fix:模块化PFC

This commit is contained in:
SengokuCola
2025-04-08 17:38:42 +08:00
parent 3e3ee2621e
commit e3b2d5b88c
10 changed files with 878 additions and 675 deletions

4
bot.py
View File

@@ -8,6 +8,7 @@ import time
import platform import platform
from dotenv import load_dotenv from dotenv import load_dotenv
from src.common.logger import get_module_logger from src.common.logger import get_module_logger
from src.common.crash_logger import install_crash_handler
from src.main import MainSystem from src.main import MainSystem
logger = get_module_logger("main_bot") logger = get_module_logger("main_bot")
@@ -193,6 +194,9 @@ def raw_main():
if platform.system().lower() != "windows": if platform.system().lower() != "windows":
time.tzset() time.tzset()
# 安装崩溃日志处理器
install_crash_handler()
check_eula() check_eula()
print("检查EULA和隐私条款完成") print("检查EULA和隐私条款完成")
easter_egg() easter_egg()

View File

@@ -0,0 +1,72 @@
import sys
import traceback
import logging
from pathlib import Path
from logging.handlers import RotatingFileHandler
def setup_crash_logger():
"""设置崩溃日志记录器"""
# 创建logs/crash目录如果不存在
crash_log_dir = Path("logs/crash")
crash_log_dir.mkdir(parents=True, exist_ok=True)
# 创建日志记录器
crash_logger = logging.getLogger('crash_logger')
crash_logger.setLevel(logging.ERROR)
# 设置日志格式
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s\n'
'异常类型: %(exc_info)s\n'
'详细信息:\n%(message)s\n'
'-------------------\n'
)
# 创建按大小轮转的文件处理器最大10MB保留5个备份
log_file = crash_log_dir / "crash.log"
file_handler = RotatingFileHandler(
log_file,
maxBytes=10*1024*1024, # 10MB
backupCount=5,
encoding='utf-8'
)
file_handler.setFormatter(formatter)
crash_logger.addHandler(file_handler)
return crash_logger
def log_crash(exc_type, exc_value, exc_traceback):
"""记录崩溃信息到日志文件"""
if exc_type is None:
return
# 获取崩溃日志记录器
crash_logger = logging.getLogger('crash_logger')
# 获取完整的异常堆栈信息
stack_trace = ''.join(traceback.format_exception(exc_type, exc_value, exc_traceback))
# 记录崩溃信息
crash_logger.error(
stack_trace,
exc_info=(exc_type, exc_value, exc_traceback)
)
def install_crash_handler():
"""安装全局异常处理器"""
# 设置崩溃日志记录器
setup_crash_logger()
# 保存原始的异常处理器
original_hook = sys.excepthook
def exception_handler(exc_type, exc_value, exc_traceback):
"""全局异常处理器"""
# 记录崩溃信息
log_crash(exc_type, exc_value, exc_traceback)
# 调用原始的异常处理器
original_hook(exc_type, exc_value, exc_traceback)
# 设置全局异常处理器
sys.excepthook = exception_handler

View File

@@ -0,0 +1,157 @@
import datetime
import asyncio
from typing import List, Optional, Dict, Any, Tuple, Literal, Set
from enum import Enum
from src.common.logger import get_module_logger
from ..chat.chat_stream import ChatStream
from ..message.message_base import UserInfo, Seg
from ..chat.message import Message
from ..models.utils_model import LLM_request
from ..config.config import global_config
from src.plugins.chat.message import MessageSending
from ..message.api import global_api
from ..storage.storage import MessageStorage
from .chat_observer import ChatObserver
from .reply_checker import ReplyChecker
from .pfc_utils import get_items_from_json
from src.individuality.individuality import Individuality
from .chat_states import NotificationHandler, Notification, NotificationType
import time
from dataclasses import dataclass, field
from .pfc import DecisionInfo, DecisionInfoType
logger = get_module_logger("action_planner")
class ActionPlanner:
"""行动规划器"""
def __init__(self, stream_id: str):
self.llm = LLM_request(
model=global_config.llm_normal,
temperature=0.7,
max_tokens=1000,
request_type="action_planning"
)
self.personality_info = Individuality.get_instance().get_prompt(type = "personality", x_person = 2, level = 2)
self.name = global_config.BOT_NICKNAME
self.chat_observer = ChatObserver.get_instance(stream_id)
async def plan(
self,
goal: str,
method: str,
reasoning: str,
action_history: List[Dict[str, str]] = None,
decision_info: DecisionInfoType = None # Use DecisionInfoType here
) -> Tuple[str, str]:
"""规划下一步行动
Args:
goal: 对话目标
method: 实现方法
reasoning: 目标原因
action_history: 行动历史记录
decision_info: 决策信息
Returns:
Tuple[str, str]: (行动类型, 行动原因)
"""
# 构建提示词
logger.debug(f"开始规划行动:当前目标: {goal}")
# 获取最近20条消息
messages = self.chat_observer.get_message_history(limit=20)
chat_history_text = ""
for msg in messages:
time_str = datetime.datetime.fromtimestamp(msg["time"]).strftime("%H:%M:%S")
user_info = UserInfo.from_dict(msg.get("user_info", {}))
sender = user_info.user_nickname or f"用户{user_info.user_id}"
if sender == self.name:
sender = "你说"
chat_history_text += f"{time_str},{sender}:{msg.get('processed_plain_text', '')}\n"
personality_text = f"你的名字是{self.name}{self.personality_info}"
# 构建action历史文本
action_history_text = ""
if action_history and action_history[-1]['action'] == "direct_reply":
action_history_text = "你刚刚发言回复了对方"
# 构建决策信息文本
decision_info_text = ""
if decision_info:
decision_info_text = "当前对话状态:\n"
if decision_info.is_cold_chat:
decision_info_text += f"对话处于冷场状态,已持续{int(decision_info.cold_chat_duration)}\n"
if decision_info.new_messages_count > 0:
decision_info_text += f"{decision_info.new_messages_count}条新消息未处理\n"
user_response_time = decision_info.get_user_response_time()
if user_response_time:
decision_info_text += f"距离用户上次发言已过去{int(user_response_time)}\n"
bot_response_time = decision_info.get_bot_response_time()
if bot_response_time:
decision_info_text += f"距离你上次发言已过去{int(bot_response_time)}\n"
if decision_info.active_users:
decision_info_text += f"当前活跃用户数: {len(decision_info.active_users)}\n"
prompt = f"""{personality_text}。现在你在参与一场QQ聊天请分析以下内容根据信息决定下一步行动
当前对话目标:{goal}
实现该对话目标的方式:{method}
产生该对话目标的原因:{reasoning}
{decision_info_text}
{action_history_text}
最近的对话记录:
{chat_history_text}
请你接下去想想要你要做什么,可以发言,可以等待,可以倾听,可以调取知识。注意不同行动类型的要求,不要重复发言:
行动类型:
fetch_knowledge: 需要调取知识,当需要专业知识或特定信息时选择
wait: 当你做出了发言,对方尚未回复时等待对方的回复
listening: 倾听对方发言,当你认为对方发言尚未结束时采用
direct_reply: 不符合上述情况,回复对方,注意不要过多或者重复发言
rethink_goal: 重新思考对话目标,当发现对话目标不合适时选择,会重新思考对话目标
judge_conversation: 判断对话是否结束,当发现对话目标已经达到或者希望停止对话时选择,会判断对话是否结束
请以JSON格式输出包含以下字段
1. action: 行动类型,注意你之前的行为
2. reason: 选择该行动的原因,注意你之前的行为(简要解释)
注意请严格按照JSON格式输出不要包含任何其他内容。"""
logger.debug(f"发送到LLM的提示词: {prompt}")
try:
content, _ = await self.llm.generate_response_async(prompt)
logger.debug(f"LLM原始返回内容: {content}")
# 使用简化函数提取JSON内容
success, result = get_items_from_json(
content,
"action", "reason",
default_values={"action": "direct_reply", "reason": "默认原因"}
)
if not success:
return "direct_reply", "JSON解析失败选择直接回复"
action = result["action"]
reason = result["reason"]
# 验证action类型
if action not in ["direct_reply", "fetch_knowledge", "wait", "listening", "rethink_goal", "judge_conversation"]:
logger.warning(f"未知的行动类型: {action}默认使用listening")
action = "listening"
logger.info(f"规划的行动: {action}")
logger.info(f"行动原因: {reason}")
return action, reason
except Exception as e:
logger.error(f"规划行动时出错: {str(e)}")
return "direct_reply", "发生错误,选择直接回复"

