feat:一对多的新模式
This commit is contained in:
230
src/mais4u/mais4u_chat/s4u_prompt.py
Normal file
230
src/mais4u/mais4u_chat/s4u_prompt.py
Normal file
@@ -0,0 +1,230 @@
|
||||
|
||||
from src.config.config import global_config
|
||||
from src.common.logger import get_logger
|
||||
from src.individuality.individuality import get_individuality
|
||||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
|
||||
from src.chat.message_receive.message import MessageRecv
|
||||
import time
|
||||
from src.chat.utils.utils import get_recent_group_speaker
|
||||
from src.chat.memory_system.Hippocampus import hippocampus_manager
|
||||
import random
|
||||
|
||||
from src.person_info.relationship_manager import get_relationship_manager
|
||||
|
||||
logger = get_logger("prompt")
|
||||
|
||||
|
||||
def init_prompt():
|
||||
Prompt("你正在qq群里聊天,下面是群里在聊的内容:", "chat_target_group1")
|
||||
Prompt("你正在和{sender_name}聊天,这是你们之前聊的内容:", "chat_target_private1")
|
||||
Prompt("在群里聊天", "chat_target_group2")
|
||||
Prompt("和{sender_name}私聊", "chat_target_private2")
|
||||
|
||||
Prompt("\n你有以下这些**知识**:\n{prompt_info}\n请你**记住上面的知识**,之后可能会用到。\n", "knowledge_prompt")
|
||||
|
||||
|
||||
Prompt(
|
||||
"""
|
||||
你的名字叫{bot_name},昵称是:{bot_other_names},{prompt_personality}。
|
||||
你现在的主要任务是和 {sender_name} 聊天。同时,也有其他用户会参与你们的聊天,但是你主要还是关注你和{sender_name}的聊天内容。
|
||||
|
||||
{background_dialogue_prompt}
|
||||
--------------------------------
|
||||
{now_time}
|
||||
这是你和{sender_name}的对话,你们正在交流中:
|
||||
{core_dialogue_prompt}
|
||||
|
||||
{message_txt}
|
||||
回复可以简短一些。可以参考贴吧,知乎和微博的回复风格,回复不要浮夸,不要用夸张修辞,平淡一些。
|
||||
不要输出多余内容(包括前后缀,冒号和引号,括号(),表情包,at或 @等 )。只输出回复内容,现在{sender_name}正在等待你的回复。
|
||||
你的回复风格不要浮夸,有逻辑和条理,请你继续回复{sender_name}。""",
|
||||
"s4u_prompt", # New template for private CHAT chat
|
||||
)
|
||||
|
||||
|
||||
class PromptBuilder:
|
||||
def __init__(self):
|
||||
self.prompt_built = ""
|
||||
self.activate_messages = ""
|
||||
|
||||
async def build_prompt_normal(
|
||||
self,
|
||||
message,
|
||||
chat_stream,
|
||||
message_txt: str,
|
||||
sender_name: str = "某人",
|
||||
) -> str:
|
||||
prompt_personality = get_individuality().get_prompt(x_person=2, level=2)
|
||||
is_group_chat = bool(chat_stream.group_info)
|
||||
|
||||
who_chat_in_group = []
|
||||
if is_group_chat:
|
||||
who_chat_in_group = get_recent_group_speaker(
|
||||
chat_stream.stream_id,
|
||||
(chat_stream.user_info.platform, chat_stream.user_info.user_id) if chat_stream.user_info else None,
|
||||
limit=global_config.normal_chat.max_context_size,
|
||||
)
|
||||
elif chat_stream.user_info:
|
||||
who_chat_in_group.append(
|
||||
(chat_stream.user_info.platform, chat_stream.user_info.user_id, chat_stream.user_info.user_nickname)
|
||||
)
|
||||
|
||||
relation_prompt = ""
|
||||
if global_config.relationship.enable_relationship:
|
||||
for person in who_chat_in_group:
|
||||
relationship_manager = get_relationship_manager()
|
||||
relation_prompt += await relationship_manager.build_relationship_info(person)
|
||||
|
||||
|
||||
memory_prompt = ""
|
||||
related_memory = await hippocampus_manager.get_memory_from_text(
|
||||
text=message_txt, max_memory_num=2, max_memory_length=2, max_depth=3, fast_retrieval=False
|
||||
)
|
||||
|
||||
related_memory_info = ""
|
||||
if related_memory:
|
||||
for memory in related_memory:
|
||||
related_memory_info += memory[1]
|
||||
memory_prompt = await global_prompt_manager.format_prompt(
|
||||
"memory_prompt", related_memory_info=related_memory_info
|
||||
)
|
||||
|
||||
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
|
||||
chat_id=chat_stream.stream_id,
|
||||
timestamp=time.time(),
|
||||
limit=100,
|
||||
)
|
||||
|
||||
|
||||
# 分别筛选核心对话和背景对话
|
||||
core_dialogue_list = []
|
||||
background_dialogue_list = []
|
||||
bot_id = str(global_config.bot.qq_account)
|
||||
