Revert "【迁移】工具系统再完善:工具缓存、ttl支持、自动记录、长期保存、自动清理缓存、将记录与执行分离、api记录查询、时间聊天工具筛选查询..."

This reverts commit 80ab0c687c.
This commit is contained in:
Windpicker-owo
2025-08-27 12:46:00 +08:00
parent adfacd883c
commit e068663ef9
9 changed files with 168 additions and 604 deletions

View File

@@ -1,9 +1,7 @@
from typing import Any, Dict, List, Optional, Type, Union
from datetime import datetime
from typing import Optional, Type
from src.plugin_system.base.base_tool import BaseTool
from src.plugin_system.base.component_types import ComponentType
from src.common.tool_history import ToolHistoryManager
from src.common.logger import get_logger
logger = get_logger("tool_api")
@@ -34,109 +32,3 @@ def get_llm_available_tool_definitions():
llm_available_tools = component_registry.get_llm_available_tools()
return [(name, tool_class.get_tool_definition()) for name, tool_class in llm_available_tools.items()]
def get_tool_history(
tool_names: Optional[List[str]] = None,
start_time: Optional[Union[datetime, str]] = None,
end_time: Optional[Union[datetime, str]] = None,
chat_id: Optional[str] = None,
limit: Optional[int] = None,
status: Optional[str] = None
) -> List[Dict[str, Any]]:
"""
获取工具调用历史记录
Args:
tool_names: 工具名称列表,为空则查询所有工具
start_time: 开始时间可以是datetime对象或ISO格式字符串
end_time: 结束时间可以是datetime对象或ISO格式字符串
chat_id: 会话ID用于筛选特定会话的调用
limit: 返回记录数量限制
status: 执行状态筛选("completed""error")
Returns:
List[Dict]: 工具调用记录列表,每条记录包含以下字段:
- tool_name: 工具名称
- timestamp: 调用时间
- arguments: 调用参数
- result: 调用结果
- execution_time: 执行时间
- status: 执行状态
- chat_id: 会话ID
"""
history_manager = ToolHistoryManager()
return history_manager.query_history(
tool_names=tool_names,
start_time=start_time,
end_time=end_time,
chat_id=chat_id,
limit=limit,
status=status
)
def get_tool_history_text(
tool_names: Optional[List[str]] = None,
start_time: Optional[Union[datetime, str]] = None,
end_time: Optional[Union[datetime, str]] = None,
chat_id: Optional[str] = None,
limit: Optional[int] = None,
status: Optional[str] = None
) -> str:
"""
获取工具调用历史记录的文本格式
Args:
tool_names: 工具名称列表,为空则查询所有工具
start_time: 开始时间可以是datetime对象或ISO格式字符串
end_time: 结束时间可以是datetime对象或ISO格式字符串
chat_id: 会话ID用于筛选特定会话的调用
limit: 返回记录数量限制
status: 执行状态筛选("completed""error")
Returns:
str: 格式化的工具调用历史记录文本
"""
history = get_tool_history(
tool_names=tool_names,
start_time=start_time,
end_time=end_time,
chat_id=chat_id,
limit=limit,
status=status
)
if not history:
return "没有找到工具调用记录"
text = "工具调用历史记录:\n"
for record in history:
# 提取结果中的name和content
result = record['result']
if isinstance(result, dict):
name = result.get('name', record['tool_name'])
content = result.get('content', str(result))
else:
name = record['tool_name']
content = str(result)
# 格式化内容
content = content.strip().replace('\n', ' ')
if len(content) > 200:
content = content[:200] + "..."
# 格式化时间
timestamp = datetime.fromisoformat(record['timestamp']).strftime("%Y-%m-%d %H:%M:%S")
text += f"[{timestamp}] {name}\n"
text += f"结果: {content}\n\n"
return text
def clear_tool_history() -> None:
"""
清除所有工具调用历史记录
"""
history_manager = ToolHistoryManager()
history_manager.clear_history()

View File

@@ -28,8 +28,6 @@ class BaseTool(ABC):
"""
available_for_llm: bool = False
"""是否可供LLM使用"""
history_ttl: int = 5
"""工具调用历史记录的TTL值默认为5。设为0表示不记录历史"""
def __init__(self, plugin_config: Optional[dict] = None):
self.plugin_config = plugin_config or {} # 直接存储插件配置字典