View File

@@ -2,7 +2,6 @@ import time
import asyncio import asyncio
from typing import Optional, Dict, Any, List, Tuple from typing import Optional, Dict, Any, List, Tuple
from src.common.logger import get_module_logger from src.common.logger import get_module_logger
from src.common.database import db
from ..message.message_base import UserInfo from ..message.message_base import UserInfo
from ..config.config import global_config from ..config.config import global_config
from .chat_states import NotificationManager, create_new_message_notification, create_cold_chat_notification from .chat_states import NotificationManager, create_new_message_notification, create_cold_chat_notification

View File

@@ -0,0 +1,264 @@
import asyncio
import datetime
from typing import Dict, Any
from ..chat.message import Message
from .pfc import ConversationState, ChatObserver,GoalAnalyzer, Waiter, DirectMessageSender, PFCNotificationHandler
from src.common.logger import get_module_logger
from .action_planner import ActionPlanner
from .decision_info import DecisionInfo
from .reply_generator import ReplyGenerator
from ..chat.chat_stream import ChatStream
from ..message.message_base import UserInfo
from ..config.config import global_config
from src.plugins.chat.chat_stream import chat_manager
from .pfc_KnowledgeFetcher import KnowledgeFetcher
import time
import traceback
logger = get_module_logger("pfc_conversation")
class Conversation:
"""对话类,负责管理单个对话的状态和行为"""
def __init__(self, stream_id: str):
"""初始化对话实例
Args:
stream_id: 聊天流ID
"""
self.stream_id = stream_id
self.state = ConversationState.INIT
self.should_continue = False
# 目标和规划
self.current_goal = "保持友好的对话"
self.current_method = "以友好的态度回应"
self.goal_reasoning = "确保对话顺利进行"
# 知识缓存和行动历史
self.knowledge_cache = {}
self.action_history = []
# 回复相关
self.generated_reply = ""
async def _initialize(self):
"""初始化实例,注册所有组件"""
try:
self.chat_observer = ChatObserver.get_instance(self.stream_id)
self.action_planner = ActionPlanner(self.stream_id)
self.goal_analyzer = GoalAnalyzer(self.stream_id)
self.reply_generator = ReplyGenerator(self.stream_id)
self.knowledge_fetcher = KnowledgeFetcher()
self.waiter = Waiter(self.stream_id)
self.direct_sender = DirectMessageSender()
# 获取聊天流信息
self.chat_stream = chat_manager.get_stream(self.stream_id)
# 决策信息
self.decision_info = DecisionInfo()
self.decision_info.bot_id = global_config.BOT_QQ
# 创建通知处理器
self.notification_handler = PFCNotificationHandler(self)
except Exception as e:
logger.error(f"初始化对话实例:注册组件失败: {e}")
logger.error(traceback.format_exc())
raise
try:
start_time = time.time()
self.chat_observer.start() # 启动观察器
logger.info(f"观察器启动完成,耗时: {time.time() - start_time:.2f}")
await asyncio.sleep(1) # 给观察器一些启动时间
total_time = time.time() - start_time
logger.info(f"实例初始化完成,总耗时: {total_time:.2f}")
self.should_continue = True
asyncio.create_task(self.start())
except Exception as e:
logger.error(f"初始化对话实例失败: {e}")
logger.error(traceback.format_exc())
raise
async def start(self):
"""开始对话流程"""
try:
logger.info("对话系统启动")
while self.should_continue:
await self._do_a_step()
except Exception as e:
logger.error(f"启动对话系统失败: {e}")
raise
async def _do_a_step(self):
"""思考步"""
# 获取最近的消息历史
self.current_goal, self.current_method, self.goal_reasoning = await self.goal_analyzer.analyze_goal()
self.chat_observer.trigger_update() # 触发立即更新
if not await self.chat_observer.wait_for_update():
logger.warning("等待消息更新超时")
# 使用决策信息来辅助行动规划
action, reason = await self.action_planner.plan(
self.current_goal,
self.current_method,
self.goal_reasoning,
self.action_history,
self.decision_info # 传入决策信息
)
# 执行行动
await self._handle_action(action, reason)
# # 清理已处理的消息
# self.decision_info.clear_unprocessed_messages()
def _convert_to_message(self, msg_dict: Dict[str, Any]) -> Message:
"""将消息字典转换为Message对象"""
try:
chat_info = msg_dict.get("chat_info", {})
chat_stream = ChatStream.from_dict(chat_info)
user_info = UserInfo.from_dict(msg_dict.get("user_info", {}))
return Message(
message_id=msg_dict["message_id"],
chat_stream=chat_stream,
time=msg_dict["time"],
user_info=user_info,
processed_plain_text=msg_dict.get("processed_plain_text", ""),
detailed_plain_text=msg_dict.get("detailed_plain_text", "")
)
except Exception as e:
logger.warning(f"转换消息时出错: {e}")
raise
async def _handle_action(self, action: str, reason: str):
"""处理规划的行动"""
logger.info(f"执行行动: {action}, 原因: {reason}")
# 记录action历史
self.action_history.append({
"action": action,
"reason": reason,
"time": datetime.datetime.now().strftime("%H:%M:%S")
})
# 只保留最近的10条记录
if len(self.action_history) > 10:
self.action_history = self.action_history[-10:]
if action == "direct_reply":
self.state = ConversationState.GENERATING
messages = self.chat_observer.get_message_history(limit=30)
self.generated_reply = await self.reply_generator.generate(
self.current_goal,
self.current_method,
[self._convert_to_message(msg) for msg in messages],
self.knowledge_cache
)
# 检查回复是否合适
is_suitable, reason, need_replan = await self.reply_generator.check_reply(
self.generated_reply,
self.current_goal
)
await self._send_reply()
elif action == "fetch_knowledge":
self.state = ConversationState.GENERATING
messages = self.chat_observer.get_message_history(limit=30)
knowledge, sources = await self.knowledge_fetcher.fetch(
self.current_goal,
[self._convert_to_message(msg) for msg in messages]
)
logger.info(f"获取到知识,来源: {sources}")
if knowledge != "未找到相关知识":
self.knowledge_cache[sources] = knowledge
elif action == "rethink_goal":
self.state = ConversationState.RETHINKING
self.current_goal, self.current_method, self.goal_reasoning = await self.goal_analyzer.analyze_goal()
elif action == "judge_conversation":
self.state = ConversationState.JUDGING
self.goal_achieved, self.stop_conversation, self.reason = await self.goal_analyzer.analyze_conversation(self.current_goal, self.goal_reasoning)
# 如果当前目标达成但还有其他目标
if self.goal_achieved and not self.stop_conversation:
alternative_goals = await self.goal_analyzer.get_alternative_goals()
if alternative_goals:
# 切换到下一个目标
self.current_goal, self.current_method, self.goal_reasoning = alternative_goals[0]
logger.info(f"当前目标已达成,切换到新目标: {self.current_goal}")
return
if self.stop_conversation:
await self._stop_conversation()
elif action == "listening":
self.state = ConversationState.LISTENING
logger.info("倾听对方发言...")
if await self.waiter.wait(): # 如果返回True表示超时
await self._send_timeout_message()
await self._stop_conversation()
else: # wait
self.state = ConversationState.WAITING
logger.info("等待更多信息...")
if await self.waiter.wait(): # 如果返回True表示超时
await self._send_timeout_message()
await self._stop_conversation()
async def _send_timeout_message(self):
"""发送超时结束消息"""
try:
messages = self.chat_observer.get_message_history(limit=1)
if not messages:
return
latest_message = self._convert_to_message(messages[0])
await self.direct_sender.send_message(
chat_stream=self.chat_stream,
content="抱歉,由于等待时间过长,我需要先去忙别的了。下次再聊吧~",
reply_to_message=latest_message
)
except Exception as e:
logger.error(f"发送超时消息失败: {str(e)}")
async def _send_reply(self):
"""发送回复"""
if not self.generated_reply:
logger.warning("没有生成回复")
return
messages = self.chat_observer.get_message_history(limit=1)
if not messages:
logger.warning("没有最近的消息可以回复")
return
latest_message = self._convert_to_message(messages[0])
try:
await self.direct_sender.send_message(
chat_stream=self.chat_stream,
content=self.generated_reply,
reply_to_message=latest_message
)
self.chat_observer.trigger_update() # 触发立即更新
if not await self.chat_observer.wait_for_update():
logger.warning("等待消息更新超时")
self.state = ConversationState.ANALYZING
except Exception as e:
logger.error(f"发送消息失败: {str(e)}")
self.state = ConversationState.ANALYZING

