fix:模块化PFC
This commit is contained in:
@@ -11,17 +11,16 @@ from ..chat.message import Message
|
||||
from ..models.utils_model import LLM_request
|
||||
from ..config.config import global_config
|
||||
from src.plugins.chat.message import MessageSending
|
||||
from src.plugins.chat.chat_stream import chat_manager
|
||||
from ..message.api import global_api
|
||||
from ..storage.storage import MessageStorage
|
||||
from .chat_observer import ChatObserver
|
||||
from .pfc_KnowledgeFetcher import KnowledgeFetcher
|
||||
from .reply_checker import ReplyChecker
|
||||
from .reply_generator import ReplyGenerator
|
||||
from .pfc_utils import get_items_from_json
|
||||
from src.individuality.individuality import Individuality
|
||||
from .chat_states import NotificationHandler, Notification, NotificationType
|
||||
import time
|
||||
from dataclasses import dataclass, field
|
||||
from .conversation import Conversation
|
||||
|
||||
logger = get_module_logger("pfc")
|
||||
|
||||
@@ -43,235 +42,6 @@ class ConversationState(Enum):
|
||||
|
||||
ActionType = Literal["direct_reply", "fetch_knowledge", "wait"]
|
||||
|
||||
|
||||
@dataclass
|
||||
class DecisionInfo:
|
||||
"""决策信息类,用于收集和管理来自chat_observer的通知信息"""
|
||||
|
||||
# 消息相关
|
||||
last_message_time: Optional[float] = None
|
||||
last_message_content: Optional[str] = None
|
||||
last_message_sender: Optional[str] = None
|
||||
new_messages_count: int = 0
|
||||
unprocessed_messages: List[Dict[str, Any]] = field(default_factory=list)
|
||||
|
||||
# 对话状态
|
||||
is_cold_chat: bool = False
|
||||
cold_chat_duration: float = 0.0
|
||||
last_bot_speak_time: Optional[float] = None
|
||||
last_user_speak_time: Optional[float] = None
|
||||
|
||||
# 对话参与者
|
||||
active_users: Set[str] = field(default_factory=set)
|
||||
bot_id: str = field(default="")
|
||||
|
||||
def update_from_message(self, message: Dict[str, Any]):
|
||||
"""从消息更新信息
|
||||
|
||||
Args:
|
||||
message: 消息数据
|
||||
"""
|
||||
self.last_message_time = message["time"]
|
||||
self.last_message_content = message.get("processed_plain_text", "")
|
||||
|
||||
user_info = UserInfo.from_dict(message.get("user_info", {}))
|
||||
self.last_message_sender = user_info.user_id
|
||||
|
||||
if user_info.user_id == self.bot_id:
|
||||
self.last_bot_speak_time = message["time"]
|
||||
else:
|
||||
self.last_user_speak_time = message["time"]
|
||||
self.active_users.add(user_info.user_id)
|
||||
|
||||
self.new_messages_count += 1
|
||||
self.unprocessed_messages.append(message)
|
||||
|
||||
def update_cold_chat_status(self, is_cold: bool, current_time: float):
|
||||
"""更新冷场状态
|
||||
|
||||
Args:
|
||||
is_cold: 是否冷场
|
||||
current_time: 当前时间
|
||||
"""
|
||||
self.is_cold_chat = is_cold
|
||||
if is_cold and self.last_message_time:
|
||||
self.cold_chat_duration = current_time - self.last_message_time
|
||||
|
||||
def get_active_duration(self) -> float:
|
||||
"""获取当前活跃时长
|
||||
|
||||
Returns:
|
||||
float: 最后一条消息到现在的时长(秒)
|
||||
"""
|
||||
if not self.last_message_time:
|
||||
