --- 获取 Observation 和消息列表 --- # - observation = sub_hf._get_primary_observation() - if not observation: - logger.warning(f"[{stream_id}] SubHeartflow 没有在观察,无法检查触发器。") - continue - observed_messages = observation.talking_message # 获取消息字典列表 - # --- 结束获取 --- # - should_trigger = False try: - # check_reply_trigger 可以选择性地接收 observed_messages 作为参数 - should_trigger = await sub_hf.check_reply_trigger() # 目前 check_reply_trigger 还不处理这个 + interest_chatting = self.interest_manager.get_interest_chatting(stream_id) + if interest_chatting: + should_trigger = interest_chatting.should_evaluate_reply() + if should_trigger: + logger.info(f"[{stream_id}] 基于兴趣概率决定启动交流模式 (概率: {interest_chatting.current_reply_probability:.4f})。") + else: + logger.trace(f"[{stream_id}] 没有找到对应的 InterestChatting 实例,跳过基于兴趣的触发检查。") except Exception as e: - logger.error(f"错误调用 check_reply_trigger 流 {stream_id}: {e}") + logger.error(f"检查兴趣触发器时出错 流 {stream_id}: {e}") logger.error(traceback.format_exc()) if should_trigger: - logger.info(f"[{stream_id}] SubHeartflow 决定开启心流对话。") - # 调用修改后的处理函数,传递 stream_id 和 observed_messages - asyncio.create_task(self._process_triggered_reply(stream_id, observed_messages)) + logger.info(f"[{stream_id}] 触发条件满足, 委托给PFChatting.") + # --- 修改: 获取 PFChatting 实例并调用 add_time (无参数,时间由内部衰减逻辑决定) --- + pf_instance = await self._get_or_create_pf_chatting(stream_id) + if pf_instance: + # 调用 add_time 启动或延长循环,时间由 PFChatting 内部决定 + asyncio.create_task(pf_instance.add_time()) + else: + logger.error(f"[{stream_id}] 无法获取或创建PFChatting实例。跳过触发。") except asyncio.CancelledError: @@ -107,32 +145,6 @@ class HeartFC_Chat: logger.error(traceback.format_exc()) await asyncio.sleep(5) # 发生错误时等待 - async def _process_triggered_reply(self, stream_id: str, observed_messages: List[dict]): - """Helper coroutine to handle the processing of a triggered reply based on SubHeartflow trigger.""" - try: - logger.info(f"[{stream_id}] SubHeartflow 触发回复...") - # 调用修改后的 trigger_reply_generation - await self.trigger_reply_generation(stream_id, observed_messages) - - # --- 调整兴趣降低逻辑 --- - # 这里的兴趣降低可能不再适用,或者需要基于不同的逻辑 - # 例如,回复后可以将 SubHeartflow 的某种"回复意愿"状态重置 - # 暂时注释掉,或根据需要调整 - # chatting_instance = self.interest_manager.get_interest_chatting(stream_id) - # if chatting_instance: - # decrease_value = chatting_instance.trigger_threshold / 2 # 使用实例的阈值 - # self.interest_manager.decrease_interest(stream_id, value=decrease_value) - # post_trigger_interest = self.interest_manager.get_interest(stream_id) # 获取更新后的兴趣 - # logger.info(f"[{stream_id}] Interest decreased by {decrease_value:.2f} (InstanceThreshold/2) after processing triggered reply. Current interest: {post_trigger_interest:.2f}") - # else: - # logger.warning(f"[{stream_id}] Could not find InterestChatting instance after reply processing to decrease interest.") - logger.debug(f"[{stream_id}] Reply processing finished. (Interest decrease logic needs review).") - - except Exception as e: - logger.error(f"Error processing SubHeartflow-triggered reply for stream_id {stream_id}: {e}") # 更新日志信息 - logger.error(traceback.format_exc()) - # --- 结束修改 --- - async def _create_thinking_message(self, anchor_message: Optional[MessageRecv]): """创建思考消息 (尝试锚定到 anchor_message)""" if not anchor_message or not anchor_message.chat_stream: @@ -270,7 +282,7 @@ class HeartFC_Chat: sub_hf = None anchor_message: Optional[MessageRecv] = None # <--- 重命名,用于锚定回复的消息对象 userinfo: Optional[UserInfo] = None - messageinfo: Optional[MessageInfo] = None + messageinfo: Optional[BaseMessageInfo] = None timing_results = {} current_mind = None @@ -295,33 +307,58 @@ class HeartFC_Chat: logger.error(traceback.format_exc()) return - # --- 2. 尝试从 observed_messages 重建最后一条消息作为锚点 --- # + # --- 2. 尝试从 observed_messages 重建最后一条消息作为锚点, 失败则创建占位符 --- # try: - with Timer("获取最后消息锚点", timing_results): + with Timer("获取或创建锚点消息", timing_results): + reconstruction_failed = False if observed_messages: - last_msg_dict = observed_messages[-1] # 直接从传入列表获取最后一条 - # 尝试从字典重建 MessageRecv 对象(可能需要调整 MessageRecv 的构造方式或创建一个辅助函数) - # 这是一个简化示例,假设 MessageRecv 可以从字典初始化 - # 你可能需要根据 MessageRecv 的实际 __init__ 来调整 try: - anchor_message = MessageRecv(last_msg_dict) # 假设 MessageRecv 支持从字典创建 + last_msg_dict = observed_messages[-1] + logger.debug(f"[{stream_id}] Attempting to reconstruct MessageRecv from last observed message.") + anchor_message = MessageRecv(last_msg_dict, chat_stream=chat) + if not (anchor_message and anchor_message.message_info and anchor_message.message_info.message_id and anchor_message.message_info.user_info): + raise ValueError("Reconstructed MessageRecv missing essential info.") userinfo = anchor_message.message_info.user_info messageinfo = anchor_message.message_info - logger.debug(f"[{stream_id}] 获取到最后消息作为锚点: ID={messageinfo.message_id}, Sender={userinfo.user_nickname}") - except Exception as e_msg: - logger.error(f"[{stream_id}] 从字典重建最后消息 MessageRecv 失败: {e_msg}. 字典: {last_msg_dict}") - anchor_message = None # 重置以表示失败 + logger.debug(f"[{stream_id}] Successfully reconstructed anchor message: ID={messageinfo.message_id}, Sender={userinfo.user_nickname}") + except Exception as e_reconstruct: + logger.warning(f"[{stream_id}] Reconstructing MessageRecv from observed message failed: {e_reconstruct}. Will create placeholder.") + reconstruction_failed = True else: - logger.warning(f"[{stream_id}] 无法从 Observation 获取最后消息锚点。") - except Exception as e: - logger.error(f"[{stream_id}] 获取最后消息锚点时出错: {e}") - logger.error(traceback.format_exc()) - # 即使没有锚点,也可能继续尝试生成非回复性消息,取决于后续逻辑 + logger.warning(f"[{stream_id}] observed_messages is empty. Will create placeholder anchor message.") + reconstruction_failed = True # Treat empty observed_messages as a failure to reconstruct - # --- 3. 