View File

@@ -0,0 +1,116 @@
#Programmable Friendly Conversationalist
#Prefrontal cortex
import datetime
import asyncio
from typing import List, Optional, Dict, Any, Tuple, Literal, Set
from enum import Enum
from src.common.logger import get_module_logger
from ..chat.chat_stream import ChatStream
from ..message.message_base import UserInfo, Seg
from ..chat.message import Message
from ..models.utils_model import LLM_request
from ..config.config import global_config
from src.plugins.chat.message import MessageSending
from ..message.api import global_api
from ..storage.storage import MessageStorage
from .chat_observer import ChatObserver
from .reply_generator import ReplyGenerator
from .pfc_utils import get_items_from_json
from src.individuality.individuality import Individuality
from .chat_states import NotificationHandler, Notification, NotificationType
import time
from dataclasses import dataclass, field
from .conversation import Conversation
@dataclass
class DecisionInfo:
"""决策信息类用于收集和管理来自chat_observer的通知信息"""
# 消息相关
last_message_time: Optional[float] = None
last_message_content: Optional[str] = None
last_message_sender: Optional[str] = None
new_messages_count: int = 0
unprocessed_messages: List[Dict[str, Any]] = field(default_factory=list)
# 对话状态
is_cold_chat: bool = False
cold_chat_duration: float = 0.0
last_bot_speak_time: Optional[float] = None
last_user_speak_time: Optional[float] = None
# 对话参与者
active_users: Set[str] = field(default_factory=set)
bot_id: str = field(default="")
def update_from_message(self, message: Dict[str, Any]):
"""从消息更新信息
Args:
message: 消息数据
"""
self.last_message_time = message["time"]
self.last_message_content = message.get("processed_plain_text", "")
user_info = UserInfo.from_dict(message.get("user_info", {}))
self.last_message_sender = user_info.user_id
if user_info.user_id == self.bot_id:
self.last_bot_speak_time = message["time"]
else:
self.last_user_speak_time = message["time"]
self.active_users.add(user_info.user_id)
self.new_messages_count += 1
self.unprocessed_messages.append(message)
def update_cold_chat_status(self, is_cold: bool, current_time: float):
"""更新冷场状态
Args:
is_cold: 是否冷场
current_time: 当前时间
"""
self.is_cold_chat = is_cold
if is_cold and self.last_message_time:
self.cold_chat_duration = current_time - self.last_message_time
def get_active_duration(self) -> float:
"""获取当前活跃时长
Returns:
float: 最后一条消息到现在的时长(秒)
"""
if not self.last_message_time:
return 0.0
return time.time() - self.last_message_time
def get_user_response_time(self) -> Optional[float]:
"""获取用户响应时间
Returns:
Optional[float]: 用户最后发言到现在的时长如果没有用户发言则返回None
"""
if not self.last_user_speak_time:
return None
return time.time() - self.last_user_speak_time
def get_bot_response_time(self) -> Optional[float]:
"""获取机器人响应时间
Returns:
Optional[float]: 机器人最后发言到现在的时长如果没有机器人发言则返回None
"""
if not self.last_bot_speak_time:
return None
return time.time() - self.last_bot_speak_time
def clear_unprocessed_messages(self):
"""清空未处理消息列表"""
self.unprocessed_messages.clear()
self.new_messages_count = 0
# Forward reference for type hints
DecisionInfoType = DecisionInfo