return 0.0
|
||||
return time.time() - self.last_message_time
|
||||
|
||||
def get_user_response_time(self) -> Optional[float]:
|
||||
"""获取用户响应时间
|
||||
|
||||
Returns:
|
||||
Optional[float]: 用户最后发言到现在的时长(秒),如果没有用户发言则返回None
|
||||
"""
|
||||
if not self.last_user_speak_time:
|
||||
return None
|
||||
return time.time() - self.last_user_speak_time
|
||||
|
||||
def get_bot_response_time(self) -> Optional[float]:
|
||||
"""获取机器人响应时间
|
||||
|
||||
Returns:
|
||||
Optional[float]: 机器人最后发言到现在的时长(秒),如果没有机器人发言则返回None
|
||||
"""
|
||||
if not self.last_bot_speak_time:
|
||||
return None
|
||||
return time.time() - self.last_bot_speak_time
|
||||
|
||||
def clear_unprocessed_messages(self):
|
||||
"""清空未处理消息列表"""
|
||||
self.unprocessed_messages.clear()
|
||||
self.new_messages_count = 0
|
||||
|
||||
|
||||
# Forward reference for type hints
|
||||
DecisionInfoType = DecisionInfo
|
||||
|
||||
|
||||
class ActionPlanner:
|
||||
"""行动规划器"""
|
||||
|
||||
def __init__(self, stream_id: str):
|
||||
self.llm = LLM_request(
|
||||
model=global_config.llm_normal,
|
||||
temperature=0.7,
|
||||
max_tokens=1000,
|
||||
request_type="action_planning"
|
||||
)
|
||||
self.personality_info = Individuality.get_instance().get_prompt(type = "personality", x_person = 2, level = 2)
|
||||
self.name = global_config.BOT_NICKNAME
|
||||
self.chat_observer = ChatObserver.get_instance(stream_id)
|
||||
|
||||
async def plan(
|
||||
self,
|
||||
goal: str,
|
||||
method: str,
|
||||
reasoning: str,
|
||||
action_history: List[Dict[str, str]] = None,
|
||||
decision_info: DecisionInfoType = None # Use DecisionInfoType here
|
||||
) -> Tuple[str, str]:
|
||||
"""规划下一步行动
|
||||
|
||||
Args:
|
||||
goal: 对话目标
|
||||
method: 实现方法
|
||||
reasoning: 目标原因
|
||||
action_history: 行动历史记录
|
||||
decision_info: 决策信息
|
||||
|
||||
Returns:
|
||||
Tuple[str, str]: (行动类型, 行动原因)
|
||||
"""
|
||||
# 构建提示词
|
||||
logger.debug(f"开始规划行动:当前目标: {goal}")
|
||||
|
||||
# 获取最近20条消息
|
||||
messages = self.chat_observer.get_message_history(limit=20)
|
||||
chat_history_text = ""
|
||||
for msg in messages:
|
||||
time_str = datetime.datetime.fromtimestamp(msg["time"]).strftime("%H:%M:%S")
|
||||
user_info = UserInfo.from_dict(msg.get("user_info", {}))
|
||||
sender = user_info.user_nickname or f"用户{user_info.user_id}"
|
||||
if sender == self.name:
|
||||
sender = "你说"
|
||||
chat_history_text += f"{time_str},{sender}:{msg.get('processed_plain_text', '')}\n"
|
||||
|
||||
personality_text = f"你的名字是{self.name},{self.personality_info}"
|
||||
|
||||
# 构建action历史文本
|
||||
action_history_text = ""
|
||||
if action_history and action_history[-1]['action'] == "direct_reply":
|
||||
action_history_text = "你刚刚发言回复了对方"
|
||||
|
||||
# 构建决策信息文本
|
||||
decision_info_text = ""
|
||||
if decision_info:
|
||||
decision_info_text = "当前对话状态:\n"
|
||||
if decision_info.is_cold_chat:
|
||||
decision_info_text += f"对话处于冷场状态,已持续{int(decision_info.cold_chat_duration)}秒\n"
|
||||
|
||||
if decision_info.new_messages_count > 0:
|
||||
