feat:一对多的新模式

This commit is contained in:
SengokuCola
2025-06-24 18:29:37 +08:00
parent c4ce206780
commit e04bf94e16
8 changed files with 1139 additions and 3 deletions

View File

@@ -0,0 +1,230 @@
from src.config.config import global_config
from src.common.logger import get_logger
from src.individuality.individuality import get_individuality
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
from src.chat.message_receive.message import MessageRecv
import time
from src.chat.utils.utils import get_recent_group_speaker
from src.chat.memory_system.Hippocampus import hippocampus_manager
import random
from src.person_info.relationship_manager import get_relationship_manager
logger = get_logger("prompt")
def init_prompt():
Prompt("你正在qq群里聊天下面是群里在聊的内容", "chat_target_group1")
Prompt("你正在和{sender_name}聊天,这是你们之前聊的内容:", "chat_target_private1")
Prompt("在群里聊天", "chat_target_group2")
Prompt("{sender_name}私聊", "chat_target_private2")
Prompt("\n你有以下这些**知识**\n{prompt_info}\n请你**记住上面的知识**,之后可能会用到。\n", "knowledge_prompt")
Prompt(
"""
你的名字叫{bot_name},昵称是:{bot_other_names}{prompt_personality}
你现在的主要任务是和 {sender_name} 聊天。同时,也有其他用户会参与你们的聊天,但是你主要还是关注你和{sender_name}的聊天内容。
{background_dialogue_prompt}
--------------------------------
{now_time}
这是你和{sender_name}的对话,你们正在交流中:
{core_dialogue_prompt}
{message_txt}
回复可以简短一些。可以参考贴吧,知乎和微博的回复风格,回复不要浮夸,不要用夸张修辞,平淡一些。
不要输出多余内容(包括前后缀,冒号和引号,括号()表情包at或 @等 )。只输出回复内容,现在{sender_name}正在等待你的回复。
你的回复风格不要浮夸,有逻辑和条理,请你继续回复{sender_name}""",
"s4u_prompt", # New template for private CHAT chat
)
class PromptBuilder:
def __init__(self):
self.prompt_built = ""
self.activate_messages = ""
async def build_prompt_normal(
self,
message,
chat_stream,
message_txt: str,
sender_name: str = "某人",
) -> str:
prompt_personality = get_individuality().get_prompt(x_person=2, level=2)
is_group_chat = bool(chat_stream.group_info)
who_chat_in_group = []
if is_group_chat:
who_chat_in_group = get_recent_group_speaker(
chat_stream.stream_id,
(chat_stream.user_info.platform, chat_stream.user_info.user_id) if chat_stream.user_info else None,
limit=global_config.normal_chat.max_context_size,
)
elif chat_stream.user_info:
who_chat_in_group.append(
(chat_stream.user_info.platform, chat_stream.user_info.user_id, chat_stream.user_info.user_nickname)
)
relation_prompt = ""
if global_config.relationship.enable_relationship:
for person in who_chat_in_group:
relationship_manager = get_relationship_manager()
relation_prompt += await relationship_manager.build_relationship_info(person)
memory_prompt = ""
related_memory = await hippocampus_manager.get_memory_from_text(
text=message_txt, max_memory_num=2, max_memory_length=2, max_depth=3, fast_retrieval=False
)
related_memory_info = ""
if related_memory:
for memory in related_memory:
related_memory_info += memory[1]
memory_prompt = await global_prompt_manager.format_prompt(
"memory_prompt", related_memory_info=related_memory_info
)
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
chat_id=chat_stream.stream_id,
timestamp=time.time(),
limit=100,
)
# 分别筛选核心对话和背景对话
core_dialogue_list = []
background_dialogue_list = []
bot_id = str(global_config.bot.qq_account)
target_user_id = str(message.chat_stream.user_info.user_id)
for msg_dict in message_list_before_now:
try:
# 直接通过字典访问
msg_user_id = str(msg_dict.get('user_id'))
if msg_user_id == bot_id or msg_user_id == target_user_id:
core_dialogue_list.append(msg_dict)
else:
background_dialogue_list.append(msg_dict)
except Exception as e:
logger.error(f"无法处理历史消息记录: {msg_dict}, 错误: {e}")
if background_dialogue_list:
latest_25_msgs = background_dialogue_list[-25:]
background_dialogue_prompt = build_readable_messages(
latest_25_msgs,
merge_messages=True,
timestamp_mode = "normal_no_YMD",
show_pic = False,
)
background_dialogue_prompt = f"这是其他用户的发言:\n{background_dialogue_prompt}"
else:
background_dialogue_prompt = ""
# 分别获取最新50条和最新25条从message_list_before_now截取
core_dialogue_list = core_dialogue_list[-50:]
first_msg = core_dialogue_list[0]
start_speaking_user_id = first_msg.get('user_id')
if start_speaking_user_id == bot_id:
last_speaking_user_id = bot_id
msg_seg_str = "你的发言:\n"
else:
start_speaking_user_id = target_user_id
last_speaking_user_id = start_speaking_user_id
msg_seg_str = "对方的发言:\n"
msg_seg_str += f"{first_msg.get('processed_plain_text')}\n"
all_msg_seg_list = []
for msg in core_dialogue_list[1:]:
speaker = msg.get('user_id')
if speaker == last_speaking_user_id:
#还是同一个人讲话
msg_seg_str += f"{msg.get('processed_plain_text')}\n"
else:
#换人了
msg_seg_str = f"{msg_seg_str}\n"
all_msg_seg_list.append(msg_seg_str)
if speaker == bot_id:
msg_seg_str = "你的发言:\n"
else:
msg_seg_str = "对方的发言:\n"
msg_seg_str += f"{msg.get('processed_plain_text')}\n"
last_speaking_user_id = speaker
all_msg_seg_list.append(msg_seg_str)
core_msg_str = ""
for msg in all_msg_seg_list:
# print(f"msg: {msg}")
core_msg_str += msg
now_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
now_time = f"现在的时间是:{now_time}"
template_name = "s4u_prompt"
effective_sender_name = sender_name
prompt = await global_prompt_manager.format_prompt(
template_name,
relation_prompt=relation_prompt,
sender_name=effective_sender_name,
memory_prompt=memory_prompt,
core_dialogue_prompt=core_msg_str,
background_dialogue_prompt=background_dialogue_prompt,
message_txt=message_txt,
bot_name=global_config.bot.nickname,
bot_other_names="/".join(global_config.bot.alias_names),
prompt_personality=prompt_personality,
now_time=now_time,
)
return prompt
def weighted_sample_no_replacement(items, weights, k) -> list:
"""
加权且不放回地随机抽取k个元素。
参数:
items: 待抽取的元素列表
weights: 每个元素对应的权重与items等长且为正数
k: 需要抽取的元素个数
返回:
selected: 按权重加权且不重复抽取的k个元素组成的列表
如果items中的元素不足k就只会返回所有可用的元素
实现思路:
每次从当前池中按权重加权随机选出一个元素选中后将其从池中移除重复k次。
这样保证了:
1. count越大被选中概率越高
2. 不会重复选中同一个元素
"""
selected = []
pool = list(zip(items, weights))
for _ in range(min(k, len(pool))):
total = sum(w for _, w in pool)
r = random.uniform(0, total)
upto = 0
for idx, (item, weight) in enumerate(pool):
upto += weight
if upto >= r:
selected.append(item)
pool.pop(idx)
break
return selected
init_prompt()
prompt_builder = PromptBuilder()