fix:模块化PFC
This commit is contained in:
157
src/plugins/PFC/action_planner.py
Normal file
157
src/plugins/PFC/action_planner.py
Normal file
@@ -0,0 +1,157 @@
|
||||
import datetime
|
||||
import asyncio
|
||||
from typing import List, Optional, Dict, Any, Tuple, Literal, Set
|
||||
from enum import Enum
|
||||
from src.common.logger import get_module_logger
|
||||
from ..chat.chat_stream import ChatStream
|
||||
from ..message.message_base import UserInfo, Seg
|
||||
from ..chat.message import Message
|
||||
from ..models.utils_model import LLM_request
|
||||
from ..config.config import global_config
|
||||
from src.plugins.chat.message import MessageSending
|
||||
from ..message.api import global_api
|
||||
from ..storage.storage import MessageStorage
|
||||
from .chat_observer import ChatObserver
|
||||
from .reply_checker import ReplyChecker
|
||||
from .pfc_utils import get_items_from_json
|
||||
from src.individuality.individuality import Individuality
|
||||
from .chat_states import NotificationHandler, Notification, NotificationType
|
||||
import time
|
||||
from dataclasses import dataclass, field
|
||||
from .pfc import DecisionInfo, DecisionInfoType
|
||||
|
||||
logger = get_module_logger("action_planner")
|
||||
|
||||
class ActionPlanner:
|
||||
"""行动规划器"""
|
||||
|
||||
def __init__(self, stream_id: str):
|
||||
self.llm = LLM_request(
|
||||
model=global_config.llm_normal,
|
||||
temperature=0.7,
|
||||
max_tokens=1000,
|
||||
request_type="action_planning"
|
||||
)
|
||||
self.personality_info = Individuality.get_instance().get_prompt(type = "personality", x_person = 2, level = 2)
|
||||
self.name = global_config.BOT_NICKNAME
|
||||
self.chat_observer = ChatObserver.get_instance(stream_id)
|
||||
|
||||
async def plan(
|
||||
self,
|
||||
goal: str,
|
||||
method: str,
|
||||
reasoning: str,
|
||||
action_history: List[Dict[str, str]] = None,
|
||||
decision_info: DecisionInfoType = None # Use DecisionInfoType here
|
||||
) -> Tuple[str, str]:
|
||||
"""规划下一步行动
|
||||
|
||||
Args:
|
||||
goal: 对话目标
|
||||
method: 实现方法
|
||||
reasoning: 目标原因
|
||||
action_history: 行动历史记录
|
||||
decision_info: 决策信息
|
||||
|
||||
Returns:
|
||||
Tuple[str, str]: (行动类型, 行动原因)
|
||||
"""
|
||||
# 构建提示词
|
||||
logger.debug(f"开始规划行动:当前目标: {goal}")
|
||||
|
||||
# 获取最近20条消息
|
||||
messages = self.chat_observer.get_message_history(limit=20)
|
||||
chat_history_text = ""
|
||||
for msg in messages:
|
||||
time_str = datetime.datetime.fromtimestamp(msg["time"]).strftime("%H:%M:%S")
|
||||
user_info = UserInfo.from_dict(msg.get("user_info", {}))
|
||||
sender = user_info.user_nickname or f"用户{user_info.user_id}"
|
||||
if sender == self.name:
|
||||
sender = "你说"
|
||||
chat_history_text += f"{time_str},{sender}:{msg.get('processed_plain_text', '')}\n"
|
||||
|
||||
personality_text = f"你的名字是{self.name},{self.personality_info}"
