fix: 更新模型配置和环境变量,调整版本号和模型参数

This commit is contained in:
墨梓柒
2025-07-27 13:37:21 +08:00
parent 2335ec6577
commit e240fb92ca
7 changed files with 194 additions and 323 deletions

33
bot.py
View File

@@ -74,36 +74,6 @@ def easter_egg():
print(rainbow_text) print(rainbow_text)
def scan_provider(env_config: dict):
provider = {}
# 利用未初始化 env 时获取的 env_mask 来对新的环境变量集去重
# 避免 GPG_KEY 这样的变量干扰检查
env_config = dict(filter(lambda item: item[0] not in env_mask, env_config.items()))
# 遍历 env_config 的所有键
for key in env_config:
# 检查键是否符合 {provider}_BASE_URL 或 {provider}_KEY 的格式
if key.endswith("_BASE_URL") or key.endswith("_KEY"):
# 提取 provider 名称
provider_name = key.split("_", 1)[0] # 从左分割一次,取第一部分
# 初始化 provider 的字典(如果尚未初始化)
if provider_name not in provider:
provider[provider_name] = {"url": None, "key": None}
# 根据键的类型填充 url 或 key
if key.endswith("_BASE_URL"):
provider[provider_name]["url"] = env_config[key]
elif key.endswith("_KEY"):
provider[provider_name]["key"] = env_config[key]
# 检查每个 provider 是否同时存在 url 和 key
for provider_name, config in provider.items():
if config["url"] is None or config["key"] is None:
logger.error(f"provider 内容:{config}\nenv_config 内容:{env_config}")
raise ValueError(f"请检查 '{provider_name}' 提供商配置是否丢失 BASE_URL 或 KEY 环境变量")
async def graceful_shutdown(): async def graceful_shutdown():
try: try:
@@ -229,9 +199,6 @@ def raw_main():
easter_egg() easter_egg()
env_config = {key: os.getenv(key) for key in os.environ}
scan_provider(env_config)
# 返回MainSystem实例 # 返回MainSystem实例
return MainSystem() return MainSystem()

View File

@@ -3,7 +3,7 @@ from typing import List, Dict
from packaging.version import Version from packaging.version import Version
NEWEST_VER = "0.1.0" # 当前支持的最新版本 NEWEST_VER = "0.1.1" # 当前支持的最新版本
@dataclass @dataclass
class APIProvider: class APIProvider:

View File

@@ -1,162 +0,0 @@
import shutil
import tomlkit
from tomlkit.items import Table, KeyType
from pathlib import Path
from datetime import datetime
def get_key_comment(toml_table, key):
# 获取key的注释如果有
if hasattr(toml_table, "trivia") and hasattr(toml_table.trivia, "comment"):
return toml_table.trivia.comment
if hasattr(toml_table, "value") and isinstance(toml_table.value, dict):
item = toml_table.value.get(key)
if item is not None and hasattr(item, "trivia"):
return item.trivia.comment
if hasattr(toml_table, "keys"):
for k in toml_table.keys():
if isinstance(k, KeyType) and k.key == key:
return k.trivia.comment
return None
def compare_dicts(new, old, path=None, new_comments=None, old_comments=None, logs=None):
# 递归比较两个dict找出新增和删减项收集注释
if path is None:
path = []
if logs is None:
logs = []
if new_comments is None:
new_comments = {}
if old_comments is None:
old_comments = {}
# 新增项
for key in new:
if key == "version":
continue
if key not in old:
comment = get_key_comment(new, key)
logs.append(f"新增: {'.'.join(path + [str(key)])} 注释: {comment if comment else ''}")
elif isinstance(new[key], (dict, Table)) and isinstance(old.get(key), (dict, Table)):
compare_dicts(new[key], old[key], path + [str(key)], new_comments, old_comments, logs)
# 删减项
for key in old:
if key == "version":
continue
if key not in new:
comment = get_key_comment(old, key)
logs.append(f"删减: {'.'.join(path + [str(key)])} 注释: {comment if comment else ''}")
return logs
def update_config():
print("开始更新配置文件...")
# 获取根目录路径
root_dir = Path(__file__).parent.parent.parent.parent
template_dir = root_dir / "template"
config_dir = root_dir / "config"
old_config_dir = config_dir / "old"
# 创建old目录如果不存在
old_config_dir.mkdir(exist_ok=True)
# 定义文件路径
template_path = template_dir / "bot_config_template.toml"
old_config_path = config_dir / "bot_config.toml"
new_config_path = config_dir / "bot_config.toml"
# 读取旧配置文件
old_config = {}
if old_config_path.exists():
print(f"发现旧配置文件: {old_config_path}")
with open(old_config_path, "r", encoding="utf-8") as f:
old_config = tomlkit.load(f)
# 生成带时间戳的新文件名
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
old_backup_path = old_config_dir / f"bot_config_{timestamp}.toml"
# 移动旧配置文件到old目录
shutil.move(old_config_path, old_backup_path)
print(f"已备份旧配置文件到: {old_backup_path}")
# 复制模板文件到配置目录
print(f"从模板文件创建新配置: {template_path}")
shutil.copy2(template_path, new_config_path)
# 读取新配置文件
with open(new_config_path, "r", encoding="utf-8") as f:
new_config = tomlkit.load(f)
# 检查version是否相同
if old_config and "inner" in old_config and "inner" in new_config:
old_version = old_config["inner"].get("version") # type: ignore
new_version = new_config["inner"].get("version") # type: ignore
if old_version and new_version and old_version == new_version:
print(f"检测到版本号相同 (v{old_version}),跳过更新")
# 如果version相同恢复旧配置文件并返回
shutil.move(old_backup_path, old_config_path) # type: ignore
return
else:
print(f"检测到版本号不同: 旧版本 v{old_version} -> 新版本 v{new_version}")
# 输出新增和删减项及注释
if old_config:
print("配置项变动如下:")
logs = compare_dicts(new_config, old_config)
if logs:
for log in logs:
print(log)
else:
print("无新增或删减项")
# 递归更新配置
def update_dict(target, source):
for key, value in source.items():
# 跳过version字段的更新
if key == "version":
continue
if key in target:
if isinstance(value, dict) and isinstance(target[key], (dict, Table)):
update_dict(target[key], value)
else:
try:
# 对数组类型进行特殊处理
if isinstance(value, list):
# 如果是空数组,确保它保持为空数组
if not value:
target[key] = tomlkit.array()
else:
# 特殊处理正则表达式数组和包含正则表达式的结构
if key == "ban_msgs_regex":
# 直接使用原始值,不进行额外处理
target[key] = value
elif key == "regex_rules":
# 对于regex_rules需要特殊处理其中的regex字段
target[key] = value
else:
# 检查是否包含正则表达式相关的字典项
contains_regex = False
if value and isinstance(value[0], dict) and "regex" in value[0]:
contains_regex = True
target[key] = value if contains_regex else tomlkit.array(str(value))
else:
# 其他类型使用item方法创建新值
target[key] = tomlkit.item(value)
except (TypeError, ValueError):
# 如果转换失败,直接赋值
target[key] = value
# 将旧配置的值更新到新配置中
print("开始合并新旧配置...")
update_dict(new_config, old_config)
# 保存更新后的配置(保留注释和格式)
with open(new_config_path, "w", encoding="utf-8") as f:
f.write(tomlkit.dumps(new_config))
print("配置文件更新完成")
if __name__ == "__main__":
update_config()