检查是否能继续 (需要思考消息锚点) --- - if not anchor_message: - logger.warning(f"[{stream_id}] 没有有效的消息锚点,无法创建思考消息和发送回复。取消回复生成。") - return + # 如果重建失败或 observed_messages 为空,创建占位符 + if reconstruction_failed: + placeholder_id = f"mid_{int(time.time() * 1000)}" # 使用毫秒时间戳增加唯一性 + placeholder_user = UserInfo(user_id="system_trigger", user_nickname="系统触发") + placeholder_msg_info = BaseMessageInfo( + message_id=placeholder_id, + platform=chat.platform, + group_info=chat.group_info, + user_info=placeholder_user, + time=time.time() + # 其他 BaseMessageInfo 可能需要的字段设为默认值或 None + ) + # 创建 MessageRecv 实例,注意它需要消息字典结构,我们创建一个最小化的 + placeholder_msg_dict = { + "message_info": placeholder_msg_info.to_dict(), + "processed_plain_text": "", # 提供空文本 + "raw_message": "", + "time": placeholder_msg_info.time, + } + # 先只用字典创建实例 + anchor_message = MessageRecv(placeholder_msg_dict) + # 然后调用方法更新 chat_stream + anchor_message.update_chat_stream(chat) + userinfo = anchor_message.message_info.user_info + messageinfo = anchor_message.message_info + logger.info(f"[{stream_id}] Created placeholder anchor message: ID={messageinfo.message_id}, Sender={userinfo.user_nickname}") + + except Exception as e: + logger.error(f"[{stream_id}] 获取或创建锚点消息时出错: {e}") + logger.error(traceback.format_exc()) + anchor_message = None # 确保出错时 anchor_message 为 None # --- 4. 检查并发思考限制 (使用 anchor_message 简化获取) --- try: @@ -399,6 +436,7 @@ class HeartFC_Chat: with Timer("生成内心想法(SubHF)", timing_results): # 不再传递 message_txt 和 sender_info, SubHeartflow 应基于其内部观察 current_mind, past_mind = await sub_hf.do_thinking_before_reply( + # sender_info=userinfo, chat_stream=chat, extra_info=tool_result_info, obs_id=get_mid_memory_id, @@ -415,7 +453,8 @@ class HeartFC_Chat: # --- 9. 调用 ResponseGenerator 生成回复 (使用 anchor_message 和 current_mind) --- try: with Timer("生成最终回复(GPT)", timing_results): - response_set = await self.gpt.generate_response(anchor_message, thinking_id, current_mind=current_mind) + # response_set = await self.gpt.generate_response(anchor_message, thinking_id, current_mind=current_mind) + response_set = await self.gpt.generate_response(anchor_message, thinking_id) except Exception as e: logger.error(f"[{stream_id}] GPT 生成回复失败: {e}") logger.error(traceback.format_exc()) diff --git a/src/plugins/chat_module/heartFC_chat/interest.py b/src/plugins/chat_module/heartFC_chat/interest.py index ea6e92e72..7e7908244 100644 --- a/src/plugins/chat_module/heartFC_chat/interest.py +++ b/src/plugins/chat_module/heartFC_chat/interest.py @@ -20,11 +20,11 @@ logger = get_module_logger("InterestManager", config=interest_log_config) # 定义常量 -DEFAULT_DECAY_RATE_PER_SECOND = 0.95 # 每秒衰减率 (兴趣保留 99%) -MAX_INTEREST = 10.0 # 最大兴趣值 -MIN_INTEREST_THRESHOLD = 0.1 # 低于此值可能被清理 (可选) +DEFAULT_DECAY_RATE_PER_SECOND = 0.98 # 每秒衰减率 (兴趣保留 99%) +MAX_INTEREST = 15.0 # 最大兴趣值 +# MIN_INTEREST_THRESHOLD = 0.1 # 低于此值可能被清理 (可选) CLEANUP_INTERVAL_SECONDS = 3600 # 清理任务运行间隔 (例如:1小时) -INACTIVE_THRESHOLD_SECONDS = 3600 * 24 # 不活跃时间阈值 (例如:1天) +INACTIVE_THRESHOLD_SECONDS = 3600 # 不活跃时间阈值 (例如:1小时) LOG_INTERVAL_SECONDS = 3 # 日志记录间隔 (例如:30秒) LOG_DIRECTORY = "logs/interest" # 日志目录 LOG_FILENAME = "interest_log.json" # 快照日志文件名 (保留,以防其他地方用到) @@ -33,11 +33,11 @@ HISTORY_LOG_FILENAME = "interest_history.log" # 新的历史日志文件名 # INTEREST_INCREASE_THRESHOLD = 0.5 # --- 新增:概率回复相关常量 --- -REPLY_TRIGGER_THRESHOLD = 5.0 # 触发概率回复的兴趣阈值 (示例值) +REPLY_TRIGGER_THRESHOLD = 3.0 # 触发概率回复的兴趣阈值 (示例值) BASE_REPLY_PROBABILITY = 0.05 # 首次超过阈值时的基础回复概率 (示例值) PROBABILITY_INCREASE_RATE_PER_SECOND = 0.02 # 高于阈值时,每秒概率增加量 (线性增长, 示例值) PROBABILITY_DECAY_FACTOR_PER_SECOND = 0.3 # 低于阈值时,每秒概率衰减因子 (指数衰减, 示例值) -MAX_REPLY_PROBABILITY = 0.95 # 回复概率上限 (示例值) +MAX_REPLY_PROBABILITY = 1 # 回复概率上限 (示例值) # --- 结束:概率回复相关常量 --- class InterestChatting: @@ -117,15 +117,15 @@ class InterestChatting: # 持续高于阈值,线性增加概率 increase_amount = self.probability_increase_rate * time_delta self.current_reply_probability += increase_amount - logger.debug(f"兴趣高于阈值 ({self.trigger_threshold}) 持续 {time_delta:.2f}秒. 概率增加 {increase_amount:.4f} 到 {self.current_reply_probability:.4f}") + # logger.debug(f"兴趣高于阈值 ({self.trigger_threshold}) 持续 {time_delta:.2f}秒. 概率增加 {increase_amount:.4f} 到 {self.current_reply_probability:.4f}") # 限制概率不超过最大值 self.current_reply_probability = min(self.current_reply_probability, self.max_reply_probability) else: # 低于阈值 - if self.is_above_threshold: - # 刚低于阈值,开始衰减 - logger.debug(f"兴趣低于阈值 ({self.trigger_threshold}). 概率衰减开始于 {self.current_reply_probability:.4f}") + # if self.is_above_threshold: + # # 刚低于阈值,开始衰减 + # logger.debug(f"兴趣低于阈值 ({self.trigger_threshold}). 概率衰减开始于 {self.current_reply_probability:.4f}") # else: # 持续低于阈值,继续衰减 # pass # 不需要特殊处理 @@ -133,12 +133,12 @@ class InterestChatting: # 检查 decay_factor 是否有效 if 0 < self.probability_decay_factor < 1: decay_multiplier = math.pow(self.probability_decay_factor, time_delta) - old_prob = self.current_reply_probability + # old_prob = self.current_reply_probability self.current_reply_probability *= decay_multiplier # 避免因浮点数精度问题导致概率略微大于0,直接设为0 if self.current_reply_probability < 1e-6: self.current_reply_probability = 0.0 - logger.debug(f"兴趣低于阈值 ({self.trigger_threshold}) 持续 {time_delta:.2f}秒. 概率从 {old_prob:.4f} 衰减到 {self.current_reply_probability:.4f} (因子: {self.probability_decay_factor})") + # logger.debug(f"兴趣低于阈值 ({self.trigger_threshold}) 持续 {time_delta:.2f}秒. 