decision_info_text += f"有{decision_info.new_messages_count}条新消息未处理\n"
|
||||
|
||||
user_response_time = decision_info.get_user_response_time()
|
||||
if user_response_time:
|
||||
decision_info_text += f"距离用户上次发言已过去{int(user_response_time)}秒\n"
|
||||
|
||||
bot_response_time = decision_info.get_bot_response_time()
|
||||
if bot_response_time:
|
||||
decision_info_text += f"距离你上次发言已过去{int(bot_response_time)}秒\n"
|
||||
|
||||
if decision_info.active_users:
|
||||
decision_info_text += f"当前活跃用户数: {len(decision_info.active_users)}\n"
|
||||
|
||||
prompt = f"""{personality_text}。现在你在参与一场QQ聊天,请分析以下内容,根据信息决定下一步行动:
|
||||
|
||||
当前对话目标:{goal}
|
||||
实现该对话目标的方式:{method}
|
||||
产生该对话目标的原因:{reasoning}
|
||||
|
||||
{decision_info_text}
|
||||
{action_history_text}
|
||||
|
||||
最近的对话记录:
|
||||
{chat_history_text}
|
||||
|
||||
请你接下去想想要你要做什么,可以发言,可以等待,可以倾听,可以调取知识。注意不同行动类型的要求,不要重复发言:
|
||||
行动类型:
|
||||
fetch_knowledge: 需要调取知识,当需要专业知识或特定信息时选择
|
||||
wait: 当你做出了发言,对方尚未回复时等待对方的回复
|
||||
listening: 倾听对方发言,当你认为对方发言尚未结束时采用
|
||||
direct_reply: 不符合上述情况,回复对方,注意不要过多或者重复发言
|
||||
rethink_goal: 重新思考对话目标,当发现对话目标不合适时选择,会重新思考对话目标
|
||||
judge_conversation: 判断对话是否结束,当发现对话目标已经达到或者希望停止对话时选择,会判断对话是否结束
|
||||
|
||||
请以JSON格式输出,包含以下字段:
|
||||
1. action: 行动类型,注意你之前的行为
|
||||
2. reason: 选择该行动的原因,注意你之前的行为(简要解释)
|
||||
|
||||
注意:请严格按照JSON格式输出,不要包含任何其他内容。"""
|
||||
|
||||
logger.debug(f"发送到LLM的提示词: {prompt}")
|
||||
try:
|
||||
content, _ = await self.llm.generate_response_async(prompt)
|
||||
logger.debug(f"LLM原始返回内容: {content}")
|
||||
|
||||
# 使用简化函数提取JSON内容
|
||||
success, result = get_items_from_json(
|
||||
content,
|
||||
"action", "reason",
|
||||
default_values={"action": "direct_reply", "reason": "默认原因"}
|
||||
)
|
||||
|
||||
if not success:
|
||||
return "direct_reply", "JSON解析失败,选择直接回复"
|
||||
|
||||
action = result["action"]
|
||||
reason = result["reason"]
|
||||
|
||||
# 验证action类型
|
||||
if action not in ["direct_reply", "fetch_knowledge", "wait", "listening", "rethink_goal", "judge_conversation"]:
|
||||
logger.warning(f"未知的行动类型: {action},默认使用listening")
|
||||
action = "listening"
|
||||
|
||||
logger.info(f"规划的行动: {action}")
|
||||
logger.info(f"行动原因: {reason}")
|
||||
return action, reason
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"规划行动时出错: {str(e)}")
|
||||
return "direct_reply", "发生错误,选择直接回复"
|
||||
|
||||
|
||||
class GoalAnalyzer:
|
||||
"""对话目标分析器"""
|
||||
|
||||
@@ -548,136 +318,6 @@ class Waiter:
|
||||
await asyncio.sleep(1)
|
||||
logger.info("等待中...")
|
||||
|
||||
|
||||
class ReplyGenerator:
|
||||
"""回复生成器"""
|
||||
|
||||
def __init__(self, stream_id: str):
|
||||
self.llm = LLM_request(
|
||||
model=global_config.llm_normal,
|
||||
temperature=0.7,
|
||||
max_tokens=300,
|
||||
request_type="reply_generation"
|
||||
)
|
||||
self.personality_info = Individuality.get_instance().get_prompt(type = "personality", x_person = 2, level = 2)
|
||||
self.name = global_config.BOT_NICKNAME
|
||||
self.chat_observer = ChatObserver.get_instance(stream_id)
|
||||
self.reply_checker = ReplyChecker(stream_id)
|