View File

@@ -229,120 +229,84 @@ show_prompt = false # 是否显示prompt
[model] [model]
model_max_output_length = 1024 # 模型单次返回的最大token数 model_max_output_length = 800 # 模型单次返回的最大token数
#------------必填:组件模型------------ #------------模型任务配置------------
# 所有模型名称需要对应 model_config.toml 中配置的模型名称
[model.utils] # 在麦麦的一些组件中使用的模型,例如表情包模块,取名模块,关系模块,是麦麦必须的模型 [model.utils] # 在麦麦的一些组件中使用的模型,例如表情包模块,取名模块,关系模块,是麦麦必须的模型
name = "Pro/deepseek-ai/DeepSeek-V3" model_name = "siliconflow-deepseek-v3" # 对应 model_config.toml 中的模型名称
provider = "SILICONFLOW" temperature = 0.2 # 模型温度新V3建议0.1-0.3
pri_in = 2 #模型的输入价格(非必填,可以记录消耗) max_tokens = 800 # 最大输出token数
pri_out = 8 #模型的输出价格(非必填,可以记录消耗)
#默认temp 0.2 如果你使用的是老V3或者其他模型请自己修改temp参数
temp = 0.2 #模型的温度新V3建议0.1-0.3
[model.utils_small] # 在麦麦的一些组件中使用的小模型,消耗量较大,建议使用速度较快的小模型 [model.utils_small] # 在麦麦的一些组件中使用的小模型,消耗量较大,建议使用速度较快的小模型
# 强烈建议使用免费的小模型 model_name = "qwen3-8b" # 对应 model_config.toml 中的模型名称
name = "Qwen/Qwen3-8B" temperature = 0.7
provider = "SILICONFLOW" max_tokens = 800
pri_in = 0
pri_out = 0
temp = 0.7
enable_thinking = false # 是否启用思考 enable_thinking = false # 是否启用思考
[model.replyer_1] # 首要回复模型,还用于表达器和表达方式学习 [model.replyer_1] # 首要回复模型,还用于表达器和表达方式学习
name = "Pro/deepseek-ai/DeepSeek-V3" model_name = "siliconflow-deepseek-v3" # 对应 model_config.toml 中的模型名称
provider = "SILICONFLOW" temperature = 0.2 # 模型温度新V3建议0.1-0.3
pri_in = 2 #模型的输入价格(非必填,可以记录消耗) max_tokens = 800
pri_out = 8 #模型的输出价格(非必填,可以记录消耗)
#默认temp 0.2 如果你使用的是老V3或者其他模型请自己修改temp参数
temp = 0.2 #模型的温度新V3建议0.1-0.3
[model.replyer_2] # 次要回复模型 [model.replyer_2] # 次要回复模型
name = "Pro/deepseek-ai/DeepSeek-V3" model_name = "siliconflow-deepseek-r1" # 对应 model_config.toml 中的模型名称
provider = "SILICONFLOW" temperature = 0.7 # 模型温度
pri_in = 2 #模型的输入价格(非必填,可以记录消耗) max_tokens = 800
pri_out = 8 #模型的输出价格(非必填,可以记录消耗)
#默认temp 0.2 如果你使用的是老V3或者其他模型请自己修改temp参数
temp = 0.2 #模型的温度新V3建议0.1-0.3
[model.planner] #决策:负责决定麦麦该做什么的模型 [model.planner] #决策:负责决定麦麦该做什么的模型
name = "Pro/deepseek-ai/DeepSeek-V3" model_name = "siliconflow-deepseek-v3" # 对应 model_config.toml 中的模型名称
provider = "SILICONFLOW" temperature = 0.3
pri_in = 2 max_tokens = 800
pri_out = 8
temp = 0.3
[model.emotion] #负责麦麦的情绪变化 [model.emotion] #负责麦麦的情绪变化
name = "Pro/deepseek-ai/DeepSeek-V3" model_name = "siliconflow-deepseek-v3" # 对应 model_config.toml 中的模型名称
provider = "SILICONFLOW" temperature = 0.3
pri_in = 2 max_tokens = 800
pri_out = 8
temp = 0.3
[model.memory] # 记忆模型 [model.memory] # 记忆模型
name = "Qwen/Qwen3-30B-A3B" model_name = "qwen3-30b" # 对应 model_config.toml 中的模型名称
provider = "SILICONFLOW" temperature = 0.7
pri_in = 0.7 max_tokens = 800
pri_out = 2.8
temp = 0.7
enable_thinking = false # 是否启用思考 enable_thinking = false # 是否启用思考
[model.vlm] # 图像识别模型 [model.vlm] # 图像识别模型
name = "Pro/Qwen/Qwen2.5-VL-7B-Instruct" model_name = "qwen2.5-vl-72b" # 对应 model_config.toml 中的模型名称
provider = "SILICONFLOW" max_tokens = 800
pri_in = 0.35
pri_out = 0.35
[model.voice] # 语音识别模型 [model.voice] # 语音识别模型
name = "FunAudioLLM/SenseVoiceSmall" model_name = "sensevoice-small" # 对应 model_config.toml 中的模型名称
provider = "SILICONFLOW"
pri_in = 0
pri_out = 0
[model.tool_use] #工具调用模型,需要使用支持工具调用的模型 [model.tool_use] #工具调用模型,需要使用支持工具调用的模型
name = "Qwen/Qwen3-14B" model_name = "qwen3-14b" # 对应 model_config.toml 中的模型名称
provider = "SILICONFLOW" temperature = 0.7
pri_in = 0.5 max_tokens = 800
pri_out = 2
temp = 0.7
enable_thinking = false # 是否启用思考qwen3 only enable_thinking = false # 是否启用思考qwen3 only
#嵌入模型 #嵌入模型
[model.embedding] [model.embedding]
name = "BAAI/bge-m3" model_name = "bge-m3" # 对应 model_config.toml 中的模型名称
provider = "SILICONFLOW"
pri_in = 0
pri_out = 0
#------------LPMM知识库模型------------ #------------LPMM知识库模型------------
[model.lpmm_entity_extract] # 实体提取模型 [model.lpmm_entity_extract] # 实体提取模型
name = "Pro/deepseek-ai/DeepSeek-V3" model_name = "siliconflow-deepseek-v3" # 对应 model_config.toml 中的模型名称
provider = "SILICONFLOW" temperature = 0.2
pri_in = 2 max_tokens = 800
pri_out = 8
temp = 0.2
[model.lpmm_rdf_build] # RDF构建模型 [model.lpmm_rdf_build] # RDF构建模型
name = "Pro/deepseek-ai/DeepSeek-V3" model_name = "siliconflow-deepseek-v3" # 对应 model_config.toml 中的模型名称
provider = "SILICONFLOW" temperature = 0.2
pri_in = 2 max_tokens = 800
pri_out = 8
temp = 0.2
[model.lpmm_qa] # 问答模型 [model.lpmm_qa] # 问答模型
name = "Qwen/Qwen3-30B-A3B" model_name = "deepseek-r1-distill-qwen-32b" # 对应 model_config.toml 中的模型名称
provider = "SILICONFLOW" temperature = 0.7
pri_in = 0.7 max_tokens = 800
pri_out = 2.8
temp = 0.7
enable_thinking = false # 是否启用思考 enable_thinking = false # 是否启用思考
[maim_message] [maim_message]
auth_token = [] # 认证令牌用于API验证为空则不启用验证 auth_token = [] # 认证令牌用于API验证为空则不启用验证
# 以下项目若要使用需要打开use_custom并单独配置maim_message的服务器 # 以下项目若要使用需要打开use_custom并单独配置maim_message的服务器