概率从 {old_prob:.4f} 衰减到 {self.current_reply_probability:.4f} (因子: {self.probability_decay_factor})") elif self.probability_decay_factor <= 0: # 如果衰减因子无效或为0,直接清零 if self.current_reply_probability > 0: @@ -212,19 +212,19 @@ class InterestChatting: # 确保概率是基于最新兴趣值计算的 self._update_reply_probability(current_time) # 更新兴趣衰减(如果需要,取决于逻辑,这里保持和 get_interest 一致) - self._calculate_decay(current_time) - self.last_update_time = current_time # 更新时间戳 + # self._calculate_decay(current_time) + # self.last_update_time = current_time # 更新时间戳 - if self.is_above_threshold and self.current_reply_probability > 0: + if self.current_reply_probability > 0: # 只有在阈值之上且概率大于0时才有可能触发 trigger = random.random() < self.current_reply_probability if trigger: - logger.info(f"Reply evaluation triggered! Probability: {self.current_reply_probability:.4f}, Threshold: {self.trigger_threshold}, Interest: {self.interest_level:.2f}") + logger.info(f"回复概率评估触发! 概率: {self.current_reply_probability:.4f}, 阈值: {self.trigger_threshold}, 兴趣: {self.interest_level:.2f}") # 可选:触发后是否重置/降低概率?根据需要决定 # self.current_reply_probability = self.base_reply_probability # 例如,触发后降回基础概率 # self.current_reply_probability *= 0.5 # 例如,触发后概率减半 else: - logger.debug(f"Reply evaluation NOT triggered. Probability: {self.current_reply_probability:.4f}, Random value: {trigger + 1e-9:.4f}") # 打印随机值用于调试 + logger.debug(f"回复概率评估未触发。概率: {self.current_reply_probability:.4f}") return trigger else: # logger.debug(f"Reply evaluation check: Below threshold or zero probability. Probability: {self.current_reply_probability:.4f}") @@ -271,12 +271,12 @@ class InterestManager: except OSError as e: logger.error(f"Error creating log directory '{LOG_DIRECTORY}': {e}") - async def _periodic_cleanup_task(self, interval_seconds: int, threshold: float, max_age_seconds: int): + async def _periodic_cleanup_task(self, interval_seconds: int, max_age_seconds: int): """后台清理任务的异步函数""" while True: await asyncio.sleep(interval_seconds) logger.info(f"运行定期清理 (间隔: {interval_seconds}秒)...") - self.cleanup_inactive_chats(threshold=threshold, max_age_seconds=max_age_seconds) + self.cleanup_inactive_chats(max_age_seconds=max_age_seconds) async def _periodic_log_task(self, interval_seconds: int): """后台日志记录任务的异步函数 (记录历史数据,包含 group_name)""" @@ -318,7 +318,7 @@ class InterestManager: # 将每个条目作为单独的 JSON 行写入 f.write(json.dumps(log_entry, ensure_ascii=False) + '\n') count += 1 - logger.debug(f"Successfully appended {count} interest history entries to {self._history_log_file_path}") + # logger.debug(f"Successfully appended {count} interest history entries to {self._history_log_file_path}") # 注意:不再写入快照文件 interest_log.json # 如果需要快照文件,可以在这里单独写入 self._snapshot_log_file_path @@ -358,7 +358,6 @@ class InterestManager: self._cleanup_task = asyncio.create_task( self._periodic_cleanup_task( interval_seconds=CLEANUP_INTERVAL_SECONDS, - threshold=MIN_INTEREST_THRESHOLD, max_age_seconds=INACTIVE_THRESHOLD_SECONDS ) ) @@ -449,10 +448,9 @@ class InterestManager: else: logger.warning(f"尝试降低不存在的聊天流 {stream_id} 的兴趣度") - def cleanup_inactive_chats(self, threshold=MIN_INTEREST_THRESHOLD, max_age_seconds=INACTIVE_THRESHOLD_SECONDS): + def cleanup_inactive_chats(self, max_age_seconds=INACTIVE_THRESHOLD_SECONDS): """ 清理长时间不活跃的聊天流记录 - threshold: 低于此兴趣度的将被清理 max_age_seconds: 超过此时间未更新的将被清理 """ current_time = time.time() diff --git a/src/plugins/chat_module/heartFC_chat/pf_chatting.py b/src/plugins/chat_module/heartFC_chat/pf_chatting.py new file mode 100644 index 000000000..f87009a0d --- /dev/null +++ b/src/plugins/chat_module/heartFC_chat/pf_chatting.py @@ -0,0 +1,726 @@ +import asyncio +import time +import traceback +from typing import List, Optional, Dict, Any, Deque, Union, TYPE_CHECKING +from collections import deque +import json + +from ....config.config import global_config +from ...chat.message import MessageRecv, BaseMessageInfo, MessageThinking, MessageSending +from ...chat.chat_stream import ChatStream +from ...message import UserInfo +from src.heart_flow.heartflow import heartflow, SubHeartflow +from src.plugins.chat.chat_stream import chat_manager +from .messagesender import MessageManager +from src.common.logger import get_module_logger, LogConfig, DEFAULT_CONFIG # 引入 DEFAULT_CONFIG +from src.plugins.models.utils_model import LLMRequest +from src.individuality.individuality import Individuality + +# 定义日志配置 (使用 loguru 格式) +interest_log_config = LogConfig( + console_format=DEFAULT_CONFIG["console_format"], # 使用默认控制台格式 + file_format=DEFAULT_CONFIG["file_format"] # 使用默认文件格式 +) +logger = get_module_logger("PFChattingLoop", config=interest_log_config) # Logger Name Changed + + +# Forward declaration for type hinting +if TYPE_CHECKING: + from .heartFC_chat import HeartFC_Chat + +PLANNER_TOOL_DEFINITION = [ + { + "type": "function", + "function": { + "name": "decide_reply_action", + "description": "根据当前聊天内容和上下文,决定机器人是否应该回复以及如何回复。", + "parameters": { + "type": "object", + "properties": { + "action": { + "type": "string", + "enum": ["no_reply", "text_reply", "emoji_reply"], + "description": "决定采取的行动:'no_reply'(不回复), 'text_reply'(文本回复) 或 'emoji_reply'(表情回复)。" + }, + "reasoning": { + "type": "string", + "description": "做出此决定的简要理由。" + }, + "emoji_query": { + "type": "string", + "description": '如果行动是\'emoji_reply\',则指定表情的主题或概念(例如,"开心"、"困惑")。仅在需要表情回复时提供。' + } + }, + "required": ["action", "reasoning"] # 强制要求提供行动和理由 + } + } + } +] + +class PFChatting: + """ + Manages a continuous Plan-Filter-Check (now Plan-Replier-Sender) loop + for generating replies within a specific chat stream, controlled by a timer. + The loop runs as long as the timer > 0. + """ + def __init__(self, chat_id: str, heartfc_chat_instance: 'HeartFC_Chat'): + """ + 初始化PFChatting实例。 + + Args: + chat_id: The identifier for the chat stream (e.g., stream_id). + heartfc_chat_instance: 访问共享资源和方法的主HeartFC_Chat实例。 + """ + self.heartfc_chat = heartfc_chat_instance # 访问logger, gpt, tool_user, _send_response_messages等。 + self.stream_id: str = chat_id + self.chat_stream: Optional[ChatStream] = None + self.sub_hf: Optional[SubHeartflow] = None + self._initialized = False + self._init_lock = asyncio.Lock() # Ensure initialization happens only once + self._processing_lock = asyncio.Lock() # 确保只有一个 Plan-Replier-Sender 周期在运行 + self._timer_lock = asyncio.Lock() # 用于安全更新计时器 + + self.planner_llm = LLMRequest( + model=global_config.llm_normal, + temperature=global_config.llm_normal["temp"], + max_tokens=1000, + request_type="action_planning" + ) + + # Internal state for loop control + self._loop_timer: float = 0.0 # Remaining time for the loop in seconds + self._loop_active: bool = False # Is the loop currently running? + self._loop_task: Optional[asyncio.Task] = None # Stores the main loop task + self._trigger_count_this_activation: int = 0 # Counts triggers within an active period + + # Removed pending_replies as processing is now serial within the loop + # self.pending_replies: Dict[str, PendingReply] = {} + + + async def _initialize(self) -> bool: + """ + Lazy initialization to resolve chat_stream and sub_hf using the provided identifier. + Ensures the instance is ready to handle triggers. + """ + async with self._init_lock: + if self._initialized: + return True + try: + self.chat_stream = chat_manager.get_stream(self.stream_id) + + if not self.chat_stream: + logger.error(f"PFChatting-{self.stream_id} 获取ChatStream失败。") + return False + + # 子心流(SubHeartflow)可能初始不存在但后续会被创建 + # 在需要它的方法中应优雅处理其可能缺失的情况 + self.sub_hf = heartflow.get_subheartflow(self.stream_id) + if not self.sub_hf: + logger.warning(f"PFChatting-{self.stream_id} 获取SubHeartflow失败。一些功能可能受限。") + # 决定是否继续初始化。目前允许初始化。 + + self._initialized = True + logger.info(f"PFChatting-{self.stream_id} 初始化成功。") + return True + except Exception as e: + logger.error(f"PFChatting-{self.stream_id} 初始化失败: {e}") + logger.error(traceback.format_exc()) + return False + + async def add_time(self): + """ + Adds time to the loop timer with decay and starts the loop if it's not active. + Called externally (e.g., by HeartFC_Chat) to trigger or extend activity. + Durations: 1st trigger = 10s, 2nd = 5s, 3rd+ = 2s. + """ + if not self._initialized: + if not await self._initialize(): + logger.error(f"PFChatting-{self.stream_id} 无法添加时间: 未初始化。") + return + + async with self._timer_lock: + duration_to_add: float = 0.0 + + if not self._loop_active: # First trigger for this activation cycle + duration_to_add = 10.0 + self._trigger_count_this_activation = 1 # Start counting for this activation + logger.info(f"[{self.stream_id}] First trigger in activation. Adding {duration_to_add:.1f}s.") + else: # Loop is already active, apply decay + self._trigger_count_this_activation += 1 + if self._trigger_count_this_activation == 2: + duration_to_add = 5.0 + logger.info(f"[{self.stream_id}] 2nd trigger in activation. Adding {duration_to_add:.1f}s.") + else: # 3rd trigger or more + duration_to_add = 2.0 + logger.info(f"[{self.stream_id}] {self._trigger_count_this_activation}rd/+ trigger in activation. Adding {duration_to_add:.1f}s.") + + new_timer_value = self._loop_timer + duration_to_add + self._loop_timer = max(0, new_timer_value) # Ensure timer doesn't go negative conceptually + logger.info(f"[{self.stream_id}] Timer is now {self._loop_timer:.1f}s.") + + if not self._loop_active and self._loop_timer > 0: + logger.info(f"[{self.stream_id}] Timer > 0 and loop not active. Starting PF loop.") + self._loop_active = True + # Cancel previous task just in case (shouldn't happen if logic is correct) + if self._loop_task and not self._loop_task.done(): + logger.warning(f"[{self.stream_id}] Found existing loop task unexpectedly during start. Cancelling it.") + self._loop_task.cancel() + + self._loop_task = asyncio.create_task(self._run_pf_loop()) + # Add callback to reset state if loop finishes or errors out + self._loop_task.add_done_callback(self._handle_loop_completion) + elif self._loop_active: + logger.debug(f"[{self.stream_id}] Loop already active. Timer extended.") + + + def _handle_loop_completion(self, task: asyncio.Task): + """Callback executed when the _run_pf_loop task finishes.""" + try: + # Check if the task raised an exception + exception = task.exception() + if exception: + logger.error(f"[{self.stream_id}] PF loop task completed with error: {exception}") + logger.error(traceback.format_exc()) + else: + logger.info(f"[{self.stream_id}] PF loop task completed normally (timer likely expired or cancelled).") + except asyncio.CancelledError: + logger.info(f"[{self.stream_id}] PF loop task was cancelled.") + finally: + # Reset state regardless of how the task finished + self._loop_active = False + self._loop_task = None + # Ensure lock is released if the loop somehow exited while holding it + if self._processing_lock.locked(): + logger.warning(f"[{self.stream_id}] Releasing processing lock after loop task completion.") + self._processing_lock.release() + logger.info(f"[{self.stream_id}] Loop state reset.") + + + async def _run_pf_loop(self): + """ + 主循环,当计时器>0时持续进行计划并可能回复消息 + 管理每个循环周期的处理锁 + """ + logger.info(f"[{self.stream_id}] 开始执行PF循环") + try: + while True: + # 使用计时器锁安全地检查当前计时器值 + async with self._timer_lock: + current_timer = self._loop_timer + if current_timer <= 0: + logger.info(f"[{self.stream_id}] 计时器为零或负数({current_timer:.1f}秒),退出PF循环") + break # 退出条件:计时器到期 + + # 记录循环开始时间 + loop_cycle_start_time = time.monotonic() + # 标记本周期是否执行了操作 + action_taken_this_cycle = False + + # 获取处理锁,确保每个计划-回复-发送周期独占执行 + acquired_lock = False + try: + await self._processing_lock.acquire() + acquired_lock = True + logger.debug(f"[{self.stream_id}] 循环获取到处理锁") + + # --- Planner --- + # Planner decides action, reasoning, emoji_query, etc. + planner_result = await self._planner() # Modify planner to return decision dict + action = planner_result.get("action", "error") + reasoning = planner_result.get("reasoning", "Planner did not provide reasoning.") + emoji_query = planner_result.get("emoji_query", "") + current_mind = planner_result.get("current_mind", "[Mind unavailable]") + send_emoji_from_tools = planner_result.get("send_emoji_from_tools", "") + observed_messages = planner_result.get("observed_messages", []) # Planner needs to return this + + if action == "text_reply": + logger.info(f"[{self.stream_id}] 计划循环决定: 回复文本.") + action_taken_this_cycle = True + # --- 回复器 --- + anchor_message = await self._get_anchor_message(observed_messages) + if not anchor_message: + logger.error(f"[{self.stream_id}] 循环: 无法获取锚点消息用于回复. 跳过周期.") + else: + thinking_id = await self.heartfc_chat._create_thinking_message(anchor_message) + if not thinking_id: + logger.error(f"[{self.stream_id}] 循环: 无法创建思考ID. 跳过周期.") + else: + replier_result = None + try: + # 直接 await 回复器工作 + replier_result = await self._replier_work( + observed_messages=observed_messages, + anchor_message=anchor_message, + thinking_id=thinking_id, + current_mind=current_mind, + send_emoji=send_emoji_from_tools + ) + except Exception as e_replier: + logger.error(f"[{self.stream_id}] 循环: 回复器工作失败: {e_replier}") + self._cleanup_thinking_message(thinking_id) # 清理思考消息 + # 继续循环, 视为非操作周期 + + if replier_result: + # --- Sender --- + try: + await self._sender(thinking_id, anchor_message, replier_result) + logger.info(f"[{self.stream_id}] 循环: 发送器完成成功.") + except Exception as e_sender: + logger.error(f"[{self.stream_id}] 循环: 发送器失败: {e_sender}") + self._cleanup_thinking_message(thinking_id) # 确保发送失败时清理 + # 继续循环, 视为非操作周期 + else: + # Replier failed to produce result + logger.warning(f"[{self.stream_id}] 循环: 回复器未产生结果. 跳过发送.") + self._cleanup_thinking_message(thinking_id) # 清理思考消息 + + elif action == "emoji_reply": + logger.info(f"[{self.stream_id}] 计划循环决定: 回复表情 ('{emoji_query}').") + action_taken_this_cycle = True + anchor = await self._get_anchor_message(observed_messages) + if anchor: + try: + await self.heartfc_chat._handle_emoji(anchor, [], emoji_query) + except Exception as e_emoji: + logger.error(f"[{self.stream_id}] 循环: 发送表情失败: {e_emoji}") + else: + logger.warning(f"[{self.stream_id}] 循环: 无法发送表情, 无法获取锚点.") + + elif action == "no_reply": + logger.info(f"[{self.stream_id}] 计划循环决定: 不回复. 原因: {reasoning}") + # Do nothing else, action_taken_this_cycle remains False + + elif action == "error": + logger.error(f"[{self.stream_id}] 计划循环返回错误或失败. 原因: {reasoning}") + # 视为非操作周期 + + else: # Unknown action + logger.warning(f"[{self.stream_id}] 计划循环返回未知动作: {action}. 视为不回复.") + # 视为非操作周期 + + except Exception as e_cycle: + # Catch errors occurring within the locked section (e.g., planner crash) + logger.error(f"[{self.stream_id}] 循环周期执行时发生错误: {e_cycle}") + logger.error(traceback.format_exc()) + # Ensure lock is released if an error occurs before the finally block + if acquired_lock and self._processing_lock.locked(): + self._processing_lock.release() + acquired_lock = False # 防止在 finally 块中重复释放 + logger.warning(f"[{self.stream_id}] 由于循环周期中的错误释放了处理锁.") + + finally: + # Ensure the lock is always released after a cycle + if acquired_lock: + self._processing_lock.release() + logger.debug(f"[{self.stream_id}] 循环释放了处理锁.") + + # --- Timer Decrement --- + cycle_duration = time.monotonic() - loop_cycle_start_time + async with self._timer_lock: + self._loop_timer -= cycle_duration + logger.debug(f"[{self.stream_id}] 循环周期耗时 {cycle_duration:.2f}s. 计时器剩余: {self._loop_timer:.1f}s.") + + # --- Delay --- + # Add a small delay, especially if no action was taken, to prevent busy-waiting + try: + if not action_taken_this_cycle and cycle_duration < 1.5: + # If nothing happened and cycle was fast, wait a bit longer + await asyncio.sleep(1.5 - cycle_duration) + elif cycle_duration < 0.2: # Minimum delay even if action was taken + await asyncio.sleep(0.2) + except asyncio.CancelledError: + logger.info(f"[{self.stream_id}] Sleep interrupted, likely loop cancellation.") + break # Exit loop if cancelled during sleep + + except asyncio.CancelledError: + logger.info(f"[{self.stream_id}] PF loop task received cancellation request.") + except Exception as e_loop_outer: + # Catch errors outside the main cycle lock (should be rare) + logger.error(f"[{self.stream_id}] PF loop encountered unexpected outer error: {e_loop_outer}") + logger.error(traceback.format_exc()) + finally: + # Reset trigger count when loop finishes + async with self._timer_lock: + self._trigger_count_this_activation = 0 + logger.debug(f"[{self.stream_id}] Trigger count reset to 0 as loop finishes.") + logger.info(f"[{self.stream_id}] PF loop finished execution run.") + # State reset (_loop_active, _loop_task) is handled by _handle_loop_completion callback + + async def _planner(self) -> Dict[str, Any]: + """ + 规划器 (Planner): 使用LLM根据上下文决定是否和如何回复。 + Returns a dictionary containing the decision and context. + {'action': str, 'reasoning': str, 'emoji_query': str, 'current_mind': str, + 'send_emoji_from_tools': str, 'observed_messages': List[dict]} + """ + observed_messages: List[dict] = [] + tool_result_info = {} + get_mid_memory_id = [] + send_emoji_from_tools = "" # Renamed for clarity + current_mind: Optional[str] = None + + # --- 获取最新的观察信息 --- + try: + if self.sub_hf and self.sub_hf._get_primary_observation(): + observation = self.sub_hf._get_primary_observation() + logger.debug(f"[{self.stream_id}][Planner] 调用 observation.observe()...") + await observation.observe() # 主动观察以获取最新消息 + observed_messages = observation.talking_message # 获取更新后的消息列表 + logger.debug(f"[{self.stream_id}][Planner] 获取到 {len(observed_messages)} 条观察消息。") + else: + logger.warning(f"[{self.stream_id}][Planner] 无法获取 SubHeartflow 或 Observation 来获取消息。") + except Exception as e: + logger.error(f"[{self.stream_id}][Planner] 获取观察信息时出错: {e}") + logger.error(traceback.format_exc()) + # --- 结束获取观察信息 --- + + # --- (Moved from _replier_work) 1. 