View File

@@ -11,17 +11,16 @@ from ..chat.message import Message
from ..models.utils_model import LLM_request from ..models.utils_model import LLM_request
from ..config.config import global_config from ..config.config import global_config
from src.plugins.chat.message import MessageSending from src.plugins.chat.message import MessageSending
from src.plugins.chat.chat_stream import chat_manager
from ..message.api import global_api from ..message.api import global_api
from ..storage.storage import MessageStorage from ..storage.storage import MessageStorage
from .chat_observer import ChatObserver from .chat_observer import ChatObserver
from .pfc_KnowledgeFetcher import KnowledgeFetcher from .reply_generator import ReplyGenerator
from .reply_checker import ReplyChecker
from .pfc_utils import get_items_from_json from .pfc_utils import get_items_from_json
from src.individuality.individuality import Individuality from src.individuality.individuality import Individuality
from .chat_states import NotificationHandler, Notification, NotificationType from .chat_states import NotificationHandler, Notification, NotificationType
import time import time
from dataclasses import dataclass, field from dataclasses import dataclass, field
from .conversation import Conversation
logger = get_module_logger("pfc") logger = get_module_logger("pfc")
@@ -43,235 +42,6 @@ class ConversationState(Enum):
ActionType = Literal["direct_reply", "fetch_knowledge", "wait"] ActionType = Literal["direct_reply", "fetch_knowledge", "wait"]
@dataclass
class DecisionInfo:
"""决策信息类用于收集和管理来自chat_observer的通知信息"""
# 消息相关
last_message_time: Optional[float] = None
last_message_content: Optional[str] = None
last_message_sender: Optional[str] = None
new_messages_count: int = 0
unprocessed_messages: List[Dict[str, Any]] = field(default_factory=list)
# 对话状态
is_cold_chat: bool = False
cold_chat_duration: float = 0.0
last_bot_speak_time: Optional[float] = None
last_user_speak_time: Optional[float] = None
# 对话参与者
active_users: Set[str] = field(default_factory=set)
bot_id: str = field(default="")
def update_from_message(self, message: Dict[str, Any]):
"""从消息更新信息
Args:
message: 消息数据
"""
self.last_message_time = message["time"]
self.last_message_content = message.get("processed_plain_text", "")
user_info = UserInfo.from_dict(message.get("user_info", {}))
self.last_message_sender = user_info.user_id
if user_info.user_id == self.bot_id:
self.last_bot_speak_time = message["time"]
else:
self.last_user_speak_time = message["time"]
self.active_users.add(user_info.user_id)
self.new_messages_count += 1
self.unprocessed_messages.append(message)
def update_cold_chat_status(self, is_cold: bool, current_time: float):
"""更新冷场状态
Args:
is_cold: 是否冷场
current_time: 当前时间
"""
self.is_cold_chat = is_cold
if is_cold and self.last_message_time:
self.cold_chat_duration = current_time - self.last_message_time
def get_active_duration(self) -> float:
"""获取当前活跃时长
Returns:
float: 最后一条消息到现在的时长(秒)
"""
if not self.last_message_time:
return 0.0
return time.time() - self.last_message_time
def get_user_response_time(self) -> Optional[float]:
"""获取用户响应时间
Returns:
Optional[float]: 用户最后发言到现在的时长如果没有用户发言则返回None
"""
if not self.last_user_speak_time:
return None
return time.time() - self.last_user_speak_time
def get_bot_response_time(self) -> Optional[float]:
"""获取机器人响应时间
Returns:
Optional[float]: 机器人最后发言到现在的时长如果没有机器人发言则返回None
"""
if not self.last_bot_speak_time:
return None
return time.time() - self.last_bot_speak_time
def clear_unprocessed_messages(self):
"""清空未处理消息列表"""
self.unprocessed_messages.clear()
self.new_messages_count = 0
# Forward reference for type hints
DecisionInfoType = DecisionInfo
class ActionPlanner:
"""行动规划器"""
def __init__(self, stream_id: str):
self.llm = LLM_request(
model=global_config.llm_normal,
temperature=0.7,
max_tokens=1000,
request_type="action_planning"
)
self.personality_info = Individuality.get_instance().get_prompt(type = "personality", x_person = 2, level = 2)
self.name = global_config.BOT_NICKNAME
self.chat_observer = ChatObserver.get_instance(stream_id)
async def plan(
self,
goal: str,
method: str,
reasoning: str,
action_history: List[Dict[str, str]] = None,
decision_info: DecisionInfoType = None # Use DecisionInfoType here
) -> Tuple[str, str]:
"""规划下一步行动
Args:
goal: 对话目标
method: 实现方法
reasoning: 目标原因
action_history: 行动历史记录
decision_info: 决策信息
Returns:
Tuple[str, str]: (行动类型, 行动原因)
"""
# 构建提示词
logger.debug(f"开始规划行动:当前目标: {goal}")
# 获取最近20条消息
messages = self.chat_observer.get_message_history(limit=20)
chat_history_text = ""
for msg in messages:
time_str = datetime.datetime.fromtimestamp(msg["time"]).strftime("%H:%M:%S")
user_info = UserInfo.from_dict(msg.get("user_info", {}))
sender = user_info.user_nickname or f"用户{user_info.user_id}"
if sender == self.name:
sender = "你说"
chat_history_text += f"{time_str},{sender}:{msg.get('processed_plain_text', '')}\n"
personality_text = f"你的名字是{self.name}{self.personality_info}"
# 构建action历史文本
action_history_text = ""
if action_history and action_history[-1]['action'] == "direct_reply":
action_history_text = "你刚刚发言回复了对方"
# 构建决策信息文本
decision_info_text = ""
if decision_info:
decision_info_text = "当前对话状态:\n"
if decision_info.is_cold_chat:
decision_info_text += f"对话处于冷场状态,已持续{int(decision_info.cold_chat_duration)}\n"
if decision_info.new_messages_count > 0:
decision_info_text += f"{decision_info.new_messages_count}条新消息未处理\n"
user_response_time = decision_info.get_user_response_time()
if user_response_time:
decision_info_text += f"距离用户上次发言已过去{int(user_response_time)}\n"
bot_response_time = decision_info.get_bot_response_time()
if bot_response_time:
decision_info_text += f"距离你上次发言已过去{int(bot_response_time)}\n"
if decision_info.active_users:
decision_info_text += f"当前活跃用户数: {len(decision_info.active_users)}\n"
prompt = f"""{personality_text}。现在你在参与一场QQ聊天请分析以下内容根据信息决定下一步行动
当前对话目标:{goal}
实现该对话目标的方式:{method}
产生该对话目标的原因:{reasoning}
{decision_info_text}
{action_history_text}
最近的对话记录:
{chat_history_text}
请你接下去想想要你要做什么,可以发言,可以等待,可以倾听,可以调取知识。注意不同行动类型的要求,不要重复发言:
行动类型:
fetch_knowledge: 需要调取知识,当需要专业知识或特定信息时选择
wait: 当你做出了发言,对方尚未回复时等待对方的回复
listening: 倾听对方发言,当你认为对方发言尚未结束时采用