|
||||
|
||||
# 构建action历史文本
|
||||
action_history_text = ""
|
||||
if action_history and action_history[-1]['action'] == "direct_reply":
|
||||
action_history_text = "你刚刚发言回复了对方"
|
||||
|
||||
# 构建决策信息文本
|
||||
decision_info_text = ""
|
||||
if decision_info:
|
||||
decision_info_text = "当前对话状态:\n"
|
||||
if decision_info.is_cold_chat:
|
||||
decision_info_text += f"对话处于冷场状态,已持续{int(decision_info.cold_chat_duration)}秒\n"
|
||||
|
||||
if decision_info.new_messages_count > 0:
|
||||
decision_info_text += f"有{decision_info.new_messages_count}条新消息未处理\n"
|
||||
|
||||
user_response_time = decision_info.get_user_response_time()
|
||||
if user_response_time:
|
||||
decision_info_text += f"距离用户上次发言已过去{int(user_response_time)}秒\n"
|
||||
|
||||
bot_response_time = decision_info.get_bot_response_time()
|
||||
if bot_response_time:
|
||||
decision_info_text += f"距离你上次发言已过去{int(bot_response_time)}秒\n"
|
||||
|
||||
if decision_info.active_users:
|
||||
decision_info_text += f"当前活跃用户数: {len(decision_info.active_users)}\n"
|
||||
|
||||
prompt = f"""{personality_text}。现在你在参与一场QQ聊天,请分析以下内容,根据信息决定下一步行动:
|
||||
|
||||
当前对话目标:{goal}
|
||||
实现该对话目标的方式:{method}
|
||||
产生该对话目标的原因:{reasoning}
|
||||
|
||||
{decision_info_text}
|
||||
{action_history_text}
|
||||
|
||||
最近的对话记录:
|
||||
{chat_history_text}
|
||||
|
||||
请你接下去想想要你要做什么,可以发言,可以等待,可以倾听,可以调取知识。注意不同行动类型的要求,不要重复发言:
|
||||
行动类型:
|
||||
fetch_knowledge: 需要调取知识,当需要专业知识或特定信息时选择
|
||||
wait: 当你做出了发言,对方尚未回复时等待对方的回复
|
||||
listening: 倾听对方发言,当你认为对方发言尚未结束时采用
|
||||
direct_reply: 不符合上述情况,回复对方,注意不要过多或者重复发言
|
||||
rethink_goal: 重新思考对话目标,当发现对话目标不合适时选择,会重新思考对话目标
|
||||
judge_conversation: 判断对话是否结束,当发现对话目标已经达到或者希望停止对话时选择,会判断对话是否结束
|
||||
|
||||
请以JSON格式输出,包含以下字段:
|
||||
1. action: 行动类型,注意你之前的行为
|
||||
2. reason: 选择该行动的原因,注意你之前的行为(简要解释)
|
||||
|
||||
注意:请严格按照JSON格式输出,不要包含任何其他内容。"""
|
||||
|
||||
logger.debug(f"发送到LLM的提示词: {prompt}")
|
||||
try:
|
||||
content, _ = await self.llm.generate_response_async(prompt)
|
||||
logger.debug(f"LLM原始返回内容: {content}")
|
||||
|
||||
# 使用简化函数提取JSON内容
|
||||
success, result = get_items_from_json(
|
||||
content,
|
||||
"action", "reason",
|
||||
default_values={"action": "direct_reply", "reason": "默认原因"}
|
||||
)
|
||||
|
||||
if not success:
|
||||
return "direct_reply", "JSON解析失败,选择直接回复"
|
||||
|
||||
action = result["action"]
|
||||
reason = result["reason"]
|
||||
|
||||
# 验证action类型
|
||||
if action not in ["direct_reply", "fetch_knowledge", "wait", "listening", "rethink_goal", "judge_conversation"]:
|
||||
logger.warning(f"未知的行动类型: {action},默认使用listening")
|
||||
action = "listening"
|
||||
|
||||
logger.info(f"规划的行动: {action}")
|
||||
logger.info(f"行动原因: {reason}")
|
||||
return action, reason
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"规划行动时出错: {str(e)}")
|
||||
return "direct_reply", "发生错误,选择直接回复"
|
||||
Reference in New Issue
Block a user