||||
|
||||
async def generate(
|
||||
self,
|
||||
goal: str,
|
||||
chat_history: List[Message],
|
||||
knowledge_cache: Dict[str, str],
|
||||
previous_reply: Optional[str] = None,
|
||||
retry_count: int = 0
|
||||
) -> str:
|
||||
"""生成回复
|
||||
|
||||
Args:
|
||||
goal: 对话目标
|
||||
chat_history: 聊天历史
|
||||
knowledge_cache: 知识缓存
|
||||
previous_reply: 上一次生成的回复(如果有)
|
||||
retry_count: 当前重试次数
|
||||
|
||||
Returns:
|
||||
str: 生成的回复
|
||||
"""
|
||||
# 构建提示词
|
||||
logger.debug(f"开始生成回复:当前目标: {goal}")
|
||||
self.chat_observer.trigger_update() # 触发立即更新
|
||||
if not await self.chat_observer.wait_for_update():
|
||||
logger.warning("等待消息更新超时")
|
||||
|
||||
messages = self.chat_observer.get_message_history(limit=20)
|
||||
chat_history_text = ""
|
||||
for msg in messages:
|
||||
time_str = datetime.datetime.fromtimestamp(msg["time"]).strftime("%H:%M:%S")
|
||||
user_info = UserInfo.from_dict(msg.get("user_info", {}))
|
||||
sender = user_info.user_nickname or f"用户{user_info.user_id}"
|
||||
if sender == self.name:
|
||||
sender = "你说"
|
||||
chat_history_text += f"{time_str},{sender}:{msg.get('processed_plain_text', '')}\n"
|
||||
|
||||
# 整理知识缓存
|
||||
knowledge_text = ""
|
||||
if knowledge_cache:
|
||||
knowledge_text = "\n相关知识:"
|
||||
if isinstance(knowledge_cache, dict):
|
||||
for _source, content in knowledge_cache.items():
|
||||
knowledge_text += f"\n{content}"
|
||||
elif isinstance(knowledge_cache, list):
|
||||
for item in knowledge_cache:
|
||||
knowledge_text += f"\n{item}"
|
||||
|
||||
# 添加上一次生成的回复信息
|
||||
previous_reply_text = ""
|
||||
if previous_reply:
|
||||
previous_reply_text = f"\n上一次生成的回复(需要改进):\n{previous_reply}"
|
||||
|
||||
personality_text = f"你的名字是{self.name},{self.personality_info}"
|
||||
|
||||
prompt = f"""{personality_text}。现在你在参与一场QQ聊天,请根据以下信息生成回复:
|
||||
|
||||
当前对话目标:{goal}
|
||||
{knowledge_text}
|
||||
{previous_reply_text}
|
||||
最近的聊天记录:
|
||||
{chat_history_text}
|
||||
|
||||
请根据上述信息,以你的性格特征生成一个自然、得体的回复。回复应该:
|
||||
1. 符合对话目标,以"你"的角度发言
|
||||
2. 体现你的性格特征
|
||||
3. 自然流畅,像正常聊天一样,简短
|
||||
4. 适当利用相关知识,但不要生硬引用
|
||||
{'5. 改进上一次回复中的问题' if previous_reply else ''}
|
||||
|
||||
请注意把握聊天内容,不要回复的太有条理,可以有个性。请分清"你"和对方说的话,不要把"你"说的话当做对方说的话,这是你自己说的话。
|
||||
请你回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景,尽量不要说你说过的话
|
||||
请你注意不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只输出回复内容。
|
||||
不要输出多余内容(包括前后缀,冒号和引号,括号,表情包,at或 @等 )。
|
||||
|
||||
请直接输出回复内容,不需要任何额外格式。"""
|
||||
|
||||
try:
|
||||
content, _ = await self.llm.generate_response_async(prompt)
|
||||
logger.info(f"生成的回复: {content}")
|
||||
# is_new = self.chat_observer.check()
|
||||
# logger.debug(f"再看一眼聊天记录,{'有' if is_new else '没有'}新消息")
|
||||
|
||||
# 如果有新消息,重新生成回复
|
||||
# if is_new:
|
||||
# logger.info("检测到新消息,重新生成回复")
|
||||
# return await self.generate(
|
||||
# goal, chat_history, knowledge_cache,
|
||||
# None, retry_count
|
||||
# )
|
||||
|
||||
return content
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"生成回复时出错: {e}")
|
||||
return "抱歉,我现在有点混乱,让我重新思考一下..."