direct_reply: 不符合上述情况,回复对方,注意不要过多或者重复发言
rethink_goal: 重新思考对话目标,当发现对话目标不合适时选择,会重新思考对话目标
judge_conversation: 判断对话是否结束,当发现对话目标已经达到或者希望停止对话时选择,会判断对话是否结束
请以JSON格式输出包含以下字段
1. action: 行动类型,注意你之前的行为
2. reason: 选择该行动的原因,注意你之前的行为(简要解释)
注意请严格按照JSON格式输出不要包含任何其他内容。"""
logger.debug(f"发送到LLM的提示词: {prompt}")
try:
content, _ = await self.llm.generate_response_async(prompt)
logger.debug(f"LLM原始返回内容: {content}")
# 使用简化函数提取JSON内容
success, result = get_items_from_json(
content,
"action", "reason",
default_values={"action": "direct_reply", "reason": "默认原因"}
)
if not success:
return "direct_reply", "JSON解析失败选择直接回复"
action = result["action"]
reason = result["reason"]
# 验证action类型
if action not in ["direct_reply", "fetch_knowledge", "wait", "listening", "rethink_goal", "judge_conversation"]:
logger.warning(f"未知的行动类型: {action}默认使用listening")
action = "listening"
logger.info(f"规划的行动: {action}")
logger.info(f"行动原因: {reason}")
return action, reason
except Exception as e:
logger.error(f"规划行动时出错: {str(e)}")
return "direct_reply", "发生错误,选择直接回复"
class GoalAnalyzer: class GoalAnalyzer:
"""对话目标分析器""" """对话目标分析器"""
@@ -549,136 +319,6 @@ class Waiter:
logger.info("等待中...") logger.info("等待中...")
class ReplyGenerator:
"""回复生成器"""
def __init__(self, stream_id: str):
self.llm = LLM_request(
model=global_config.llm_normal,
temperature=0.7,
max_tokens=300,
request_type="reply_generation"
)
self.personality_info = Individuality.get_instance().get_prompt(type = "personality", x_person = 2, level = 2)
self.name = global_config.BOT_NICKNAME
self.chat_observer = ChatObserver.get_instance(stream_id)
self.reply_checker = ReplyChecker(stream_id)
async def generate(
self,
goal: str,
chat_history: List[Message],
knowledge_cache: Dict[str, str],
previous_reply: Optional[str] = None,
retry_count: int = 0
) -> str:
"""生成回复
Args:
goal: 对话目标
chat_history: 聊天历史
knowledge_cache: 知识缓存
previous_reply: 上一次生成的回复(如果有)
retry_count: 当前重试次数
Returns:
str: 生成的回复
"""
# 构建提示词
logger.debug(f"开始生成回复:当前目标: {goal}")
self.chat_observer.trigger_update() # 触发立即更新
if not await self.chat_observer.wait_for_update():
logger.warning("等待消息更新超时")
messages = self.chat_observer.get_message_history(limit=20)
chat_history_text = ""
for msg in messages:
time_str = datetime.datetime.fromtimestamp(msg["time"]).strftime("%H:%M:%S")
user_info = UserInfo.from_dict(msg.get("user_info", {}))
sender = user_info.user_nickname or f"用户{user_info.user_id}"
if sender == self.name:
sender = "你说"
chat_history_text += f"{time_str},{sender}:{msg.get('processed_plain_text', '')}\n"
# 整理知识缓存
knowledge_text = ""
if knowledge_cache:
knowledge_text = "\n相关知识:"
if isinstance(knowledge_cache, dict):
for _source, content in knowledge_cache.items():
knowledge_text += f"\n{content}"
elif isinstance(knowledge_cache, list):
for item in knowledge_cache:
knowledge_text += f"\n{item}"
# 添加上一次生成的回复信息
previous_reply_text = ""
if previous_reply:
previous_reply_text = f"\n上一次生成的回复(需要改进):\n{previous_reply}"
personality_text = f"你的名字是{self.name}{self.personality_info}"
prompt = f"""{personality_text}。现在你在参与一场QQ聊天请根据以下信息生成回复
当前对话目标:{goal}
{knowledge_text}
{previous_reply_text}
最近的聊天记录:
{chat_history_text}
请根据上述信息,以你的性格特征生成一个自然、得体的回复。回复应该:
1. 符合对话目标,以""的角度发言
2. 体现你的性格特征
3. 自然流畅,像正常聊天一样,简短
4. 适当利用相关知识,但不要生硬引用
{'5. 改进上一次回复中的问题' if previous_reply else ''}
请注意把握聊天内容,不要回复的太有条理,可以有个性。请分清""和对方说的话,不要把""说的话当做对方说的话,这是你自己说的话。
请你回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景,尽量不要说你说过的话
请你注意不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只输出回复内容。
不要输出多余内容(包括前后缀冒号和引号括号表情包at或 @等 )。
请直接输出回复内容,不需要任何额外格式。"""
try:
content, _ = await self.llm.generate_response_async(prompt)
logger.info(f"生成的回复: {content}")
# is_new = self.chat_observer.check()
# logger.debug(f"再看一眼聊天记录,{'有' if is_new else '没有'}新消息")
# 如果有新消息,重新生成回复
# if is_new:
# logger.info("检测到新消息,重新生成回复")
# return await self.generate(
# goal, chat_history, knowledge_cache,
# None, retry_count
# )
return content
except Exception as e:
logger.error(f"生成回复时出错: {e}")
return "抱歉,我现在有点混乱,让我重新思考一下..."
async def check_reply(
self,
reply: str,
goal: str,
retry_count: int = 0
) -> Tuple[bool, str, bool]:
"""检查回复是否合适
Args:
reply: 生成的回复
goal: 对话目标
retry_count: 当前重试次数
Returns:
Tuple[bool, str, bool]: (是否合适, 原因, 是否需要重新规划)
"""
return await self.reply_checker.check(reply, goal, retry_count)
class PFCNotificationHandler(NotificationHandler): class PFCNotificationHandler(NotificationHandler):
"""PFC的通知处理器""" """PFC的通知处理器"""
@@ -736,296 +376,6 @@ class PFCNotificationHandler(NotificationHandler):
self.logger.error(f"通知数据: {getattr(notification, 'data', None)}") self.logger.error(f"通知数据: {getattr(notification, 'data', None)}")
class Conversation:
# 类级别的实例管理
_instances: Dict[str, 'Conversation'] = {}
_instance_lock = asyncio.Lock()
_init_events: Dict[str, asyncio.Event] = {}
_initializing: Dict[str, bool] = {}
@classmethod
async def get_instance(cls, stream_id: str) -> Optional['Conversation']:
"""获取或创建对话实例
Args:
stream_id: 聊天流ID
Returns:
Optional[Conversation]: 对话实例如果创建或等待失败则返回None
"""
try:
# 检查是否已经有实例
if stream_id in cls._instances:
return cls._instances[stream_id]
async with cls._instance_lock:
# 再次检查,防止在获取锁的过程中其他线程创建了实例
if stream_id in cls._instances:
return cls._instances[stream_id]
# 如果正在初始化,等待初始化完成
if stream_id in cls._initializing and cls._initializing[stream_id]:
event = cls._init_events.get(stream_id)
if event:
try:
# 在等待之前释放锁
cls._instance_lock.release()
await asyncio.wait_for(event.wait(), timeout=10.0) # 增加超时时间到10秒
# 重新获取锁
await cls._instance_lock.acquire()
if stream_id in cls._instances:
return cls._instances[stream_id]
except asyncio.TimeoutError:
logger.error(f"等待实例 {stream_id} 初始化超时")
# 清理超时的初始化状态
cls._initializing[stream_id] = False
if stream_id in cls._init_events:
del cls._init_events[stream_id]
return None
# 创建新实例
logger.info(f"创建新的对话实例: {stream_id}")
cls._initializing[stream_id] = True
cls._init_events[stream_id] = asyncio.Event()
# 在锁保护下创建实例
instance = cls(stream_id)
cls._instances[stream_id] = instance
# 启动实例初始化(在后台运行)
asyncio.create_task(instance._initialize())
return instance
except Exception as e:
logger.error(f"获取对话实例失败: {e}")
return None
async def _initialize(self):
"""初始化实例(在后台运行)"""
try:
logger.info(f"开始初始化对话实例: {self.stream_id}")
start_time = time.time()
logger.info("启动观察器...")
self.chat_observer.start() # 启动观察器
logger.info(f"观察器启动完成,耗时: {time.time() - start_time:.2f}")
await asyncio.sleep(1) # 给观察器一些启动时间
# 获取初始目标
logger.info("开始分析初始对话目标...")
goal_start_time = time.time()
self.current_goal, self.current_method, self.goal_reasoning = await self.goal_analyzer.analyze_goal()
logger.info(f"目标分析完成,耗时: {time.time() - goal_start_time:.2f}")
# 标记初始化完成
logger.info("标记初始化完成...")
self.__class__._initializing[self.stream_id] = False
if self.stream_id in self.__class__._init_events:
self.__class__._init_events[self.stream_id].set()
# 启动对话循环
logger.info("启动对话循环...")
asyncio.create_task(self._conversation_loop())
total_time = time.time() - start_time
logger.info(f"实例初始化完成,总耗时: {total_time:.2f}")
except Exception as e:
logger.error(f"初始化对话实例失败: {e}")
# 清理失败的初始化
self.__class__._initializing[self.stream_id] = False
if self.stream_id in self.__class__._init_events:
self.__class__._init_events[self.stream_id].set()
if self.stream_id in self.__class__._instances:
del self.__class__._instances[self.stream_id]
async def start(self):
"""开始对话流程"""
try:
logger.info("对话系统启动")
self.should_continue = True
await self._conversation_loop()
except Exception as e:
logger.error(f"启动对话系统失败: {e}")
raise
async def _conversation_loop(self):
"""对话循环"""
# 获取最近的消息历史
self.current_goal, self.current_method, self.goal_reasoning = await self.goal_analyzer.analyze_goal()
while self.should_continue:
# 执行行动
self.chat_observer.trigger_update() # 触发立即更新
if not await self.chat_observer.wait_for_update():
logger.warning("等待消息更新超时")
# 使用决策信息来辅助行动规划
action, reason = await self.action_planner.plan(
self.current_goal,
self.current_method,
self.goal_reasoning,
self.action_history,
self.decision_info # 传入决策信息
)
# 执行行动
await self._handle_action(action, reason)
# 清理已处理的消息
self.decision_info.clear_unprocessed_messages()
def _convert_to_message(self, msg_dict: Dict[str, Any]) -> Message:
"""将消息字典转换为Message对象"""
try:
chat_info = msg_dict.get("chat_info", {})
chat_stream = ChatStream.from_dict(chat_info)
user_info = UserInfo.from_dict(msg_dict.get("user_info", {}))
return Message(
message_id=msg_dict["message_id"],
chat_stream=chat_stream,
time=msg_dict["time"],
user_info=user_info,
processed_plain_text=msg_dict.get("processed_plain_text", ""),
detailed_plain_text=msg_dict.get("detailed_plain_text", "")
)
except Exception as e:
logger.warning(f"转换消息时出错: {e}")
raise
async def _handle_action(self, action: str, reason: str):
"""处理规划的行动"""
logger.info(f"执行行动: {action}, 原因: {reason}")
# 记录action历史
self.action_history.append({
"action": action,
"reason": reason,
"time": datetime.datetime.now().strftime("%H:%M:%S")
})
# 只保留最近的10条记录
if len(self.action_history) > 10:
self.action_history = self.action_history[-10:]
if action == "direct_reply":
self.state = ConversationState.GENERATING
messages = self.chat_observer.get_message_history(limit=30)
self.generated_reply = await self.reply_generator.generate(
self.current_goal,
self.current_method,
[self._convert_to_message(msg) for msg in messages],
self.knowledge_cache
)
# 检查回复是否合适
is_suitable, reason, need_replan = await self.reply_generator.check_reply(
self.generated_reply,
self.current_goal
)
await self._send_reply()
elif action == "fetch_knowledge":
self.state = ConversationState.GENERATING
messages = self.chat_observer.get_message_history(limit=30)
knowledge, sources = await self.knowledge_fetcher.fetch(
self.current_goal,
[self._convert_to_message(msg) for msg in messages]
)
logger.info(f"获取到知识,来源: {sources}")
if knowledge != "未找到相关知识":
self.knowledge_cache[sources] = knowledge
elif action == "rethink_goal":
self.state = ConversationState.RETHINKING
self.current_goal, self.current_method, self.goal_reasoning = await self.goal_analyzer.analyze_goal()
elif action == "judge_conversation":
self.state = ConversationState.JUDGING
self.goal_achieved, self.stop_conversation, self.reason = await self.goal_analyzer.analyze_conversation(self.current_goal, self.goal_reasoning)
# 如果当前目标达成但还有其他目标
if self.goal_achieved and not self.stop_conversation:
alternative_goals = await self.goal_analyzer.get_alternative_goals()
if alternative_goals:
# 切换到下一个目标
self.current_goal, self.current_method, self.goal_reasoning = alternative_goals[0]
logger.info(f"当前目标已达成,切换到新目标: {self.current_goal}")
return
if self.stop_conversation:
await self._stop_conversation()
elif action == "listening":
self.state = ConversationState.LISTENING
logger.info("倾听对方发言...")
if await self.waiter.wait(): # 如果返回True表示超时
await self._send_timeout_message()
await self._stop_conversation()
else: # wait
self.state = ConversationState.WAITING
logger.info("等待更多信息...")
if await self.waiter.wait(): # 如果返回True表示超时
await self._send_timeout_message()
await self._stop_conversation()
async def _stop_conversation(self):
"""完全停止对话"""
logger.info("停止对话")
self.should_continue = False
self.state = ConversationState.ENDED
# 删除实例这会同时停止chat_observer
await self.remove_instance(self.stream_id)
async def _send_timeout_message(self):
"""发送超时结束消息"""
try:
messages = self.chat_observer.get_message_history(limit=1)
if not messages:
return
latest_message = self._convert_to_message(messages[0])
await self.direct_sender.send_message(
chat_stream=self.chat_stream,
content="抱歉,由于等待时间过长,我需要先去忙别的了。下次再聊吧~",
reply_to_message=latest_message
)
except Exception as e:
logger.error(f"发送超时消息失败: {str(e)}")
async def _send_reply(self):
"""发送回复"""
if not self.generated_reply:
logger.warning("没有生成回复")
return
messages = self.chat_observer.get_message_history(limit=1)
if not messages:
logger.warning("没有最近的消息可以回复")
return
latest_message = self._convert_to_message(messages[0])
try:
await self.direct_sender.send_message(
chat_stream=self.chat_stream,
content=self.generated_reply,
reply_to_message=latest_message
)
self.chat_observer.trigger_update() # 触发立即更新
if not await self.chat_observer.wait_for_update():
logger.warning("等待消息更新超时")
self.state = ConversationState.ANALYZING
except Exception as e:
logger.error(f"发送消息失败: {str(e)}")
self.state = ConversationState.ANALYZING
class DirectMessageSender: class DirectMessageSender:
"""直接发送消息到平台的发送器""" """直接发送消息到平台的发送器"""