target_user_id = str(message.chat_stream.user_info.user_id)
|
||||
|
||||
for msg_dict in message_list_before_now:
|
||||
try:
|
||||
# 直接通过字典访问
|
||||
msg_user_id = str(msg_dict.get('user_id'))
|
||||
|
||||
if msg_user_id == bot_id or msg_user_id == target_user_id:
|
||||
core_dialogue_list.append(msg_dict)
|
||||
else:
|
||||
background_dialogue_list.append(msg_dict)
|
||||
except Exception as e:
|
||||
logger.error(f"无法处理历史消息记录: {msg_dict}, 错误: {e}")
|
||||
|
||||
if background_dialogue_list:
|
||||
latest_25_msgs = background_dialogue_list[-25:]
|
||||
background_dialogue_prompt = build_readable_messages(
|
||||
latest_25_msgs,
|
||||
merge_messages=True,
|
||||
timestamp_mode = "normal_no_YMD",
|
||||
show_pic = False,
|
||||
)
|
||||
background_dialogue_prompt = f"这是其他用户的发言:\n{background_dialogue_prompt}"
|
||||
else:
|
||||
background_dialogue_prompt = ""
|
||||
|
||||
# 分别获取最新50条和最新25条(从message_list_before_now截取)
|
||||
core_dialogue_list = core_dialogue_list[-50:]
|
||||
|
||||
first_msg = core_dialogue_list[0]
|
||||
start_speaking_user_id = first_msg.get('user_id')
|
||||
if start_speaking_user_id == bot_id:
|
||||
last_speaking_user_id = bot_id
|
||||
msg_seg_str = "你的发言:\n"
|
||||
else:
|
||||
start_speaking_user_id = target_user_id
|
||||
last_speaking_user_id = start_speaking_user_id
|
||||
msg_seg_str = "对方的发言:\n"
|
||||
|
||||
msg_seg_str += f"{first_msg.get('processed_plain_text')}\n"
|
||||
|
||||
all_msg_seg_list = []
|
||||
for msg in core_dialogue_list[1:]:
|
||||
speaker = msg.get('user_id')
|
||||
if speaker == last_speaking_user_id:
|
||||
#还是同一个人讲话
|
||||
msg_seg_str += f"{msg.get('processed_plain_text')}\n"
|
||||
else:
|
||||
#换人了
|
||||
msg_seg_str = f"{msg_seg_str}\n"
|
||||
all_msg_seg_list.append(msg_seg_str)
|
||||
|
||||
if speaker == bot_id:
|
||||
msg_seg_str = "你的发言:\n"
|
||||
else:
|
||||
msg_seg_str = "对方的发言:\n"
|
||||
|
||||
msg_seg_str += f"{msg.get('processed_plain_text')}\n"
|
||||
last_speaking_user_id = speaker
|
||||
|
||||
all_msg_seg_list.append(msg_seg_str)
|
||||
|
||||
|
||||
core_msg_str = ""
|
||||
for msg in all_msg_seg_list:
|
||||
# print(f"msg: {msg}")
|
||||
core_msg_str += msg
|
||||
|
||||
now_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
|
||||
now_time = f"现在的时间是:{now_time}"
|
||||
|
||||
template_name = "s4u_prompt"
|
||||
effective_sender_name = sender_name
|
||||
|
||||
prompt = await global_prompt_manager.format_prompt(
|
||||
template_name,
|
||||
relation_prompt=relation_prompt,
|
||||
sender_name=effective_sender_name,
|
||||
memory_prompt=memory_prompt,
|
||||
core_dialogue_prompt=core_msg_str,
|
||||
background_dialogue_prompt=background_dialogue_prompt,
|
||||
message_txt=message_txt,
|
||||
bot_name=global_config.bot.nickname,
|
||||
bot_other_names="/".join(global_config.bot.alias_names),
|
||||
prompt_personality=prompt_personality,
|
||||
now_time=now_time,
|
||||
)
|
||||
|
||||
return prompt
|
||||
|
||||
|
||||
def weighted_sample_no_replacement(items, weights, k) -> list:
|
||||
"""
|
||||
加权且不放回地随机抽取k个元素。
|
||||
|
||||
参数:
|
||||
items: 待抽取的元素列表
|
||||
weights: 每个元素对应的权重(与items等长,且为正数)
|
||||
k: 需要抽取的元素个数
|
||||
返回:
|
||||
selected: 按权重加权且不重复抽取的k个元素组成的列表
|
||||
|
||||
如果 items 中的元素不足 k 个,就只会返回所有可用的元素
|
||||
|
||||
实现思路:
|
||||
每次从当前池中按权重加权随机选出一个元素,选中后将其从池中移除,重复k次。
|
||||
这样保证了:
|
||||
1. count越大被选中概率越高
|
||||
2. 不会重复选中同一个元素
|
||||
"""
|
||||
selected = []
|
||||
pool = list(zip(items, weights))
|
||||
for _ in range(min(k, len(pool))):
|
||||
total = sum(w for _, w in pool)
|
||||
r = random.uniform(0, total)
|
||||
upto = 0
|
||||
for idx, (item, weight) in enumerate(pool):
|
||||
upto += weight
|
||||
if upto >= r:
|
||||
selected.append(item)
|
||||
pool.pop(idx)
|
||||
break
|
||||
return selected
|
||||
|
||||
|
||||
init_prompt()
|
||||
prompt_builder = PromptBuilder()
|
||||
Reference in New Issue
Block a user