|
||||
|
||||
async def check_reply(
|
||||
self,
|
||||
reply: str,
|
||||
goal: str,
|
||||
retry_count: int = 0
|
||||
) -> Tuple[bool, str, bool]:
|
||||
"""检查回复是否合适
|
||||
|
||||
Args:
|
||||
reply: 生成的回复
|
||||
goal: 对话目标
|
||||
retry_count: 当前重试次数
|
||||
|
||||
Returns:
|
||||
Tuple[bool, str, bool]: (是否合适, 原因, 是否需要重新规划)
|
||||
"""
|
||||
return await self.reply_checker.check(reply, goal, retry_count)
|
||||
|
||||
|
||||
class PFCNotificationHandler(NotificationHandler):
|
||||
"""PFC的通知处理器"""
|
||||
@@ -736,296 +376,6 @@ class PFCNotificationHandler(NotificationHandler):
|
||||
self.logger.error(f"通知数据: {getattr(notification, 'data', None)}")
|
||||
|
||||
|
||||
class Conversation:
|
||||
# 类级别的实例管理
|
||||
_instances: Dict[str, 'Conversation'] = {}
|
||||
_instance_lock = asyncio.Lock()
|
||||
_init_events: Dict[str, asyncio.Event] = {}
|
||||
_initializing: Dict[str, bool] = {}
|
||||
|
||||
@classmethod
|
||||
async def get_instance(cls, stream_id: str) -> Optional['Conversation']:
|
||||
"""获取或创建对话实例
|
||||
|
||||
Args:
|
||||
stream_id: 聊天流ID
|
||||
|
||||
Returns:
|
||||
Optional[Conversation]: 对话实例,如果创建或等待失败则返回None
|
||||
"""
|
||||
try:
|
||||
# 检查是否已经有实例
|
||||
if stream_id in cls._instances:
|
||||
return cls._instances[stream_id]
|
||||
|
||||
async with cls._instance_lock:
|
||||
# 再次检查,防止在获取锁的过程中其他线程创建了实例
|
||||
if stream_id in cls._instances:
|
||||
return cls._instances[stream_id]
|
||||
|
||||
# 如果正在初始化,等待初始化完成
|
||||
if stream_id in cls._initializing and cls._initializing[stream_id]:
|
||||
event = cls._init_events.get(stream_id)
|
||||
if event:
|
||||
try:
|
||||
# 在等待之前释放锁
|
||||
cls._instance_lock.release()
|
||||
await asyncio.wait_for(event.wait(), timeout=10.0) # 增加超时时间到10秒
|
||||
# 重新获取锁
|
||||
await cls._instance_lock.acquire()
|
||||
if stream_id in cls._instances:
|
||||
return cls._instances[stream_id]
|
||||
except asyncio.TimeoutError:
|
||||
logger.error(f"等待实例 {stream_id} 初始化超时")
|
||||
# 清理超时的初始化状态
|
||||
cls._initializing[stream_id] = False
|
||||
if stream_id in cls._init_events:
|
||||
del cls._init_events[stream_id]
|
||||
return None
|
||||
|
||||
# 创建新实例
|
||||
logger.info(f"创建新的对话实例: {stream_id}")
|
||||
cls._initializing[stream_id] = True
|
||||
cls._init_events[stream_id] = asyncio.Event()
|
||||
|
||||
# 在锁保护下创建实例
|
||||
instance = cls(stream_id)
|
||||
cls._instances[stream_id] = instance
|
||||
|
||||
# 启动实例初始化(在后台运行)
|
||||
asyncio.create_task(instance._initialize())
|
||||
|
||||
return instance
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"获取对话实例失败: {e}")
|
||||
return None
|
||||
|
||||
async def _initialize(self):
|
||||
"""初始化实例(在后台运行)"""
|
||||
try:
|
||||
logger.info(f"开始初始化对话实例: {self.stream_id}")
|
||||
|
||||
start_time = time.time()
|
||||
logger.info("启动观察器...")
|
||||
self.chat_observer.start() # 启动观察器
|
||||
logger.info(f"观察器启动完成,耗时: {time.time() - start_time:.2f}秒")
|
||||
|
||||
await asyncio.sleep(1) # 给观察器一些启动时间
|
||||
|
||||
# 获取初始目标
|
||||
logger.info("开始分析初始对话目标...")
|
||||
goal_start_time = time.time()
|
||||
self.current_goal, self.current_method, self.goal_reasoning = await self.goal_analyzer.analyze_goal()
|
||||
logger.info(f"目标分析完成,耗时: {time.time() - goal_start_time:.2f}秒")
|
||||
|
||||
# 标记初始化完成
|
||||
logger.info("标记初始化完成...")
|
||||
self.__class__._initializing[self.stream_id] = False
|
||||
if self.stream_id in self.__class__._init_events:
|
||||
self.__class__._init_events[self.stream_id].set()
|
||||
|
||||
# 启动对话循环
|
||||
logger.info("启动对话循环...")