View File

@@ -0,0 +1,97 @@
from typing import Dict, Optional
from src.common.logger import get_module_logger
from .pfc import Conversation
import traceback
logger = get_module_logger("pfc_manager")
class PFCManager:
"""PFC对话管理器负责管理所有对话实例"""
# 单例模式
_instance = None
# 会话实例管理
_instances: Dict[str, Conversation] = {}
_initializing: Dict[str, bool] = {}
@classmethod
def get_instance(cls) -> 'PFCManager':
"""获取管理器单例
Returns:
PFCManager: 管理器实例
"""
if cls._instance is None:
cls._instance = PFCManager()
return cls._instance
async def get_or_create_conversation(self, stream_id: str) -> Optional[Conversation]:
"""获取或创建对话实例
Args:
stream_id: 聊天流ID
Returns:
Optional[Conversation]: 对话实例创建失败则返回None
"""
# 检查是否已经有实例
if stream_id in self._initializing and self._initializing[stream_id]:
logger.debug(f"会话实例正在初始化中: {stream_id}")
return None
if stream_id in self._instances:
logger.debug(f"使用现有会话实例: {stream_id}")
return self._instances[stream_id]
try:
# 创建新实例
logger.info(f"创建新的对话实例: {stream_id}")
self._initializing[stream_id] = True
# 创建实例
conversation_instance = Conversation(stream_id)
self._instances[stream_id] = conversation_instance
# 启动实例初始化
await self._initialize_conversation(conversation_instance)
except Exception as e:
logger.error(f"创建会话实例失败: {stream_id}, 错误: {e}")
return None
return conversation_instance
async def _initialize_conversation(self, conversation: Conversation):
"""初始化会话实例
Args:
conversation: 要初始化的会话实例
"""
stream_id = conversation.stream_id
try:
logger.info(f"开始初始化会话实例: {stream_id}")
# 启动初始化流程
await conversation._initialize()
# 标记初始化完成
self._initializing[stream_id] = False
logger.info(f"会话实例 {stream_id} 初始化完成")
except Exception as e:
logger.error(f"管理器初始化会话实例失败: {stream_id}, 错误: {e}")
logger.error(traceback.format_exc())
# 清理失败的初始化
async def get_conversation(self, stream_id: str) -> Optional[Conversation]:
"""获取已存在的会话实例
Args:
stream_id: 聊天流ID
Returns:
Optional[Conversation]: 会话实例不存在则返回None
"""
return self._instances.get(stream_id)