View File

@@ -40,12 +40,13 @@ class ToolExecutor:
可以直接输入聊天消息内容,自动判断并执行相应的工具,返回结构化的工具执行结果。
"""
def __init__(self, chat_id: str):
def __init__(self, chat_id: str, enable_cache: bool = False, cache_ttl: int = 3):
"""初始化工具执行器
Args:
executor_id: 执行器标识符,用于日志记录
chat_id: 聊天标识符,用于日志记录
enable_cache: 是否启用缓存机制
cache_ttl: 缓存生存时间(周期数)
"""
self.chat_id = chat_id
self.chat_stream = get_chat_manager().get_stream(self.chat_id)
@@ -53,7 +54,12 @@ class ToolExecutor:
self.llm_model = LLMRequest(model_set=model_config.model_task_config.tool_use, request_type="tool_executor")
logger.info(f"{self.log_prefix}工具执行器初始化完成")
# 缓存配置
self.enable_cache = enable_cache
self.cache_ttl = cache_ttl
self.tool_cache = {} # 格式: {cache_key: {"result": result, "ttl": ttl, "timestamp": timestamp}}
logger.info(f"{self.log_prefix}工具执行器初始化完成,缓存{'启用' if enable_cache else '禁用'}TTL={cache_ttl}")
async def execute_from_chat_message(
self, target_message: str, chat_history: str, sender: str, return_details: bool = False
@@ -71,6 +77,18 @@ class ToolExecutor:
如果return_details为True: Tuple[List[Dict], List[str], str] - (结果列表, 使用的工具, 提示词)
"""
# 首先检查缓存
cache_key = self._generate_cache_key(target_message, chat_history, sender)
if cached_result := self._get_from_cache(cache_key):
logger.info(f"{self.log_prefix}使用缓存结果,跳过工具执行")
if not return_details:
return cached_result, [], ""
# 从缓存结果中提取工具名称
used_tools = [result.get("tool_name", "unknown") for result in cached_result]
return cached_result, used_tools, ""
# 缓存未命中,执行工具调用
# 获取可用工具
tools = self._get_tool_definitions()
@@ -99,6 +117,10 @@ class ToolExecutor:
# 执行工具调用
tool_results, used_tools = await self.execute_tool_calls(tool_calls)
# 缓存结果
if tool_results:
self._set_cache(cache_key, tool_results)
if used_tools:
logger.info(f"{self.log_prefix}工具执行完成,共执行{len(used_tools)}个工具: {used_tools}")
@@ -129,19 +151,9 @@ class ToolExecutor:
return [], []
# 提取tool_calls中的函数名称
func_names = []
for call in tool_calls:
try:
if hasattr(call, 'func_name'):
func_names.append(call.func_name)
except Exception as e:
logger.error(f"{self.log_prefix}获取工具名称失败: {e}")
continue
func_names = [call.func_name for call in tool_calls if call.func_name]
if func_names:
logger.info(f"{self.log_prefix}开始执行工具调用: {func_names}")
else:
logger.warning(f"{self.log_prefix}未找到有效的工具调用")
logger.info(f"{self.log_prefix}开始执行工具调用: {func_names}")
# 执行每个工具调用
for tool_call in tool_calls:
@@ -204,24 +216,88 @@ class ToolExecutor:
logger.warning(f"未知工具名称: {function_name}")
return None
# 执行工具并记录日志
logger.debug(f"{self.log_prefix}执行工具 {function_name},参数: {function_args}")
# 执行工具
result = await tool_instance.execute(function_args)
if result:
logger.debug(f"{self.log_prefix}工具 {function_name} 执行成功,结果: {result}")
return {
"tool_call_id": tool_call.call_id,
"role": "tool",
"name": function_name,
"type": "function",
"content": result.get("content", "")
"content": result["content"],
}
logger.warning(f"{self.log_prefix}工具 {function_name} 返回空结果")
return None
except Exception as e:
logger.error(f"执行工具调用时发生错误: {str(e)}")
raise e
def _generate_cache_key(self, target_message: str, chat_history: str, sender: str) -> str:
"""生成缓存键
Args:
target_message: 目标消息内容
chat_history: 聊天历史
sender: 发送者
Returns:
str: 缓存键
"""
import hashlib
# 使用消息内容和群聊状态生成唯一缓存键
content = f"{target_message}_{chat_history}_{sender}"
return hashlib.md5(content.encode()).hexdigest()
def _get_from_cache(self, cache_key: str) -> Optional[List[Dict]]:
"""从缓存获取结果
Args:
cache_key: 缓存键
Returns:
Optional[List[Dict]]: 缓存的结果如果不存在或过期则返回None
"""
if not self.enable_cache or cache_key not in self.tool_cache:
return None
cache_item = self.tool_cache[cache_key]
if cache_item["ttl"] <= 0:
# 缓存过期,删除
del self.tool_cache[cache_key]
logger.debug(f"{self.log_prefix}缓存过期,删除缓存键: {cache_key}")
return None
# 减少TTL
cache_item["ttl"] -= 1
logger.debug(f"{self.log_prefix}使用缓存结果剩余TTL: {cache_item['ttl']}")
return cache_item["result"]
def _set_cache(self, cache_key: str, result: List[Dict]):
"""设置缓存
Args:
cache_key: 缓存键
result: 要缓存的结果
"""
if not self.enable_cache:
return
self.tool_cache[cache_key] = {"result": result, "ttl": self.cache_ttl, "timestamp": time.time()}
logger.debug(f"{self.log_prefix}设置缓存TTL: {self.cache_ttl}")
def _cleanup_expired_cache(self):
"""清理过期的缓存"""
if not self.enable_cache:
return
expired_keys = []
expired_keys.extend(cache_key for cache_key, cache_item in self.tool_cache.items() if cache_item["ttl"] <= 0)
for key in expired_keys:
del self.tool_cache[key]
if expired_keys:
logger.debug(f"{self.log_prefix}清理了{len(expired_keys)}个过期缓存")
async def execute_specific_tool_simple(self, tool_name: str, tool_args: Dict) -> Optional[Dict]:
"""直接执行指定工具
@@ -260,30 +336,86 @@ class ToolExecutor:
return None
def clear_cache(self):
"""清空所有缓存"""
if self.enable_cache:
cache_count = len(self.tool_cache)
self.tool_cache.clear()
logger.info(f"{self.log_prefix}清空了{cache_count}个缓存项")
def get_cache_status(self) -> Dict:
"""获取缓存状态信息
Returns:
Dict: 包含缓存统计信息的字典
"""
if not self.enable_cache:
return {"enabled": False, "cache_count": 0}
# 清理过期缓存
self._cleanup_expired_cache()
total_count = len(self.tool_cache)
ttl_distribution = {}
for cache_item in self.tool_cache.values():
ttl = cache_item["ttl"]
ttl_distribution[ttl] = ttl_distribution.get(ttl, 0) + 1
return {
"enabled": True,
"cache_count": total_count,
"cache_ttl": self.cache_ttl,
"ttl_distribution": ttl_distribution,
}
def set_cache_config(self, enable_cache: Optional[bool] = None, cache_ttl: int = -1):
"""动态修改缓存配置
Args:
enable_cache: 是否启用缓存
cache_ttl: 缓存TTL
"""
if enable_cache is not None:
self.enable_cache = enable_cache
logger.info(f"{self.log_prefix}缓存状态修改为: {'启用' if enable_cache else '禁用'}")
if cache_ttl > 0:
self.cache_ttl = cache_ttl
logger.info(f"{self.log_prefix}缓存TTL修改为: {cache_ttl}")
"""
ToolExecutor使用示例
# 1. 基础使用 - 从聊天消息执行工具
executor = ToolExecutor(chat_id=my_chat_id)
# 1. 基础使用 - 从聊天消息执行工具启用缓存默认TTL=3
executor = ToolExecutor(executor_id="my_executor")
results, _, _ = await executor.execute_from_chat_message(
target_message="今天天气怎么样?现在几点了?",
chat_history="",
sender="用户"
talking_message_str="今天天气怎么样?现在几点了?",
is_group_chat=False
)
# 2. 获取详细信息
# 2. 禁用缓存的执行器
no_cache_executor = ToolExecutor(executor_id="no_cache", enable_cache=False)
# 3. 自定义缓存TTL
long_cache_executor = ToolExecutor(executor_id="long_cache", cache_ttl=10)
# 4. 获取详细信息
results, used_tools, prompt = await executor.execute_from_chat_message(
target_message="帮我查询Python相关知识",
chat_history="",
sender="用户",
talking_message_str="帮我查询Python相关知识",
is_group_chat=False,
return_details=True
)
# 3. 直接执行特定工具
# 5. 直接执行特定工具
result = await executor.execute_specific_tool_simple(
tool_name="get_knowledge",
tool_args={"query": "机器学习"}
)
# 6. 缓存管理
cache_status = executor.get_cache_status() # 查看缓存状态
executor.clear_cache() # 清空缓存
executor.set_cache_config(cache_ttl=5) # 动态修改缓存配置
"""