思考前使用工具 --- + try: + observation_context_text = "" + if observed_messages: + context_texts = [msg.get('detailed_plain_text', '') for msg in observed_messages if msg.get('detailed_plain_text')] + observation_context_text = "\n".join(context_texts) + logger.debug(f"[{self.stream_id}][Planner] Context for tools: {observation_context_text[:100]}...") + + if observation_context_text and self.sub_hf: + # Ensure SubHeartflow exists for tool use context + tool_result = await self.heartfc_chat.tool_user.use_tool( + message_txt=observation_context_text, + chat_stream=self.chat_stream, + sub_heartflow=self.sub_hf + ) + if tool_result.get("used_tools", False): + tool_result_info = tool_result.get("structured_info", {}) + logger.debug(f"[{self.stream_id}][Planner] Tool results: {tool_result_info}") + if "mid_chat_mem" in tool_result_info: + get_mid_memory_id = [mem["content"] for mem in tool_result_info["mid_chat_mem"] if "content" in mem] + if "send_emoji" in tool_result_info and tool_result_info["send_emoji"]: + send_emoji_from_tools = tool_result_info["send_emoji"][0].get("content", "") # Use renamed var + elif not self.sub_hf: + logger.warning(f"[{self.stream_id}][Planner] Skipping tool use because SubHeartflow is not available.") + + except Exception as e_tool: + logger.error(f"[PFChatting-{self.stream_id}][Planner] Tool use failed: {e_tool}") + # Continue even if tool use fails + # --- 结束工具使用 --- + + # 心流思考,然后plan + try: + if self.sub_hf: + # Ensure arguments match the current do_thinking_before_reply signature + current_mind, past_mind = await self.sub_hf.do_thinking_before_reply( + chat_stream=self.chat_stream, + extra_info=tool_result_info, + obs_id=get_mid_memory_id, + ) + logger.info(f"[{self.stream_id}][Planner] SubHeartflow thought: {current_mind}") + else: + logger.warning(f"[{self.stream_id}][Planner] Skipping SubHeartflow thinking because it is not available.") + current_mind = "[心流思考不可用]" # Set a default/indicator value + + except Exception as e_shf: + logger.error(f"[PFChatting-{self.stream_id}][Planner] SubHeartflow thinking failed: {e_shf}") + logger.error(traceback.format_exc()) + current_mind = "[心流思考出错]" + + + # --- 使用 LLM 进行决策 --- + action = "no_reply" # Default action + emoji_query = "" + reasoning = "默认决策或获取决策失败" + llm_error = False # Flag for LLM failure + + try: + # 构建提示 (Now includes current_mind) + prompt = self._build_planner_prompt(observed_messages, current_mind) + logger.trace(f"[{self.stream_id}][Planner] Prompt: {prompt}") + + # 准备 LLM 请求 Payload + payload = { + "model": self.planner_llm.model_name, + "messages": [{"role": "user", "content": prompt}], + "tools": PLANNER_TOOL_DEFINITION, + "tool_choice": {"type": "function", "function": {"name": "decide_reply_action"}}, # 强制调用此工具 + } + + logger.debug(f"[{self.stream_id}][Planner] 发送 Planner LLM 请求...") + # 调用 LLM + response = await self.planner_llm._execute_request( + endpoint="/chat/completions", payload=payload, prompt=prompt + ) + + # 解析 LLM 响应 + if len(response) == 3: # 期望返回 content, reasoning_content, tool_calls + _, _, tool_calls = response + if tool_calls and isinstance(tool_calls, list) and len(tool_calls) > 0: + # 通常强制调用后只会有一个 tool_call + tool_call = tool_calls[0] + if tool_call.get("type") == "function" and tool_call.get("function", {}).get("name") == "decide_reply_action": + try: + arguments = json.loads(tool_call["function"]["arguments"]) + action = arguments.get("action", "no_reply") + reasoning = arguments.get("reasoning", "未提供理由") + if action == "emoji_reply": + # Planner's decision overrides tool's emoji if action is emoji_reply + emoji_query = arguments.get("emoji_query", send_emoji_from_tools) # Use tool emoji as default if planner asks for emoji + logger.info(f"[{self.stream_id}][Planner] LLM 决策: {action}, 理由: {reasoning}, EmojiQuery: '{emoji_query}'") + except json.JSONDecodeError as json_e: + logger.error(f"[{self.stream_id}][Planner] 解析工具参数失败: {json_e}. Arguments: {tool_call['function'].get('arguments')}") + action = "error"; reasoning = "工具参数解析失败"; llm_error = True + except Exception as parse_e: + logger.error(f"[{self.stream_id}][Planner] 处理工具参数时出错: {parse_e}") + action = "error"; reasoning = "处理工具参数时出错"; llm_error = True + else: + logger.warning(f"[{self.stream_id}][Planner] LLM 未按预期调用 'decide_reply_action' 工具。Tool calls: {tool_calls}") + action = "error"; reasoning = "LLM未调用预期工具"; llm_error = True + else: + logger.warning(f"[{self.stream_id}][Planner] LLM 响应中未包含有效的工具调用。Tool calls: {tool_calls}") + action = "error"; reasoning = "LLM响应无工具调用"; llm_error = True + else: + logger.warning(f"[{self.stream_id}][Planner] LLM 未返回预期的工具调用响应。Response parts: {len(response)}") + action = "error"; reasoning = "LLM响应格式错误"; llm_error = True + + except Exception as llm_e: + logger.error(f"[{self.stream_id}][Planner] Planner LLM 调用失败: {llm_e}") + logger.error(traceback.format_exc()) + action = "error"; reasoning = f"LLM 调用失败: {llm_e}"; llm_error = True + + # --- 返回决策结果 --- + # Note: Lock release is handled by the loop now + return { + "action": action, + "reasoning": reasoning, + "emoji_query": emoji_query, # Specific query if action is emoji_reply + "current_mind": current_mind, + "send_emoji_from_tools": send_emoji_from_tools, # Emoji suggested by pre-thinking tools + "observed_messages": observed_messages, + "llm_error": llm_error # Indicate if LLM decision process failed + } + + async def _get_anchor_message(self, observed_messages: List[dict]) -> Optional[MessageRecv]: + """ + 重构观察到的最后一条消息作为回复的锚点, + 如果重构失败或观察为空,则创建一个占位符。 + """ + if not self.chat_stream: + logger.error(f"[PFChatting-{self.stream_id}] 无法获取锚点消息: ChatStream 不可用.") + return None + + try: + last_msg_dict = None + if observed_messages: + last_msg_dict = observed_messages[-1] + + if last_msg_dict: + try: + # Attempt reconstruction from the last observed message dictionary + anchor_message = MessageRecv(last_msg_dict, chat_stream=self.chat_stream) + # Basic validation + if not (anchor_message and anchor_message.message_info and anchor_message.message_info.message_id and anchor_message.message_info.user_info): + raise ValueError("重构的 MessageRecv 缺少必要信息.") + logger.debug(f"[{self.stream_id}] 重构的锚点消息: ID={anchor_message.message_info.message_id}") + return anchor_message + except Exception as e_reconstruct: + logger.warning(f"[{self.stream_id}] 从观察到的消息重构 MessageRecv 失败: {e_reconstruct}. 创建占位符.") + else: + logger.warning(f"[{self.stream_id}] observed_messages 为空. 创建占位符锚点消息.") + + # --- Create Placeholder --- + placeholder_id = f"mid_pf_{int(time.time() * 1000)}" + placeholder_user = UserInfo(user_id="system_trigger", user_nickname="System Trigger", platform=self.chat_stream.platform) + placeholder_msg_info = BaseMessageInfo( + message_id=placeholder_id, + platform=self.chat_stream.platform, + group_info=self.chat_stream.group_info, + user_info=placeholder_user, + time=time.time() + ) + placeholder_msg_dict = { + "message_info": placeholder_msg_info.to_dict(), + "processed_plain_text": "[System Trigger Context]", # Placeholder text + "raw_message": "", + "time": placeholder_msg_info.time, + } + anchor_message = MessageRecv(placeholder_msg_dict) + anchor_message.update_chat_stream(self.chat_stream) # Associate with the stream + logger.info(f"[{self.stream_id}] Created placeholder anchor message: ID={anchor_message.message_info.message_id}") + return anchor_message + + except Exception as e: + logger.error(f"[PFChatting-{self.stream_id}] Error getting/creating anchor message: {e}") + logger.error(traceback.format_exc()) + return None + + def _cleanup_thinking_message(self, thinking_id: str): + """Safely removes the thinking message.""" + try: + container = MessageManager().get_container(self.stream_id) + container.remove_message(thinking_id, msg_type=MessageThinking) + logger.debug(f"[{self.stream_id}] Cleaned up thinking message {thinking_id}.") + except Exception as e: + logger.error(f"[{self.stream_id}] Error cleaning up thinking message {thinking_id}: {e}") + + + async def _sender(self, thinking_id: str, anchor_message: MessageRecv, replier_result: Dict[str, Any]): + """ + 发送器 (Sender): 使用HeartFC_Chat的方法发送生成的回复。 + 被 _run_pf_loop 直接调用和 await。 + 也处理相关的操作,如发送表情和更新关系。 + Raises exception on failure to signal the loop. + """ + # replier_result should contain 'response_set' and 'send_emoji' + response_set = replier_result.get("response_set") + send_emoji = replier_result.get("send_emoji", "") # Emoji determined by tools, passed via replier + + if not response_set: + logger.error(f"[PFChatting-{self.stream_id}][Sender-{thinking_id}] Called with empty response_set.") + # Clean up thinking message before raising error + self._cleanup_thinking_message(thinking_id) + raise ValueError("Sender called with no response_set") # Signal failure to loop + + first_bot_msg: Optional[MessageSending] = None + send_success = False + try: + # --- Send the main text response --- + logger.debug(f"[{self.stream_id}][Sender-{thinking_id}] Sending response messages...") + # This call implicitly handles replacing the MessageThinking with MessageSending/MessageSet + first_bot_msg = await self.heartfc_chat._send_response_messages(anchor_message, response_set, thinking_id) + + if first_bot_msg: + send_success = True # Mark success + logger.info(f"[PFChatting-{self.stream_id}][Sender-{thinking_id}] Successfully sent reply.") + + # --- Handle associated emoji (if determined by tools) --- + if send_emoji: + logger.info(f"[PFChatting-{self.stream_id}][Sender-{thinking_id}] Sending associated emoji: {send_emoji}") + try: + # Use first_bot_msg as anchor if available, otherwise fallback to original anchor + emoji_anchor = first_bot_msg if first_bot_msg else anchor_message + await self.heartfc_chat._handle_emoji(emoji_anchor, response_set, send_emoji) + except Exception as e_emoji: + logger.error(f"[PFChatting-{self.stream_id}][Sender-{thinking_id}] Failed to send associated emoji: {e_emoji}") + # Log error but don't fail the whole send process for emoji failure + + # --- Update relationship --- + try: + await self.heartfc_chat._update_relationship(anchor_message, response_set) + logger.debug(f"[PFChatting-{self.stream_id}][Sender-{thinking_id}] Updated relationship.") + except Exception as e_rel: + logger.error(f"[PFChatting-{self.stream_id}][Sender-{thinking_id}] Failed to update relationship: {e_rel}") + # Log error but don't fail the whole send process for relationship update failure + + else: + # Sending failed (e.g., _send_response_messages found thinking message already gone) + send_success = False + logger.warning(f"[PFChatting-{self.stream_id}][Sender-{thinking_id}] Failed to send reply (maybe thinking message expired or was removed?).") + # No need to clean up thinking message here, _send_response_messages implies it's gone or handled + raise