View File

@@ -0,0 +1,153 @@
import datetime
import asyncio
from typing import List, Optional, Dict, Any, Tuple, Literal, Set
from enum import Enum
from src.common.logger import get_module_logger
from ..chat.chat_stream import ChatStream
from ..message.message_base import UserInfo, Seg
from ..chat.message import Message
from ..models.utils_model import LLM_request
from ..config.config import global_config
from src.plugins.chat.message import MessageSending
from ..message.api import global_api
from ..storage.storage import MessageStorage
from .chat_observer import ChatObserver
from .reply_checker import ReplyChecker
from .pfc_utils import get_items_from_json
from src.individuality.individuality import Individuality
from .chat_states import NotificationHandler, Notification, NotificationType
import time
from dataclasses import dataclass, field
from .conversation import Conversation
logger = get_module_logger("reply_generator")
class ReplyGenerator:
"""回复生成器"""
def __init__(self, stream_id: str):
self.llm = LLM_request(
model=global_config.llm_normal,
temperature=0.7,
max_tokens=300,
request_type="reply_generation"
)
self.personality_info = Individuality.get_instance().get_prompt(type = "personality", x_person = 2, level = 2)
self.name = global_config.BOT_NICKNAME
self.chat_observer = ChatObserver.get_instance(stream_id)
self.reply_checker = ReplyChecker(stream_id)
async def generate(
self,
goal: str,
chat_history: List[Message],
knowledge_cache: Dict[str, str],
previous_reply: Optional[str] = None,
retry_count: int = 0
) -> str:
"""生成回复
Args:
goal: 对话目标
chat_history: 聊天历史
knowledge_cache: 知识缓存
previous_reply: 上一次生成的回复(如果有)
retry_count: 当前重试次数
Returns:
str: 生成的回复
"""
# 构建提示词
logger.debug(f"开始生成回复:当前目标: {goal}")
self.chat_observer.trigger_update() # 触发立即更新
if not await self.chat_observer.wait_for_update():
logger.warning("等待消息更新超时")
messages = self.chat_observer.get_message_history(limit=20)
chat_history_text = ""
for msg in messages:
time_str = datetime.datetime.fromtimestamp(msg["time"]).strftime("%H:%M:%S")
user_info = UserInfo.from_dict(msg.get("user_info", {}))
sender = user_info.user_nickname or f"用户{user_info.user_id}"
if sender == self.name:
sender = "你说"
chat_history_text += f"{time_str},{sender}:{msg.get('processed_plain_text', '')}\n"
# 整理知识缓存
knowledge_text = ""
if knowledge_cache:
knowledge_text = "\n相关知识:"
if isinstance(knowledge_cache, dict):
for _source, content in knowledge_cache.items():
knowledge_text += f"\n{content}"
elif isinstance(knowledge_cache, list):
for item in knowledge_cache:
knowledge_text += f"\n{item}"
# 添加上一次生成的回复信息
previous_reply_text = ""
if previous_reply:
previous_reply_text = f"\n上一次生成的回复(需要改进):\n{previous_reply}"
personality_text = f"你的名字是{self.name}{self.personality_info}"
prompt = f"""{personality_text}。现在你在参与一场QQ聊天请根据以下信息生成回复
当前对话目标:{goal}
{knowledge_text}
{previous_reply_text}
最近的聊天记录:
{chat_history_text}
请根据上述信息,以你的性格特征生成一个自然、得体的回复。回复应该:
1. 符合对话目标,以""的角度发言
2. 体现你的性格特征
3. 自然流畅,像正常聊天一样,简短
4. 适当利用相关知识,但不要生硬引用
{'5. 改进上一次回复中的问题' if previous_reply else ''}
请注意把握聊天内容,不要回复的太有条理,可以有个性。请分清""和对方说的话,不要把""说的话当做对方说的话,这是你自己说的话。
请你回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景,尽量不要说你说过的话
请你注意不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只输出回复内容。
不要输出多余内容(包括前后缀冒号和引号括号表情包at或 @等 )。
请直接输出回复内容,不需要任何额外格式。"""
try:
content, _ = await self.llm.generate_response_async(prompt)
logger.info(f"生成的回复: {content}")
# is_new = self.chat_observer.check()
# logger.debug(f"再看一眼聊天记录,{'有' if is_new else '没有'}新消息")
# 如果有新消息,重新生成回复
# if is_new:
# logger.info("检测到新消息,重新生成回复")
# return await self.generate(
# goal, chat_history, knowledge_cache,
# None, retry_count
# )
return content
except Exception as e:
logger.error(f"生成回复时出错: {e}")
return "抱歉,我现在有点混乱,让我重新思考一下..."
async def check_reply(
self,
reply: str,
goal: str,
retry_count: int = 0
) -> Tuple[bool, str, bool]:
"""检查回复是否合适
Args:
reply: 生成的回复
goal: 对话目标
retry_count: 当前重试次数
Returns:
Tuple[bool, str, bool]: (是否合适, 原因, 是否需要重新规划)
"""
return await self.reply_checker.check(reply, goal, retry_count)

View File

@@ -1,14 +1,13 @@
from ..moods.moods import MoodManager # 导入情绪管理器 from ..moods.moods import MoodManager # 导入情绪管理器
from ..config.config import global_config from ..config.config import global_config
from .message import MessageRecv from .message import MessageRecv
from ..PFC.pfc import Conversation, ConversationState from ..PFC.pfc_manager import PFCManager
from .chat_stream import chat_manager from .chat_stream import chat_manager
from ..chat_module.only_process.only_message_process import MessageProcessor from ..chat_module.only_process.only_message_process import MessageProcessor
from src.common.logger import get_module_logger, CHAT_STYLE_CONFIG, LogConfig from src.common.logger import get_module_logger, CHAT_STYLE_CONFIG, LogConfig
from ..chat_module.think_flow_chat.think_flow_chat import ThinkFlowChat from ..chat_module.think_flow_chat.think_flow_chat import ThinkFlowChat
from ..chat_module.reasoning_chat.reasoning_chat import ReasoningChat from ..chat_module.reasoning_chat.reasoning_chat import ReasoningChat
import asyncio
import traceback import traceback
# 定义日志配置 # 定义日志配置
@@ -32,9 +31,14 @@ class ChatBot:
self.reasoning_chat = ReasoningChat() self.reasoning_chat = ReasoningChat()
self.only_process_chat = MessageProcessor() self.only_process_chat = MessageProcessor()
# 创建初始化PFC管理器的任务会在_ensure_started时执行
self.pfc_manager = PFCManager.get_instance()
async def _ensure_started(self): async def _ensure_started(self):
"""确保所有任务已启动""" """确保所有任务已启动"""
if not self._started: if not self._started:
logger.info("确保ChatBot所有任务已启动")
self._started = True self._started = True
async def _create_PFC_chat(self, message: MessageRecv): async def _create_PFC_chat(self, message: MessageRecv):
@@ -42,27 +46,11 @@ class ChatBot:
chat_id = str(message.chat_stream.stream_id) chat_id = str(message.chat_stream.stream_id)
if global_config.enable_pfc_chatting: if global_config.enable_pfc_chatting:
# 获取或创建对话实例
conversation = await Conversation.get_instance(chat_id)
if conversation is None:
logger.error(f"创建或获取对话实例失败: {chat_id}")
return
# 如果是新创建的实例,启动对话系统 await self.pfc_manager.get_or_create_conversation(chat_id)
if conversation.state == ConversationState.INIT:
asyncio.create_task(conversation.start())
logger.info(f"为聊天 {chat_id} 创建新的对话实例")
elif conversation.state == ConversationState.ENDED:
# 如果实例已经结束,重新创建
await Conversation.remove_instance(chat_id)
conversation = await Conversation.get_instance(chat_id)
if conversation is None:
logger.error(f"重新创建对话实例失败: {chat_id}")
return
asyncio.create_task(conversation.start())
logger.info(f"为聊天 {chat_id} 重新创建对话实例")
except Exception as e: except Exception as e:
logger.error(f"创建PFC聊天失败: {e}") logger.error(f"创建PFC聊天失败: {e}")
async def message_process(self, message_data: str) -> None: async def message_process(self, message_data: str) -> None:
"""处理转化后的统一格式消息 """处理转化后的统一格式消息
@@ -90,6 +78,9 @@ class ChatBot:
- 性能计时 - 性能计时
""" """
try: try:
# 确保所有任务已启动
await self._ensure_started()
message = MessageRecv(message_data) message = MessageRecv(message_data)
groupinfo = message.message_info.group_info groupinfo = message.message_info.group_info
userinfo = message.message_info.user_info userinfo = message.message_info.user_info