View File

@@ -1,5 +1,5 @@
[inner] [inner]
version = "0.1.0" version = "0.1.1"
# 配置文件版本号迭代规则同bot_config.toml # 配置文件版本号迭代规则同bot_config.toml
@@ -50,21 +50,79 @@ price_out = 8.0
#可选若无该字段默认值为false #可选若无该字段默认值为false
#force_stream_mode = true #force_stream_mode = true
#[[models]] [[models]]
#model_identifier = "deepseek-reasoner" model_identifier = "deepseek-reasoner"
#name = "deepseek-r1" name = "deepseek-r1"
#api_provider = "DeepSeek" api_provider = "DeepSeek"
#model_flags = ["text", "tool_calling", "reasoning"] model_flags = [ "text", "tool_calling", "reasoning",]
#price_in = 4.0 price_in = 4.0
#price_out = 16.0 price_out = 16.0
#
#[[models]] [[models]]
#model_identifier = "BAAI/bge-m3" model_identifier = "Pro/deepseek-ai/DeepSeek-V3"
#name = "siliconflow-bge-m3" name = "siliconflow-deepseek-v3"
#api_provider = "SiliconFlow" api_provider = "SiliconFlow"
#model_flags = ["text", "embedding"] price_in = 2.0
#price_in = 0 price_out = 8.0
#price_out = 0
[[models]]
model_identifier = "Pro/deepseek-ai/DeepSeek-R1"
name = "siliconflow-deepseek-r1"
api_provider = "SiliconFlow"
price_in = 4.0
price_out = 16.0
[[models]]
model_identifier = "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
name = "deepseek-r1-distill-qwen-32b"
api_provider = "SiliconFlow"
price_in = 4.0
price_out = 16.0
[[models]]
model_identifier = "Qwen/Qwen3-8B"
name = "qwen3-8b"
api_provider = "SiliconFlow"
price_in = 0
price_out = 0
[[models]]
model_identifier = "Qwen/Qwen3-14B"
name = "qwen3-14b"
api_provider = "SiliconFlow"
price_in = 0.5
price_out = 2.0
[[models]]
model_identifier = "Qwen/Qwen3-30B-A3B"
name = "qwen3-30b"
api_provider = "SiliconFlow"
price_in = 0.7
price_out = 2.8
[[models]]
model_identifier = "Qwen/Qwen2.5-VL-72B-Instruct"
name = "qwen2.5-vl-72b"
api_provider = "SiliconFlow"
model_flags = [ "vision", "text",]
price_in = 4.13
price_out = 4.13
[[models]]
model_identifier = "FunAudioLLM/SenseVoiceSmall"
name = "sensevoice-small"
api_provider = "SiliconFlow"
model_flags = [ "audio",]
price_in = 0
price_out = 0
[[models]]
model_identifier = "BAAI/bge-m3"
name = "bge-m3"
api_provider = "SiliconFlow"
model_flags = [ "text", "embedding",]
price_in = 0
price_out = 0
[task_model_usage] [task_model_usage]