RuntimeError("Sending reply failed, _send_response_messages returned None.") # Signal failure + + + except Exception as e: + # Catch potential errors during sending or post-send actions + logger.error(f"[PFChatting-{self.stream_id}][Sender-{thinking_id}] Error during sending process: {e}") + logger.error(traceback.format_exc()) + # Ensure thinking message is cleaned up if send failed mid-way and wasn't handled + if not send_success: + self._cleanup_thinking_message(thinking_id) + raise # Re-raise the exception to signal failure to the loop + + # No finally block needed for lock management + + + async def shutdown(self): + """ + Gracefully shuts down the PFChatting instance by cancelling the active loop task. + """ + logger.info(f"[{self.stream_id}] Shutting down PFChatting...") + if self._loop_task and not self._loop_task.done(): + logger.info(f"[{self.stream_id}] Cancelling active PF loop task.") + self._loop_task.cancel() + try: + # Wait briefly for the task to acknowledge cancellation + await asyncio.wait_for(self._loop_task, timeout=5.0) + except asyncio.CancelledError: + logger.info(f"[{self.stream_id}] PF loop task cancelled successfully.") + except asyncio.TimeoutError: + logger.warning(f"[{self.stream_id}] Timeout waiting for PF loop task cancellation.") + except Exception as e: + logger.error(f"[{self.stream_id}] Error during loop task cancellation: {e}") + else: + logger.info(f"[{self.stream_id}] No active PF loop task found to cancel.") + + # Ensure loop state is reset even if task wasn't running or cancellation failed + self._loop_active = False + self._loop_task = None + + # Double-check lock state (should be released by loop completion/cancellation handler) + if self._processing_lock.locked(): + logger.warning(f"[{self.stream_id}] Releasing processing lock during shutdown.") + self._processing_lock.release() + + logger.info(f"[{self.stream_id}] PFChatting shutdown complete.") + + def _build_planner_prompt(self, observed_messages: List[dict], current_mind: Optional[str]) -> str: + """构建 Planner LLM 的提示词 (现在包含 current_mind)""" + prompt = "你是一个聊天机器人助手,正在决定是否以及如何回应当前的聊天。\n" + prompt += f"你的名字是 {global_config.BOT_NICKNAME}。\n" + + # Add current mind state if available + if current_mind: + prompt += f"\n你当前的内部想法是:\n---\n{current_mind}\n---\n\n" + else: + prompt += "\n你当前没有特别的内部想法。\n" + + if observed_messages: + context_text = "\n".join([msg.get('detailed_plain_text', '') for msg in observed_messages if msg.get('detailed_plain_text')]) + prompt += "观察到的最新聊天内容如下:\n---\n" + prompt += context_text[:1500] # Limit context length + prompt += "\n---\n" + else: + prompt += "当前没有观察到新的聊天内容。\n" + + prompt += "\n请结合你的内部想法和观察到的聊天内容,分析情况并使用 'decide_reply_action' 工具来决定你的最终行动。\n" + prompt += "决策依据:\n" + prompt += "1. 如果聊天内容无聊、与你无关、或者你的内部想法认为不适合回复,选择 'no_reply'。\n" + prompt += "2. 如果聊天内容值得回应,且适合用文字表达(参考你的内部想法),选择 'text_reply'。\n" + prompt += "3. 如果聊天内容或你的内部想法适合用一个表情来回应,选择 'emoji_reply' 并提供表情主题 'emoji_query'。\n" + prompt += "必须调用 'decide_reply_action' 工具并提供 'action' 和 'reasoning'。" + + return prompt + + # --- 回复器 (Replier) 的定义 --- # + async def _replier_work(self, observed_messages: List[dict], anchor_message: MessageRecv, thinking_id: str, current_mind: Optional[str], send_emoji: str) -> Optional[Dict[str, Any]]: + """ + 回复器 (Replier): 核心逻辑用于生成回复。 + 被 _run_pf_loop 直接调用和 await。 + Returns dict with 'response_set' and 'send_emoji' or None on failure. + """ + response_set: Optional[List[str]] = None + try: + # --- Tool Use and SubHF Thinking are now in _planner --- + + # --- Generate Response with LLM --- + logger.debug(f"[{self.stream_id}][Replier-{thinking_id}] Calling LLM to generate response...") + # 注意:实际的生成调用是在 self.heartfc_chat.gpt.generate_response 中 + response_set = await self.heartfc_chat.gpt.generate_response( + anchor_message, + thinking_id + # current_mind 不再直接传递给 gpt.generate_response, + # 因为 generate_response 内部会通过 thinking_id 或其他方式获取所需上下文 + ) + + if not response_set: + logger.warning(f"[{self.stream_id}][Replier-{thinking_id}] LLM生成了一个空回复集。") + return None # Indicate failure + + # --- 准备并返回结果 --- + logger.info(f"[{self.stream_id}][Replier-{thinking_id}] 成功生成了回复集: {' '.join(response_set)[:50]}...") + return { + "response_set": response_set, + "send_emoji": send_emoji, # Pass through the emoji determined earlier (usually by tools) + } + + except Exception as e: + logger.error(f"[PFChatting-{self.stream_id}][Replier-{thinking_id}] Unexpected error in replier_work: {e}") + logger.error(traceback.format_exc()) + return None # Indicate failure \ No newline at end of file diff --git a/src/plugins/chat_module/heartFC_chat/pfchating.md b/src/plugins/chat_module/heartFC_chat/pfchating.md new file mode 100644 index 000000000..480e84aff --- /dev/null +++ b/src/plugins/chat_module/heartFC_chat/pfchating.md @@ -0,0 +1,22 @@ +新写一个类,叫做pfchating +这个类初始化时会输入一个chat_stream或者stream_id +这个类会包含对应的sub_hearflow和一个chat_stream + +pfchating有以下几个组成部分: +规划器:决定是否要进行回复(根据sub_heartflow中的observe内容),可以选择不回复,回复文字或者回复表情包,你可以使用llm的工具调用来实现 +回复器:可以根据信息产生回复,这部分代码将大部分与trigger_reply_generation(stream_id, observed_messages)一模一样 +(回复器可能同时运行多个(0-3个),这些回复器会根据不同时刻的规划器产生不同回复 +检查器:由于生成回复需要时间,检查器会检查在有了新的消息内容之后,回复是否还适合,如果合适就转给发送器 +如果一条消息被发送了,其他回复在检查时也要增加这条消息的信息,防止重复发送内容相近的回复 +发送器,将回复发送到聊天,这部分主体不需要再pfcchating中实现,只需要使用原有的self._send_response_messages(anchor_message, response_set, thinking_id) + + +当_process_triggered_reply(self, stream_id: str, observed_messages: List[dict]):触发时,并不会单独进行一次回复 + + +问题: +1.每个pfchating是否对应一个caht_stream,是否是唯一的?(fix) +2.observe_text传入进来是纯str,是不是应该传进来message构成的list?(fix) +3.检查失败的回复应该怎么处理?(先抛弃) +4.如何比较相似度? +5.planner怎么写?(好像可以先不加入这部分) \ No newline at end of file