大修_execute_request炸程序的问题

This commit is contained in:
UnCLAS-Prommer
2025-04-09 13:52:12 +08:00
parent a42d1b3664
commit e35c2bb9b4
9 changed files with 93 additions and 46 deletions

View File

@@ -117,9 +117,12 @@ class GoalAnalyzer:
}}"""
logger.debug(f"发送到LLM的提示词: {prompt}")
content, _ = await self.llm.generate_response_async(prompt)
logger.debug(f"LLM原始返回内容: {content}")
try:
content, _ = await self.llm.generate_response_async(prompt)
logger.debug(f"LLM原始返回内容: {content}")
except Exception as e:
logger.error(f"分析对话目标时出错: {str(e)}")
content = ""
# 使用简化函数提取JSON内容
success, result = get_items_from_json(
content,

View File

@@ -340,6 +340,9 @@ class EmojiManager:
if description is not None:
embedding = await get_embedding(description, request_type="emoji")
if not embedding:
logger.error("获取消息嵌入向量失败")
raise ValueError("获取消息嵌入向量失败")
# 准备数据库记录
emoji_record = {
"filename": filename,

View File

@@ -79,7 +79,13 @@ async def get_embedding(text, request_type="embedding"):
"""获取文本的embedding向量"""
llm = LLM_request(model=global_config.embedding, request_type=request_type)
# return llm.get_embedding_sync(text)
return await llm.get_embedding(text)
try:
embedding = await llm.get_embedding(text)
except Exception as e:
logger.error(f"获取embedding失败: {str(e)}")
embedding = None
return embedding
async def get_recent_group_messages(chat_id: str, limit: int = 12) -> list:

View File

@@ -1316,15 +1316,24 @@ class HippocampusManager:
"""从文本中获取相关记忆的公共接口"""
if not self._initialized:
raise RuntimeError("HippocampusManager 尚未初始化,请先调用 initialize 方法")
return await self._hippocampus.get_memory_from_text(
text, max_memory_num, max_memory_length, max_depth, fast_retrieval
)
try:
response = await self._hippocampus.get_memory_from_text(text, max_memory_num, max_memory_length, max_depth, fast_retrieval)
except Exception as e:
logger.error(f"文本激活记忆失败: {e}")
response = []
return response
async def get_activate_from_text(self, text: str, max_depth: int = 3, fast_retrieval: bool = False) -> float:
"""从文本中获取激活值的公共接口"""
if not self._initialized:
raise RuntimeError("HippocampusManager 尚未初始化,请先调用 initialize 方法")
return await self._hippocampus.get_activate_from_text(text, max_depth, fast_retrieval)
try:
response = await self._hippocampus.get_activate_from_text(text, max_depth, fast_retrieval)
except Exception as e:
logger.error(f"文本产生激活值失败: {e}")
response = 0.0
return response
def get_memory_from_keyword(self, keyword: str, max_depth: int = 2) -> list:
"""从关键词获取相关记忆的公共接口"""

View File

@@ -121,7 +121,11 @@ class ScheduleGenerator:
self.today_done_list = []
if not self.today_schedule_text:
logger.info(f"{today.strftime('%Y-%m-%d')}的日程不存在,准备生成新的日程")
self.today_schedule_text = await self.generate_daily_schedule(target_date=today)
try:
self.today_schedule_text = await self.generate_daily_schedule(target_date=today)
except Exception as e:
logger.error(f"生成日程时发生错误: {str(e)}")
self.today_schedule_text = ""
self.save_today_schedule_to_db()

View File

@@ -29,10 +29,13 @@ class TopicIdentifier:
消息内容:{text}"""
# 使用 LLM_request 类进行请求
topic, _, _ = await self.llm_topic_judge.generate_response(prompt)
try:
topic, _, _ = await self.llm_topic_judge.generate_response(prompt)
except Exception as e:
logger.error(f"LLM 请求topic失败: {e}")
return None
if not topic:
logger.error("LLM API 返回为空")
logger.error("LLM 得到的topic为空")
return None
# 直接在这里处理主题解析