View File

@@ -1,5 +1,5 @@
[inner] [inner]
version = "0.1.0" version = "0.1.1"
# 配置文件版本号迭代规则同bot_config.toml # 配置文件版本号迭代规则同bot_config.toml
@@ -50,27 +50,85 @@ price_out = 8.0
#可选若无该字段默认值为false #可选若无该字段默认值为false
#force_stream_mode = true #force_stream_mode = true
#[[models]] [[models]]
#model_identifier = "deepseek-reasoner" model_identifier = "deepseek-reasoner"
#name = "deepseek-r1" name = "deepseek-r1"
#api_provider = "DeepSeek" api_provider = "DeepSeek"
#model_flags = ["text", "tool_calling", "reasoning"] model_flags = [ "text", "tool_calling", "reasoning",]
#price_in = 4.0 price_in = 4.0
#price_out = 16.0 price_out = 16.0
#
#[[models]] [[models]]
#model_identifier = "BAAI/bge-m3" model_identifier = "Pro/deepseek-ai/DeepSeek-V3"
#name = "siliconflow-bge-m3" name = "siliconflow-deepseek-v3"
#api_provider = "SiliconFlow" api_provider = "SiliconFlow"
#model_flags = ["text", "embedding"] price_in = 2.0
#price_in = 0 price_out = 8.0
#price_out = 0
[[models]]
model_identifier = "Pro/deepseek-ai/DeepSeek-R1"
name = "siliconflow-deepseek-r1"
api_provider = "SiliconFlow"
price_in = 4.0
price_out = 16.0
[[models]]
model_identifier = "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
name = "deepseek-r1-distill-qwen-32b"
api_provider = "SiliconFlow"
price_in = 4.0
price_out = 16.0
[[models]]
model_identifier = "Qwen/Qwen3-8B"
name = "qwen3-8b"
api_provider = "SiliconFlow"
price_in = 0
price_out = 0
[[models]]
model_identifier = "Qwen/Qwen3-14B"
name = "qwen3-14b"
api_provider = "SiliconFlow"
price_in = 0.5
price_out = 2.0
[[models]]
model_identifier = "Qwen/Qwen3-30B-A3B"
name = "qwen3-30b"
api_provider = "SiliconFlow"
price_in = 0.7
price_out = 2.8
[[models]]
model_identifier = "Qwen/Qwen2.5-VL-72B-Instruct"
name = "qwen2.5-vl-72b"
api_provider = "SiliconFlow"
model_flags = [ "vision", "text",]
price_in = 4.13
price_out = 4.13
[[models]]
model_identifier = "FunAudioLLM/SenseVoiceSmall"
name = "sensevoice-small"
api_provider = "SiliconFlow"
model_flags = [ "audio",]
price_in = 0
price_out = 0
[[models]]
model_identifier = "BAAI/bge-m3"
name = "bge-m3"
api_provider = "SiliconFlow"
model_flags = [ "text", "embedding",]
price_in = 0
price_out = 0
[task_model_usage] [task_model_usage]
#llm_reasoning = {model="deepseek-r1", temperature=0.8, max_tokens=1024, max_retry=0} llm_reasoning = {model="deepseek-r1", temperature=0.8, max_tokens=1024, max_retry=0}
#llm_normal = {model="deepseek-r1", max_tokens=1024, max_retry=0} llm_normal = {model="deepseek-r1", max_tokens=1024, max_retry=0}
#embedding = "siliconflow-bge-m3" embedding = "siliconflow-bge-m3"
#schedule = [ #schedule = [
# "deepseek-v3", # "deepseek-v3",
# "deepseek-r1", # "deepseek-r1",

View File

@@ -1,16 +1,2 @@
HOST=127.0.0.1 HOST=127.0.0.1
PORT=8000 PORT=8000
#key and url
SILICONFLOW_BASE_URL=https://api.siliconflow.cn/v1/
DEEP_SEEK_BASE_URL=https://api.deepseek.com/v1
CHAT_ANY_WHERE_BASE_URL=https://api.chatanywhere.tech/v1
BAILIAN_BASE_URL = https://dashscope.aliyuncs.com/compatible-mode/v1
xxxxxxx_BASE_URL=https://xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
# 定义你要用的api的key(需要去对应网站申请哦)
DEEP_SEEK_KEY=
CHAT_ANY_WHERE_KEY=
SILICONFLOW_KEY=
BAILIAN_KEY =
xxxxxxx_KEY=