|
||||
asyncio.create_task(self._conversation_loop())
|
||||
|
||||
total_time = time.time() - start_time
|
||||
logger.info(f"实例初始化完成,总耗时: {total_time:.2f}秒")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"初始化对话实例失败: {e}")
|
||||
# 清理失败的初始化
|
||||
self.__class__._initializing[self.stream_id] = False
|
||||
if self.stream_id in self.__class__._init_events:
|
||||
self.__class__._init_events[self.stream_id].set()
|
||||
if self.stream_id in self.__class__._instances:
|
||||
del self.__class__._instances[self.stream_id]
|
||||
|
||||
async def start(self):
|
||||
"""开始对话流程"""
|
||||
try:
|
||||
logger.info("对话系统启动")
|
||||
self.should_continue = True
|
||||
await self._conversation_loop()
|
||||
except Exception as e:
|
||||
logger.error(f"启动对话系统失败: {e}")
|
||||
raise
|
||||
|
||||
async def _conversation_loop(self):
|
||||
"""对话循环"""
|
||||
# 获取最近的消息历史
|
||||
self.current_goal, self.current_method, self.goal_reasoning = await self.goal_analyzer.analyze_goal()
|
||||
|
||||
while self.should_continue:
|
||||
# 执行行动
|
||||
self.chat_observer.trigger_update() # 触发立即更新
|
||||
if not await self.chat_observer.wait_for_update():
|
||||
logger.warning("等待消息更新超时")
|
||||
|
||||
# 使用决策信息来辅助行动规划
|
||||
action, reason = await self.action_planner.plan(
|
||||
self.current_goal,
|
||||
self.current_method,
|
||||
self.goal_reasoning,
|
||||
self.action_history,
|
||||
self.decision_info # 传入决策信息
|
||||
)
|
||||
|
||||
# 执行行动
|
||||
await self._handle_action(action, reason)
|
||||
|
||||
# 清理已处理的消息
|
||||
self.decision_info.clear_unprocessed_messages()
|
||||
|
||||
def _convert_to_message(self, msg_dict: Dict[str, Any]) -> Message:
|
||||
"""将消息字典转换为Message对象"""
|
||||
try:
|
||||
chat_info = msg_dict.get("chat_info", {})
|
||||
chat_stream = ChatStream.from_dict(chat_info)
|
||||
user_info = UserInfo.from_dict(msg_dict.get("user_info", {}))
|
||||
|
||||
return Message(
|
||||
message_id=msg_dict["message_id"],
|
||||
chat_stream=chat_stream,
|
||||
time=msg_dict["time"],
|
||||
user_info=user_info,
|
||||
processed_plain_text=msg_dict.get("processed_plain_text", ""),
|
||||
detailed_plain_text=msg_dict.get("detailed_plain_text", "")
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"转换消息时出错: {e}")
|
||||
raise
|
||||
|
||||
async def _handle_action(self, action: str, reason: str):
|
||||
"""处理规划的行动"""
|
||||
logger.info(f"执行行动: {action}, 原因: {reason}")
|
||||
|
||||
# 记录action历史
|
||||
self.action_history.append({
|
||||
"action": action,
|
||||
"reason": reason,
|
||||
"time": datetime.datetime.now().strftime("%H:%M:%S")
|
||||
})
|
||||
|
||||
# 只保留最近的10条记录
|
||||
if len(self.action_history) > 10:
|
||||
self.action_history = self.action_history[-10:]
|
||||
|
||||
if action == "direct_reply":
|
||||
self.state = ConversationState.GENERATING
|
||||
messages = self.chat_observer.get_message_history(limit=30)
|
||||
self.generated_reply = await self.reply_generator.generate(
|
||||
self.current_goal,
|
||||
self.current_method,
|
||||
[self._convert_to_message(msg) for msg in messages],
|
||||
self.knowledge_cache
|
||||
)
|
||||
|
||||
# 检查回复是否合适
|
||||
is_suitable, reason, need_replan = await self.reply_generator.check_reply(
|
||||
self.generated_reply,
|
||||
self.current_goal
|
||||
)
|
||||
|
||||
await self._send_reply()
|
||||
|
||||
elif action == "fetch_knowledge":
|
||||
self.state = ConversationState.GENERATING
|
||||
messages = self.chat_observer.get_message_history(limit=30)
|
||||
knowledge, sources = await self.knowledge_fetcher.fetch(
|
||||
self.current_goal,
|
||||
[self._convert_to_message(msg) for msg in messages]
|
||||
)
|
||||
logger.info(f"获取到知识,来源: {sources}")
|
||||
|
||||
if knowledge != "未找到相关知识":
|
||||
self.knowledge_cache[sources] = knowledge
|
||||
|
||||
elif action == "rethink_goal":
|
||||
self.state = ConversationState.RETHINKING
|
||||
self.current_goal, self.current_method, self.goal_reasoning = await self.goal_analyzer.analyze_goal()
|
||||
|
||||
elif action == "judge_conversation":
|
||||
self.state = ConversationState.JUDGING
|
||||
self.goal_achieved, self.stop_conversation, self.reason = await self.goal_analyzer.analyze_conversation(self.current_goal, self.goal_reasoning)
|
||||
|
||||
# 如果当前目标达成但还有其他目标
|
||||
if self.goal_achieved and not self.stop_conversation:
|
||||
alternative_goals = await self.goal_analyzer.get_alternative_goals()
|
||||
if alternative_goals:
|
||||
# 切换到下一个目标
|
||||
self.current_goal, self.current_method, self.goal_reasoning = alternative_goals[0]
|
||||
logger.info(f"当前目标已达成,切换到新目标: {self.current_goal}")
|
||||
return
|
||||
|
||||
if self.stop_conversation:
|
||||
await self._stop_conversation()
|
||||
|
||||
elif action == "listening":
|
||||
self.state = ConversationState.LISTENING
|
||||
logger.info("倾听对方发言...")
|
||||
if await self.waiter.wait(): # 如果返回True表示超时
|
||||
await self._send_timeout_message()
|
||||
await self._stop_conversation()
|
||||
|
||||
else: # wait
|
||||
self.state = ConversationState.WAITING
|
||||
logger.info("等待更多信息...")
|
||||
if await self.waiter.wait(): # 如果返回True表示超时
|
||||
await self._send_timeout_message()
|
||||
await self._stop_conversation()
|
||||
|
||||
async def _stop_conversation(self):
|
||||
"""完全停止对话"""
|
||||
logger.info("停止对话")
|
||||
self.should_continue = False
|
||||
self.state = ConversationState.ENDED
|
||||
# 删除实例(这会同时停止chat_observer)
|
||||
await self.remove_instance(self.stream_id)
|
||||
|
||||
async def _send_timeout_message(self):
|
||||
"""发送超时结束消息"""
|
||||
try:
|
||||
messages = self.chat_observer.get_message_history(limit=1)
|
||||
if not messages:
|
||||
return
|
||||
|
||||
latest_message = self._convert_to_message(messages[0])
|
||||
await self.direct_sender.send_message(
|
||||
chat_stream=self.chat_stream,
|
||||
content="抱歉,由于等待时间过长,我需要先去忙别的了。下次再聊吧~",
|
||||
reply_to_message=latest_message
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"发送超时消息失败: {str(e)}")
|
||||
|
||||
async def _send_reply(self):
|
||||
"""发送回复"""
|
||||
if not self.generated_reply:
|
||||
logger.warning("没有生成回复")
|
||||
return
|
||||
|
||||
messages = self.chat_observer.get_message_history(limit=1)
|
||||
if not messages:
|
||||
logger.warning("没有最近的消息可以回复")
|
||||
return
|
||||
|
||||
latest_message = self._convert_to_message(messages[0])
|
||||
try:
|
||||
await self.direct_sender.send_message(
|
||||
chat_stream=self.chat_stream,
|
||||
content=self.generated_reply,
|
||||
reply_to_message=latest_message
|
||||
)
|
||||
self.chat_observer.trigger_update() # 触发立即更新
|
||||
if not await self.chat_observer.wait_for_update():
|
||||
logger.warning("等待消息更新超时")
|
||||
|
||||
self.state = ConversationState.ANALYZING
|
||||
except Exception as e:
|
||||
logger.error(f"发送消息失败: {str(e)}")
|
||||
self.state = ConversationState.ANALYZING
|
||||
|
||||
|
||||
class DirectMessageSender:
|
||||
"""直接发送消息到平台的发送器"""
|
||||
|
||||
Reference in New Issue
Block a user